

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.6,April 2012 – www.ijais.org

12

Software Module Clustering using a Fast Multi-objective

Hyper-heuristic Evolutionary Algorithm

A. Charan Kumari
 Department of Physics & Computer Science

 Dayalbagh Educational Institute
 Dayalbagh, Agra, India

 K. Srinivas
Department of Electrical Engineering

Dayalbagh Educational Institute
Dayalbagh, Agra, India

ABSTRACT

Software evolution is a natural phenomenon in the software

development life cycle. As the software evolves, the modular

structure of software degrades, and at one point it becomes a

challenging task to maintain the software further. Software

module clustering is an important activity during software

maintenance whose main goal is to obtain good modular

structures. Software engineers greatly emphasize on good

modular structures as it is easier to comprehend, develop and

maintain such software systems. In recent times, the problem

has been converted into a Search-based Software Engineering

Problem with multiple objectives. This problem is NP hard as

it is an instance of graph partitioning and hence cannot be

solved using traditional optimization techniques. The Multi-

objective Hyper-heuristic Evolutionary Algorithm (MHypEA)

is a fast and effective metaheuristic search technique for

suggesting software module clusters while maximizing

cohesion and minimizing coupling of the software modules. It

incorporates twelve low-level heuristics which are based on

different methods of selection, crossover and mutation

operations of Evolutionary Algorithms. The selection

mechanism to select a low-level heuristic is based on

reinforcement learning with adaptive weights. The

effectiveness of the algorithm has been studied on six real-

world module clustering problems reported in the literature

and the comparison of the results prove the efficacy of the

MHypEA in terms of quality of solutions and computational

time.

General Terms

Software Engineering, Software maintenance.

Keywords

Search-based Software Engineering, Software module

clustering, Hyper-heuristics, Evolutionary Algorithm.

1. INTRODUCTION
Software maintenance is a critical activity in the software

development life cycle. Boehm [1] found through his research

that the maintenance costs can be up to ten times those of an

initial development and also Parikh and Zvegintzov [2]

mentioned that it consumes 50% of all computer and human

resources. Due to the increase in the complexity and size of

the software systems, maintenance has become a crucial issue

for software engineers. The situation becomes appalling,

when the software lacks proper documentation on the changes

that are performed during system evolution. As a

consequence, it becomes practically difficult to maintain the

software in future. The replacement of such software with a

new one is also not a feasible option, as it does not guarantee

the full functionality. The practices such as reverse

engineering and reengineering have emerged to handle such

software systems. As the source code is the only exact

duplication of the system available to software developers and

maintainers, the reverse engineering community is working

towards the development of methods to extract the high-level

structural information from the source code directly. Such

methods are inclined to focus on design recovery through

software clustering, program slicing, source code analysis etc.

Software module clustering is the process of grouping

software modules into clusters in such a way that the highly

dependent modules are grouped into the same cluster. The

clustering assists in better comprehension of the system and

provides easy maintenance in the future. This decomposition

is based on the relationships among the modules. Generally

these relationships are represented in the form of Module

Dependency Graphs (MDGs), in which modules are

represented as nodes and their inter relationships are

represented by means of edges connecting the nodes. Thus

clustering can be visualized as a graph partitioning problem,

which is known to be NP hard. Therefore it cannot be solved

efficiently by traditional optimization techniques. This led to

the development of search-based approaches to the solution of

software module clustering. Though they do not guarantee to

provide optimal solutions, yet, they can obtain near optimal

solutions in reasonable amount of computational time.

Search-based approach to software module clustering was

first suggested by Mancoridis et al. [3] using hill climbing as

the primary search technique. Their work aimed at the

automatic recovery of the modular structure of a software

system from its source code. They experimented on many

systems and evaluated the results based on the feedback of

system designers and found to be good. Thereafter they

developed a clustering tool called Bunch [4] that creates

system decomposition automatically by treating clustering as

an optimization problem. Thereafter, many researchers

experimented with the automatic software module clustering

using many optimization techniques. Doval et al. [5] treated

the problem of finding good clustering as an optimization

problem and implemented using a Genetic Algorithm to

search the extraordinarily large solution space of all possible

MDG partitions. The effectiveness of the technique is

demonstrated by applying it to a medium sized software

system. Harman et al. [6] introduced a normalized

representation for a software modularization, to reduce the

size of the search space and to improve the results for Genetic

Algorithms and also suggested a new crossover operator

which is designed to promote the formation and retention of

building blocks and found through their work that this

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.6,April 2012 – www.ijais.org

13

crossover technique is better suited to genetic approaches than

standard crossover.

Kiarash Mahdavi et al. [7] employed multiple hill climbing

approach to software module clustering. They demonstrated

that a set of multiple hill climbs can be combined to locate

good „building blocks‟ for subsequent searches. Building

blocks are formed by identifying the common features in a

selection of best hill climbs. They found that this process

reduced the search space, and at the same time „hard wired‟

the parts of the solution. Their empirical study shows that the

multiple hill climbing approach guides the search to higher

peaks in subsequent executions. Bilal Khan et al. [8] also

treated software clustering as an optimization problem and

proposed an automated technique to get near optimal

decompositions of relatively independent subsystems,

containing interdependent modules. They implemented using

self adaptive Evolution Strategies to search a large solution

space consisting of modules and their relationships and

compared their proposed approach with a widely used Genetic

Algorithm based approach on a number of test systems and

found that the suggested approach is effective in generating

quality solutions for all the test cases. Praditwong [9]

experimented on real-world problems of software module

clustering by metaheuristic search methods such as Genetic

Algorithms and introduced the Grouping Genetic Algorithm

(GGA) to the benchmarks. The empirical results reported that

the GGA outperforms a Genetic Algorithm with string

representation.

Recently, Praditwong et al. [10] formulated the software

module clustering as a multi-objective search-based problem

based on several objectives. They evaluated the effectiveness

of the multi-objective approach on several real-world module

clustering problems using a Two-Archive multi-objective

evolutionary algorithm (Praditwong et al. [11]) and claimed

that the multi-objective approach produced significantly better

solutions than the existing single-objective approach.

This paper presents a new metaheuristic Multi-objective

Hyper-heuristic Evolutionary Algorithm (MHypEA) which is

a hyper-heuristic based multi-objective evolutionary

algorithm for the solution of multi-objective software module

clustering problem. MHypEA uses twelve low-level heuristics

based on various techniques of selection, crossover and

mutation operators. The designed selection mechanism

selects one of the low-level heuristics based on reinforcement

learning with adaptive weights. The efficacy of the MHypEA

is tested on six real-world module clustering problems taken

from the literature and found that the hyper-heuristic approach

has led to high quality solutions in very less computational

time.

The rest of the paper is organized as follows. Section 2

describes the software module clustering problem as single

and multi-objective search problems. Section 3 presents the

origin of hyper heuristics along with its central idea. The

proposed approach is provided in section 4. Section 5 presents

the Experiments. The results obtained by the MHypEA are

shown in section 6. Concluding remarks are given in

section 7.

2. SOFTWARE MODULE CLUSTERING
Software module clustering is studied broadly in the literature

as a single-objective search problem; but recently, it is

formulated as a multi-objective search problem. This section

explains both the versions.

2.1 Single-objective software module

clustering problem
Software module clustering is the process of grouping the

software modules into various clusters to improve program

structure and to assist in easy maintenance. The input to the

search algorithm is the MDG; where the nodes represent the

modules and the edges represent the relationships among the

modules. MDGs can be either weighted or unweighted. In a

weighted MDG, the edges are assigned with weights

representing the strength of relationship between the modules

and an unweighted MDG depicts the relationship among

modules by the presence or absence of an edge. A simple

array is used as the representation scheme to map the modules

to clusters. The array index represents the module and the

content of the array corresponds to the cluster to which the

module is assigned to. The sole objective used in any single-

objective formulation of the software module clustering is the

Modularization Quality (MQ) measure.

The Modularization Quantity (MQ) is defined as [10]

 


n

k MFkMQ
1 (1)

where MFk is the Modularization Factor of the kth cluster

and n is the total number of clusters identified by the

algorithm. Modularization Factor (MF) is the ratio of intra-

edges and inter-edges in each cluster and is given by















0

2/

00

iif
ji

i

iif

MFk

 (2)

i is weight of the intra edge which has its both ends in the

same cluster and j is weight of the inter edge which has its

ends in two different clusters. For an unweighted MDG, the

weight is considered as 1.

The primary objective of software module clustering is to

produce software clusters that are of high quality with

maximum intra-connectivity (cohesion) and minimum inter-

connectivity (coupling). Intra-connectivity is the measure of

density of connections among the modules in a single cluster.

High intra-connectivity signifies a good clustering; as the

largely dependent modules are grouped into the same cluster.

Inter-connectivity is the measure of density of connections

among modules in different clusters. Low inter-connectivity

signifies a good clustering; as the clusters are highly

independent of each other. The Modularization Quantity

(MQ) establishes the trade-off between intra-connectivity and

inter-connectivity and rewards cohesion and penalizes

coupling.

2.2 Multi-objective software module

clustering problem
As maximizing the cohesion and minimizing the coupling are

two conflicting objectives, Praditwong et al. [10]

reformulated the software module clustering as a multi-

objective problem and formulated two multi-objective

approaches – Maximizing Cluster Approach (MCA) and

Equal-size Cluster Approach (ECA).

The objectives identified under MCA approach are

 maximization of sum of intra-edges of all clusters

 minimization of sum of inter-edges of all clusters

 maximization of number of clusters

 maximization of MQ

 minimization of the number of isolated clusters

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.6,April 2012 – www.ijais.org

14

The main aim of the MCA approach is to achieve good

partitions having high cohesion and low coupling; while

maximizing the number of clusters and minimizing the

number of isolated clusters.

The ECA approach encourages producing clusters of nearly

equal size, and promotes the decomposition of the software

system into approximately equal size clusters. The objectives

identified in this approach are

 maximization of sum of intra-edges of all clusters

 minimization of sum of inter-edges of all clusters

 maximization of number of clusters

 maximization of MQ

 minimizing the difference between minimum and

maximum number of modules in a cluster

As it is a multi-objective optimization, the notion of

optimality changes as these solutions are trade-offs or good

compromises among the objectives [12]. In order to generate

these trade-off solutions, a notion of optimality called

Edgeworth-Pareto optimality is used which states that a

solution to a Multi-objective problem is Pareto optimal, if

there exists no other feasible solution which would improve

some criterion without causing a simultaneous degrading in at

least one other criterion. The use of this concept almost

always gives a set of non-dominated solutions, which is called

the Pareto optimal set.

3. HYPER-HEURISTICS

Hyper-heuristics are often defined as “heuristics to choose

heuristics” [13]. A heuristic is considered as a rule-of-thumb

that reduces the search required to find a solution. Meta-

heuristic operates directly on the problem search space with

the goal of finding optimal or near-optimal solutions; whereas

the hyper-heuristic operates on the heuristics search space

which consists of all the heuristics that can be used to solve a

given problem. Thus, hyper-heuristics are search algorithms

that do not directly solve problems, but, instead, search the

space of heuristics that can then solve the problem. Therefore

Hyper-heuristics are an approach that operates at a higher

level of abstraction than a metaheuristic.

The term Hyper-heuristics was coined by Cowling et al. and

described it as “The hyper-heuristics manage the choice of

which lower-level heuristic method should be applied at any

given time, depending upon the characteristics of the

heuristics and the region of the solution space currently under

exploration.” [14]. So, they are broadly concerned with

intelligently choosing a right heuristic. The main objective of

hyper-heuristics is to evolve more general systems that are

able to handle a wide range of problem domains. A general

frame work of a hyper-heuristic is presented in Algorithm 1

[13].

Algorithm 1 : Hyper-heuristic algorithm

1: Start with a set H of heuristics, each of which is applicable

 to a problem state and transforms it to a new problem state.

2: Let the initial problem state be S0

3: If the problem state is Si then find the heuristic that is most

 suitable to transform the problem state to Si+1

4: If the problem is solved, stop. Otherwise go to step 3

4. PROPOSED APPROACH
This section describes our proposed approach. The general

format of the low-level heuristics identified is

EA/selection/crossover/mutation. Selection refers to the way

in which the parents are selected for generating the offspring.

Two types of selection are employed – rand and rand-to-best.

In rand, both the parents are selected randomly from the

population, whereas in rand-to-best, one parent is selected

randomly from the population and the other parent is an elite

(the best one). Three types of crossover operators are used to

generate the offspring. The first operator is uniform crossover;

where in the offspring is generated by randomly selecting

each gene from either of the parents. The second operator is a

hybrid crossover1 (hc1) that is defined by hybridizing the

single-point crossover with uniform crossover. First a

crossover point is selected and the offspring is generated by

copying each gene from the parent to the offspring till the

crossover point. Thereafter, the remaining genes are taken

from either of the parents randomly. The third operator is a

hybrid crossover2 (hc2) that is framed by the hybridization of

two-point crossover with uniform crossover. Two crossover

points are selected and the offspring is generated by taking the

genes from the parent till the first crossover point.

Subsequently the genes are taken randomly from either of the

parents till the second crossover point. Thereafter the

remaining genes are copied from the parent to the offspring.

Two types of mutation are defined - copy and exchange. In the

first mutation operator, two genes are selected randomly and

the second gene is copied into the first one. In the second

mutation operator, two randomly selected genes exchange

their positions. Based on the discussed selection, crossover

and mutation operators, twelve low-level heuristics are

proposed for the hyper-heuristic and are shown in Table 1.

Table 1 Set of low-level heuristics used by the proposed

hyper-heuristic

Group with copy mutation Group with exchange

mutation

h1 : EA/rand/uniform/copy h7: EA/rand/uniform

/exchange

h2 : EA/rand-to-

best/uniform/copy

h8 : EA/rand-to-best/uniform/

exchange

h3 : EA/rand/hc1/copy h9 : EA/rand/hc1/ exchange

h4 : EA/rand-to-

best/hc1/copy

h10 : EA/rand-to-best/hc1/

exchange

h5 : EA/rand/hc2/copy h11 : EA/rand/hc2/ exchange

h6 : EA/rand-to-

best/hc2/copy

h12 : EA/rand-to-best/hc2/

exchange

The proposed hyper-heuristic selects a promising low-level

heuristic in all the iterations based on the information about

the effectiveness of each low-level heuristic accumulated in

previous runs. This is implemented through the principle of

reinforcement learning [15]. The key idea is to “reward”

improving low-level heuristics in all the iterations of the

search by increasing its weight and “punish” poorly

performing ones by decreasing its weight. The weights of

low-level heuristics are adaptively changed as the search

progresses and reflect the effectiveness of low-level heuristics

at any stage of the search.

Initially all the low-level heuristics are assigned with equal

weight. The weight of a heuristic is changed as soon as a

heuristic is called and its performance is evaluated. If the

selected heuristic lead to an improvement of the objective

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.6,April 2012 – www.ijais.org

15

function, its weight is increased, otherwise it is decreased. All

the weights are bounded from above and from below. Thus

the current values of the weights indicate the information

about the past experience of using the corresponding

heuristics. The roulette-wheel approach is used to select a

heuristic randomly with the probability proportional to its

weight [16].

The framework of the proposed hyper-heuristic is shown in

Figure 1. The proposed hyper-heuristic consists of two phases.

The first phase selects the type of mutation to be adopted

(copy or exchange). This is done randomly with equal

probability of both the groups being selected. Here, CR is a

random number drawn from a uniform distribution on the unit

interval, to select an EA model either with copy or with

exchange mutation with equal probability. The values of hb

and he denotes the beginning and ending of the subscripts of

low-level hyper-heuristics selected. The second phase selects

a specific low-level heuristic within the selected group. This

phase uses the reinforcement learning strategy with adaptive

weights using roulette-wheel to select a specific model of EA.

The pseudo code of the MHypEA is given in Algorithm 2.

Algorithm 2 : Multi-objective Hyper-heuristic

Evolutionary Algorithm (MHypEA)

1: Initialize parent population

2: Evaluate the fitness of parent population

3: While (not termination-condition) do

4: Select a low-level heuristic based on the selection

 mechanism

5: Apply the selected low-level heuristic on the parent

 population and obtain offspring population

6: Evaluate the offspring population

7: Combine parent and offspring populations

8: Perform non dominated sorting on the combined

 population and select the individuals from the best

 fronts for the next iteration

9: end while

5. EXPERIMENTS
This section is devoted to the description of test problems

taken from the literature and the parameters that are selected

for performance evaluation.

5.1 Test problems
The performance of the MHypEA is studied on six real-world

software module clustering problems taken from the literature

[10]. The number of modules varies from 20 to 174 and the

links among the modules from 57 to 360. All the considered

MDGs are unweighted. The description of the test problems is

given Table 2.

5.2 Experimental setup

The algorithmic parameters are based on the number of

modules (N). The population size as well as the number of

generations is fixed at 10N. Initially all the low-level

heuristics are assigned with weight 1. The algorithm has been

implemented in MATLAB 7.6.0, on an Intel® Core™ 2 Duo

CPU T6600 @2.20 GHz processor, 3 GB RAM and Windows

7 platform.

5.3 Methodology

To assess the performance of the proposed Hyper-heuristic,

we have performed 30 independent runs of the algorithm on

each test problem for both the approaches (ECA and MCA)

and calculated the mean and standard deviation of the three

main objectives MQ, intra-edges and inter-edges. In each run,

the solution with the highest MQ is chosen to be the best

solution. The collected results are compared against the

results of Two-Archive Multi-objective Evolutionary

algorithm reported in the literature [10].

6. RESULTS AND ANALYSIS
In this section the results obtained by the MHypEA are

reported. The performance of the algorithm is assessed on two

factors – quality of the obtained solutions and the

computational time. As the quality of clustering depends on

the intra-edges (cohesion) and inter-edges (coupling), the

three main objectives – MQ, intra-edges and inter-edges are

considered for examining the quality of the solutions.

The values of the MQ obtained by the MCA approach using

MHypEA and Two-Archive Multi-objective Evolutionary

algorithm are shown in Table 3. In all the test problems,

MHypEA is able to achieve highest score for MQ. Table 4

reports the values obtained by the MCA approach for the

intra-edges and the inter-edges using MHypEA and Two-

Archive Multi-objective Evolutionary algorithm.

Interestingly, in all the test problems MHypEA is able to

achieve higher values for the intra-edges and lower values for

the inter-edges. From the reported results it is evident that the

MHypEA outperformed in achieving high cohesion and low

coupling (in other words good modular structures) in all the

six test problems. And also the values of standard deviation

indicate the consistent performance of the algorithm

throughout.

Table 3 MQ values of the best solutions found by the MCA

approach

Test problem Two-Archive

Algorithm

MHypEA

 Mean STD Mean STD

mtunis 2.294 0.013 2.310 0.011

ispell 2.269 0.043 2.334 0.027

rcs 2.145 0.034 2.204 0.028

bison 2.416 0.038 2.653 0.032

grappa 11.586 0.106 12.476 0.101

incl 11.811 0.351 13.492 0.295

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.6,April 2012 – www.ijais.org

16

Table 2 : Test Problems

Name Modules Links Description

mtunis 20 57 An operating system for educational purposes written in the Turing language

ispell 24 103 Software for spelling and typographical error correction in files.

rcs 29 163 Revision Control System used to manages multiple revisions of files

bison 37 179 General-purpose parser generator for converting grammar descriptions into C

programs

grappa 86 295 Genome Rearrangements Analyzer under Parsimony and other Phylogenetic

Algorithms

incl 174 360 Graph drawing tool

Table 5 reports the MQ values attained by ECA approach

using both the algorithms. Though, the difference of the

scores of MQ values achieved by MHypEA and Two-Archive

Multi-objective Evolutionary Algorithm are not high,

however, MHypEA is able to achieve better values in

comparison. The values obtained for the intra-edges and inter-

edges by the ECA approach are shown in Table 6. As in the

case of MCA approach, MHypEA is again able to attain

higher intra-values and lower inter-values in all the test

problems in comparison; pointing towards good modular

structures.

Table 7 compares the values of MQ obtained by MCA and

ECA approaches using MHypEA. The assessment between

the two approaches indicates that MHypEA is able to achieve

comparable values of MQ in both the cases; proving its

consistency in achieving good modular structures irrespective

of the approach chosen.

Coming to the second comparison criteria, the computational

time is measured in terms of number of function evaluations.

Table 8 depicts the number of function evaluations expended

by both the algorithms. Remarkably, MHypEA is able to

obtain high quality solutions with a computational time of

nearly one-twentieth of the computational time spent by the

Two-Archive Multi-objective Evolutionary algorithm, which

clearly indicates that the hyper-heuristic approach is “fast”

enough to reach out to the optimum.

Table 4 Intra-edges and Inter-edges of the best solutions found by the MCA approach

Test Problem Two-Archive Algorithm MHypEA

 Intra-edges Inter-edges Intra-edges Inter-edges

 Mean STD Mean STD Mean STD Mean STD

mtunis 24.633 2.092 64.733 4.185 26.333 1.516 61.333 3.032

ispell 23.100 3.220 159.800 6.440 29.667 2.581 146.667 5.163

rcs 45.133 15.335 235.733 30.669 49.500 9.306 227.000 18.612

bison 40.367 8.231 277.267 16.463 49.933 4.593 258.133 9.187

grappa 84.767 11.190 420.467 22.380 98.625 9.023 392.750 16.853

incl 91.767 14.024 536.467 28.048 138.213 11.985 444.834 23.071

Table 6 Intra-edges and Inter-edges of the best solutions found by the ECA approach

Test Problem Two-Archive Algorithm MHypEA

 Intra-edges Inter-edges Intra-edges Inter-edges

 Mean STD Mean STD Mean STD Mean STD

mtunis 27 0 60 0 27 0 60 0

ispell 30.033 2.798 145.933 5.595 31.066 2.503 140.867 4.006

rcs 47.567 7.859 230.867 15.719 51.600 6.538 222.800 12.076

bison 52.800 6.217 252.400 12.434 54.100 4.279 249.800 10.559

grappa 101.167 8.301 387.667 16.601 105.600 7.861 381.800 15.722

incl 140.200 3.836 439.600 7.673 148.453 3.002 428.870 7.098

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.6,April 2012 – www.ijais.org

17

Table 5 MQ values of the best solutions found by the ECA

approach

Test

problem

Two-Archive

Algorithm

MHypEA

 Mean STD Mean STD

mtunis 2.314 0.000 2.314 0.000

ispell 2.339 0.022 2.341 0.021

Rcs 2.239 0.022 2.242 0.019

bison 2.648 0.029 2.651 0.026

grappa 12.578 0.053 12.584 0.050

incl 13.511 0.059 13.518 0.052

7. CONCLUSION
This paper presents a Fast Multi-objective Hyper-heuristic

Evolutionary Algorithm (MHypEA) for the solution of Multi-

objective software module clustering. Software module

clustering is an important problem in software engineering; as

good modular structures facilitates easy maintenance of the

software systems. MHypEA incorporates twelve low-level

heuristics which are based on different methods of selection,

crossover and mutation operations of Evolutionary

Algorithms. The designed selection mechanism selects a low-

level heuristic based on reinforcement learning with adaptive

weights. The incorporation of Hyper-heuristic, makes

MHypEA fast and effective by suitably adapting itself to the

dynamics of the problem by invoking a suitable heuristic for

the purpose. The MHypEA is found to be quite promising in

maintaining the right balance between exploration and

exploitation of the search space which is a key issue in

optimisation. MHypEA effectively solves the multi-objective

software module clustering problem and produces good

modular structures with high cohesion and low coupling. The

efficacy of MHypEA for the solution of Multi-Objective

software module clustering is evaluated on six real-world

software module clustering problems and is compared against

the Two-Archive Multi-objective Evolutionary algorithm. The

comparison is based on three main objectives – MQ, intra-

edges and inter-edges; along with the number of function

evaluations. In all the six test problems the MHypEA

produced high quality solutions with a computational time of

one-twentieth of the time expended by Two-Archive Multi-

objective Evolutionary algorithm.

8. ACKNOWLEDGEMENTS

The authors are extremely grateful to the Revered Prof.

P.S. Satsangi, Chairman, Advisory Committee on Education,

Dayalbagh for continued guidance and support. The authors

are also thankful to Spiros Mancoridis and Mark Harman for

providing the MDGs referenced in the paper.

Table 7 MQ values obtained by MHypEA

Table 8 Number of function evaluations

Test Problem Two-Archive

Algorithm

MHypEA

mtunis 800000 40200

ispell 1152000 57840

rcs 1682000 84390

bison 2738000 137270

grappa 14792000 740460

incl 60552000 3029340

9. REFERENCES
[1] Boehm, B.W. (1975). “The High Cost of Software”, in

Horowitz E., Practical Strategies For Developing Large

Software Systems”, Addison Wesley.

[2] Parikh, G., Zvegintzov, N. (1983) “Tutorial on Software

Maintenance”, IEEE Computer Society press, Silver

Spring Maryland.

[3] Spiros Mancoridis, Brian S. Mitchell, C. Rorres, Yih-Farn

Chen, and Emden R. Gansner (1998) “Using automatic

clustering to produce high-level system organizations of

source code”. In International Workshop on Program

Comprehension (IWPC‟98), pages 45–53, Los Alamitos,

California, USA. IEEE Computer Society Press.

[4] Spiros Mancoridis, Brian S. Mitchell, Yih-Farn Chen, and

Emden R. Gansner (1999) “Bunch: A clustering tool for

the recovery and maintenance of software system

structures”. In Proceedings of IEEE International

Conference on Software Maintenance, pages 50–59.

IEEE Computer Society Press.

[5] Doval, D., Mancoridis, S., and Mitchell, B. S. (1999)

“Automatic clustering of software systems using a

genetic algorithm”. In International Conference on

Software Tools and Engineering Practice (STEP‟99),

Pittsburgh, PA, 30 August - 2 September.

[6] Harman, M., Hierons, R., and Proctor, M. (2002) “A new

representation and crossover operator for search-based

optimization of software modularization. In GECCO

2002: Proceedings of the Genetic and Evolutionary

Computation Conference, New York, 9-13 July 2002,

Morgan Kaufmann Publishers, pp. 1351–1358.

[7] Kiarash Mahdavi, Mark Harman, and Robert Mark

Hierons (2003) “A multiple hill climbing approach to

software module clustering” . In IEEE International

Conference on Software Maintenance, pages 315– 324,

Test problem MCA approach ECA approach

 Mean STD Mean STD

mtunis 2.310 0.011 2.314 0.000

ispell 2.334 0.027 2.341 0.021

rcs 2.204 0.028 2.242 0.019

bison 2.653 0.032 2.651 0.026

grappa 12.476 0.101 12.584 0.050

incl 13.492 0.295 13.518 0.052

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.6,April 2012 – www.ijais.org

18

Los Alamitos, California, USA, September 2003. IEEE

Computer Society Press

[8] Bilal Khan, Shaleeza Sohail and M. Younus Javed (2008)

“Evolution Strategy Based Automated Software

Clustering Approach”; 2008 International Conference on

Advanced Software Engineering & Its Applications

(ASEA 2008) held on December 13 - 15, Hainan,

China.

[9] Praditwong, K. (2011) “ Solving Software Module

Clustering Problem by Evolutionary Algorithms” ,

Eighth International Joint Conference on Computer

Science and Software Engineering (JCSSE 2011), 11-13

May 2011, Nakhon Pathom, Thailand, pp. 154-159.

[10] Praditwong, K., Harman, M., Xin Yao (2011) “Software

Module Clustering as a Multi-Objective Search

Problem”, IEEE Transactions on Software Engineering,

Volume 37(2), 2011, pp. 264-282.

[11] Praditwong, K., and Xin Yao (2006) “A New Multi-

objective Evolutionary Optimisation Algorithm: The

Two-Archive Algorithm”. In Proceedings of the 2006

International Conference on Computational Intelligence

and Security, volume 1, pages 286–291, Guangzhou,

China.

[12] Deb, K. (2001) “Multi-Objective Optimization using

Evolutionary Algorithms”, Wiley Chichester, UK.

[13] Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and

Schulenburg, S. (2003) “Handbook of metaheuristics”,

chapter 16, “Hyper-heuristics: an emerging direction in

modern search technology”, pp. 457–474, Kluwer

Academic Publishers.

[14] Cowling, P.I., Kendall, G., Soubeiga, E. (2001)

“Hyperheuristic Approach to Scheduling a Sales

Summit”, Selected papers of Proceedings of the Third

International Conference of Practice And Theory of

Automated Timetabling, Springer LNCS vol. 2079, pp.

176-190.

[15] Kaelbling, L.P., Littman, M.L., Moore, A.W. (1996)

“Reinforcement learning: a survey”, Journal of Artificial

Intelligence Research 4, 237–285.

[16] Nareyek,A. (2003) “Choosing search heuristics by non-

stationary reinforcement learning”, In Metaheuristics:

Computer decision-making, pp. 523–544. Kluwer

Academic Publishers,Dordrecht.

