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ABSTRACT 

Software evolution is a natural phenomenon in the software 

development life cycle. As the software evolves, the modular 

structure of software degrades, and at one point it becomes a 

challenging task to maintain the software further. Software 

module clustering is an important activity during software 

maintenance whose main goal is to obtain good modular 

structures.  Software engineers greatly emphasize on good 

modular structures as it is easier to comprehend, develop and 

maintain such software systems.  In recent times, the problem 

has been converted into a Search-based Software Engineering 

Problem with multiple objectives. This problem is NP hard as 

it is an instance of graph partitioning and hence cannot be 

solved using traditional optimization techniques. The Multi-

objective Hyper-heuristic Evolutionary Algorithm (MHypEA) 

is a fast and effective metaheuristic search technique for 

suggesting software module clusters while maximizing 

cohesion and minimizing coupling of the software modules. It 

incorporates twelve low-level heuristics which are based on 

different methods of selection, crossover and mutation 

operations of Evolutionary Algorithms. The selection 

mechanism to select a low-level heuristic is based on 

reinforcement learning with adaptive weights. The 

effectiveness of the algorithm has been studied on six real-

world module clustering problems reported in the literature 

and the comparison of the results prove the efficacy of the 

MHypEA in terms of quality of solutions and computational 

time.  
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1. INTRODUCTION 
Software maintenance is a critical activity in the software 

development life cycle. Boehm [1] found through his research 

that the maintenance costs can be up to ten times those of an 

initial development and also Parikh and Zvegintzov [2] 

mentioned that it consumes 50% of all computer and human 

resources. Due to the increase in the complexity and size of 

the software systems, maintenance has become a crucial issue 

for software engineers.  The situation becomes appalling, 

when the software lacks proper documentation on the changes 

that are performed during system evolution. As a 

consequence, it becomes practically difficult to maintain the 

software in future. The replacement of such software with a 

new one is also not a feasible option, as it does not guarantee 

the full functionality. The practices such as reverse 

engineering and reengineering have emerged to handle such 

software systems. As the source code is the only exact 

duplication of the system available to software developers and 

maintainers, the reverse engineering community is working 

towards the development of methods to extract the high-level 

structural information from the source code directly. Such 

methods are inclined to focus on design recovery through 

software clustering, program slicing, source code analysis etc.  

Software module clustering is the process of grouping 

software modules into clusters in such a way that the highly 

dependent modules are grouped into the same cluster. The 

clustering assists in better comprehension of the system and 

provides easy maintenance in the future. This decomposition 

is based on the relationships among the modules. Generally 

these relationships are represented in the form of Module 

Dependency Graphs (MDGs), in which modules are 

represented as nodes and their inter relationships are 

represented by means of edges connecting the nodes. Thus 

clustering can be visualized as a graph partitioning problem, 

which is known to be NP hard. Therefore it cannot be solved 

efficiently by traditional optimization techniques. This led to 

the development of search-based approaches to the solution of 

software module clustering. Though they do not guarantee to 

provide optimal solutions, yet, they can obtain near optimal 

solutions in reasonable amount of computational time.  

Search-based approach to software module clustering was 

first suggested by Mancoridis et al. [3] using hill climbing as 

the primary search technique. Their work aimed at the 

automatic recovery of the modular structure of a software 

system from its source code. They experimented on many 

systems and evaluated the results based on the feedback of 

system designers and found to be good. Thereafter they 

developed a clustering tool called Bunch [4] that creates 

system decomposition automatically by treating clustering as 

an optimization problem. Thereafter, many researchers 

experimented with the automatic software module clustering 

using many optimization techniques. Doval et al. [5] treated 

the problem of finding good clustering as an optimization 

problem and implemented using a Genetic Algorithm to 

search the extraordinarily large solution space of all possible 

MDG partitions. The effectiveness of the technique is 

demonstrated by applying it to a medium sized software 

system. Harman et al. [6] introduced a normalized 

representation for a software modularization, to reduce the 

size of the search space and to improve the results for Genetic 

Algorithms and also suggested a new crossover operator 

which is designed to promote the formation and retention of 

building blocks and found through their work that this 
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crossover technique is better suited to genetic approaches than 

standard crossover. 

Kiarash Mahdavi et al. [7] employed multiple hill climbing 

approach to software module clustering.  They demonstrated 

that a set of multiple hill climbs can be combined to locate 

good „building blocks‟ for subsequent searches. Building 

blocks are formed by identifying the common features in a 

selection of best hill climbs. They found that this process 

reduced the search space, and at the same time „hard wired‟ 

the parts of the solution. Their empirical study shows that the 

multiple hill climbing approach guides the search to higher 

peaks in subsequent executions. Bilal Khan et al. [8] also  

treated software clustering as an optimization problem and 

proposed an automated technique to get near optimal 

decompositions of relatively independent subsystems, 

containing interdependent modules. They implemented using 

self adaptive Evolution Strategies to search a large solution 

space consisting of modules and their relationships and 

compared their proposed approach with a widely used Genetic 

Algorithm based approach on a number of test systems and 

found that the suggested approach is effective in generating 

quality solutions for all the test cases. Praditwong [9] 

experimented on real-world problems of software module 

clustering by metaheuristic search methods such as Genetic 

Algorithms and introduced the Grouping Genetic Algorithm 

(GGA) to the benchmarks. The empirical results reported that 

the GGA outperforms a Genetic Algorithm with string 

representation. 

Recently, Praditwong et al. [10] formulated the software 

module clustering as a multi-objective search-based problem 

based on several objectives. They evaluated the effectiveness 

of the multi-objective approach on several real-world module 

clustering problems using a Two-Archive multi-objective 

evolutionary algorithm (Praditwong et al. [11]) and claimed 

that the multi-objective approach produced significantly better 

solutions than the existing single-objective approach. 

This paper presents a new metaheuristic Multi-objective 

Hyper-heuristic Evolutionary Algorithm (MHypEA) which is 

a hyper-heuristic based multi-objective evolutionary 

algorithm for the solution of multi-objective  software module 

clustering problem. MHypEA uses twelve low-level heuristics 

based on various techniques of selection, crossover and 

mutation operators.  The designed selection mechanism 

selects one of the low-level heuristics based on reinforcement 

learning with adaptive weights. The efficacy of the MHypEA 

is tested on six real-world module clustering problems taken 

from the literature and found that the hyper-heuristic approach 

has led to high quality solutions in very less computational 

time. 

The rest of the paper is organized as follows. Section 2 

describes the software module clustering problem as single 

and multi-objective search problems. Section 3 presents the 

origin of hyper heuristics along with its central idea. The 

proposed approach is provided in section 4. Section 5 presents 

the Experiments. The results obtained by the MHypEA are 

shown   in     section 6.  Concluding   remarks are      given in 

section 7. 

2. SOFTWARE MODULE CLUSTERING   
Software module clustering is studied broadly in the literature 

as a single-objective search problem; but recently, it is 

formulated as a multi-objective search problem. This section 

explains both the versions. 

2.1 Single-objective software module 

clustering problem 
Software module clustering is the process of grouping the 

software modules into various clusters to improve program 

structure and to assist in easy maintenance. The input to the 

search algorithm is the MDG; where the nodes represent the 

modules and the edges represent the relationships among the 

modules. MDGs can be either weighted or unweighted. In a 

weighted MDG, the edges are assigned with weights 

representing the strength of relationship between the modules 

and an unweighted MDG depicts the relationship among 

modules by the presence or absence of an edge. A simple 

array is used as the representation scheme to map the modules 

to clusters. The array index represents the module and the 

content of the array corresponds to the cluster to which the 

module is assigned to. The sole objective used in any single-

objective formulation of the software module clustering is the 

Modularization Quality (MQ) measure.  

The Modularization Quantity (MQ) is defined as [10] 
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where MFk   is the Modularization Factor of the kth cluster 
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i is  weight of the intra edge which has its both ends in the 

same cluster and j is weight of the inter edge which has its 

ends in two different clusters. For an unweighted MDG, the 

weight is considered as 1.  

The primary objective of software module clustering is to 

produce software clusters that are of high quality with 

maximum intra-connectivity (cohesion) and minimum inter-

connectivity (coupling). Intra-connectivity is the measure of 

density of connections among the modules in a single cluster. 

High intra-connectivity signifies a good clustering; as the 

largely dependent modules are grouped into the same cluster. 

Inter-connectivity is the measure of density of connections 

among modules in different clusters. Low inter-connectivity 

signifies a good clustering; as the clusters are highly 

independent of each other.  The Modularization Quantity 

(MQ) establishes the trade-off between intra-connectivity and 

inter-connectivity and rewards cohesion and penalizes 

coupling. 

2.2 Multi-objective software module 

clustering problem  
As maximizing the cohesion and minimizing the coupling are 

two conflicting objectives, Praditwong et al. [10] 

reformulated the software module clustering as a multi-

objective problem and formulated two multi-objective 

approaches – Maximizing Cluster Approach (MCA) and 

Equal-size Cluster Approach (ECA).  

The objectives identified under MCA approach are 

 maximization of sum of intra-edges of all clusters 

 minimization of sum of inter-edges of all clusters 

 maximization of number of clusters 

 maximization of MQ 

 minimization of the number of isolated clusters 
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The main aim of the MCA approach is to achieve good 

partitions having high cohesion and low coupling; while 

maximizing the number of clusters and minimizing the 

number of isolated clusters.  

The ECA approach encourages producing clusters of nearly 

equal size, and promotes the decomposition of the software 

system into approximately equal size clusters. The objectives 

identified in this approach are 

 maximization of sum of intra-edges of all clusters 

 minimization of sum of inter-edges of all clusters 

 maximization of number of clusters 

 maximization of MQ 

 minimizing the difference between minimum and 

maximum number of modules in a cluster 

As it is a multi-objective optimization, the notion of 

optimality changes as these solutions are trade-offs or good 

compromises among the objectives [12]. In order to generate 

these trade-off solutions, a notion of optimality called 

Edgeworth-Pareto optimality is used which states that a 

solution to a Multi-objective problem is Pareto optimal, if 

there exists no other feasible solution which would improve 

some criterion without causing a simultaneous degrading in at 

least one other criterion. The use of this concept almost 

always gives a set of non-dominated solutions, which is called 

the Pareto optimal set. 

3.  HYPER-HEURISTICS 

Hyper-heuristics are often defined as “heuristics to choose 

heuristics” [13]. A heuristic is considered as a rule-of-thumb 

that reduces the search required to find a solution. Meta-

heuristic operates directly on the problem search space with 

the goal of finding optimal or near-optimal solutions; whereas 

the hyper-heuristic operates on the heuristics search space 

which consists of all the heuristics that can be used to solve a 

given problem. Thus, hyper-heuristics are search algorithms 

that do not directly solve problems, but, instead, search the 

space of heuristics that can then solve the problem. Therefore 

Hyper-heuristics are an approach that operates at a higher 

level of abstraction than a metaheuristic.  

The term Hyper-heuristics was coined by Cowling et al. and 

described it as “The hyper-heuristics manage the choice of 

which lower-level heuristic method should be applied at any 

given time, depending upon the characteristics of the 

heuristics and the region of the solution space currently under 

exploration.” [14]. So, they are broadly concerned with 

intelligently choosing a right heuristic. The main objective of 

hyper-heuristics is to evolve more general systems that are 

able to handle a wide range of problem domains. A general 

frame work of a hyper-heuristic is presented in Algorithm 1 

[13]. 

 

Algorithm 1 :  Hyper-heuristic algorithm 

1: Start with a set H of heuristics, each of which is applicable  

     to a problem state and transforms it to a new problem state. 

2: Let the initial problem state be S0 

3: If the problem state is Si then find the heuristic that is most  

    suitable to transform the problem state to Si+1 

4: If the problem is solved, stop. Otherwise go to step 3 

 

4. PROPOSED APPROACH 
This section describes our proposed approach. The general  

 

format of the low-level heuristics identified is 

EA/selection/crossover/mutation. Selection refers to the way 

in which the parents are selected for generating the offspring. 

Two types of selection are employed – rand and rand-to-best. 

In rand, both the parents are selected randomly from the 

population, whereas in rand-to-best, one parent is selected 

randomly from the population and the other parent is an elite 

(the best one). Three types of crossover operators are used to 

generate the offspring. The first operator is uniform crossover; 

where in the offspring is generated by randomly selecting 

each gene from either of the parents. The second operator is a 

hybrid crossover1 (hc1) that is defined by hybridizing the 

single-point crossover with uniform crossover. First a 

crossover point is selected and the offspring is generated by 

copying each gene from the parent to the offspring till the 

crossover point. Thereafter, the remaining genes are taken 

from either of the parents randomly. The third operator is a 

hybrid crossover2 (hc2) that is framed by the hybridization of 

two-point crossover with uniform crossover. Two crossover 

points are selected and the offspring is generated by taking the 

genes from the parent till the first crossover point. 

Subsequently the genes are taken randomly from either of the 

parents till the second crossover point. Thereafter the 

remaining genes are copied from the parent to the offspring.  

Two types of mutation are defined - copy and exchange. In the 

first mutation operator, two genes are selected randomly and 

the second gene is copied into the first one. In the second 

mutation operator, two randomly selected genes exchange 

their positions. Based on the discussed selection, crossover 

and mutation operators, twelve low-level heuristics are 

proposed for the hyper-heuristic and are shown in Table 1. 

Table 1 Set of low-level heuristics used by the proposed 

hyper-heuristic 

Group  with copy mutation Group with exchange 

mutation 

h1 : EA/rand/uniform/copy h7: EA/rand/uniform 

/exchange 

h2 : EA/rand-to-

best/uniform/copy 

h8 : EA/rand-to-best/uniform/ 

exchange 

h3 : EA/rand/hc1/copy h9 : EA/rand/hc1/ exchange 

h4 : EA/rand-to-

best/hc1/copy 

h10 : EA/rand-to-best/hc1/ 

exchange 

h5 : EA/rand/hc2/copy h11 : EA/rand/hc2/ exchange 

h6 : EA/rand-to-

best/hc2/copy 

h12 : EA/rand-to-best/hc2/ 

exchange 

 

The proposed hyper-heuristic selects a promising low-level 

heuristic in all the iterations based on the information about 

the effectiveness of each low-level heuristic accumulated in 

previous runs. This is implemented through the principle of 

reinforcement learning [15]. The key idea is to “reward” 

improving low-level heuristics in all the iterations of the 

search by increasing its weight and “punish” poorly 

performing ones by decreasing its weight. The weights of 

low-level heuristics are adaptively changed as the search 

progresses and reflect the effectiveness of low-level heuristics 

at any stage of the search. 

Initially all the low-level heuristics are assigned with equal 

weight. The weight of a heuristic is changed as soon as a 

heuristic is called and its performance is evaluated. If the 

selected heuristic lead to an improvement of the objective 
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function, its weight is increased, otherwise it is decreased. All 

the weights are bounded from above and from below. Thus 

the current values of the weights indicate the information 

about the past experience of using the corresponding 

heuristics. The roulette-wheel approach is used to select a 

heuristic randomly with the probability proportional to its 

weight [16].  

The framework of the proposed hyper-heuristic is shown in 

Figure 1. The proposed hyper-heuristic consists of two phases. 

The first phase selects the type of mutation to be adopted 

(copy or exchange). This is done randomly with equal 

probability of both the groups being selected.  Here, CR is a 

random number drawn from a uniform distribution on the unit 

interval, to select an EA model either with copy or with 

exchange mutation with equal probability. The values of hb 

and he denotes the beginning and ending of the subscripts of 

low-level hyper-heuristics selected. The second phase selects 

a specific low-level heuristic within the selected group. This 

phase uses the reinforcement learning strategy with adaptive 

weights using roulette-wheel to select a specific model of EA.  

The pseudo code of the MHypEA is given in Algorithm 2. 

Algorithm 2 : Multi-objective Hyper-heuristic 

Evolutionary Algorithm (MHypEA) 

1: Initialize parent population 

2: Evaluate the fitness of parent population 

3: While (not termination-condition) do 

4: Select a low-level heuristic based on the selection  

                mechanism 

5: Apply the selected low-level heuristic on the parent  

                 population and obtain offspring population 

6: Evaluate the offspring population 

7: Combine parent and offspring populations  

8: Perform non dominated sorting on the combined  

                population and select the individuals from the best  

               fronts for the next iteration 

9:  end while 

 

5. EXPERIMENTS 
This section is devoted to the description of test problems 

taken from the literature and the parameters that are selected 

for performance evaluation.  

5.1 Test problems 
The performance of the MHypEA is studied on six real-world 

software module clustering problems taken from the literature 

[10]. The number of modules varies from 20 to 174 and the 

links among the modules from 57 to 360. All the considered 

MDGs are unweighted. The description of the test problems is 

given Table 2.  

5.2 Experimental setup 

The algorithmic parameters are based on the number of 

modules (N). The population size as well as the number of 

generations is fixed at 10N. Initially all the low-level 

heuristics are assigned with weight 1. The algorithm has been 

implemented in MATLAB 7.6.0, on an Intel® Core™ 2 Duo 

CPU T6600 @2.20 GHz processor, 3 GB RAM and Windows 

7 platform. 

5.3 Methodology 

To assess the performance of the proposed Hyper-heuristic, 

we have performed 30 independent runs of the algorithm on 

each test problem for both the approaches (ECA and MCA) 

and calculated the mean and standard deviation of the three 

main objectives MQ, intra-edges and inter-edges. In each run, 

the solution with the highest MQ is chosen to be the best 

solution. The collected results are compared against the 

results of Two-Archive Multi-objective Evolutionary 

algorithm reported in the literature [10]. 

 

 

6. RESULTS AND ANALYSIS 
In this section the results obtained by the MHypEA are 

reported. The performance of the algorithm is assessed on two 

factors – quality of the obtained solutions and the 

computational time. As the quality of clustering depends on 

the intra-edges (cohesion) and inter-edges (coupling), the 

three main objectives – MQ, intra-edges and inter-edges are 

considered for examining the quality of the solutions. 

The values of the MQ obtained by the MCA approach using 

MHypEA and Two-Archive Multi-objective Evolutionary 

algorithm are shown in Table 3. In all the test problems, 

MHypEA is able to achieve highest score for MQ. Table 4 

reports the values obtained by the MCA approach for the 

intra-edges and the inter-edges using MHypEA and Two-

Archive Multi-objective Evolutionary algorithm.  

Interestingly, in all the test problems MHypEA is able to 

achieve higher values for the intra-edges and lower values for 

the inter-edges. From the reported results it is evident that the 

MHypEA outperformed in achieving high cohesion and low 

coupling (in other words good modular structures) in all the 

six test problems. And also the values of standard deviation 

indicate the consistent performance of the algorithm 

throughout.  

Table 3 MQ values of the best solutions found by the MCA 

approach 

Test problem Two-Archive 

Algorithm 

MHypEA 

 Mean STD Mean STD 

mtunis 2.294 0.013 2.310 0.011 

ispell 2.269 0.043 2.334 0.027 

rcs 2.145 0.034 2.204 0.028 

bison 2.416 0.038 2.653 0.032 

grappa 11.586 0.106 12.476 0.101 

incl 11.811 0.351 13.492 0.295 
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Table 2 : Test Problems 

 

Name Modules Links Description 

mtunis 20 57 An operating system for educational purposes written in the Turing language 

ispell 24 103 Software for spelling and typographical error correction in files. 

rcs 29 163 Revision Control System used to manages multiple revisions of files 

bison 37 179 General-purpose parser generator for converting grammar descriptions into C 

programs 

grappa 86 295 Genome Rearrangements Analyzer under Parsimony and other Phylogenetic 

Algorithms 

incl 174 360 Graph drawing tool 

 

Table 5 reports the MQ values attained by ECA approach 

using both the algorithms. Though, the difference of the 

scores of MQ values achieved by MHypEA and Two-Archive 

Multi-objective Evolutionary Algorithm are not high, 

however, MHypEA is  able to achieve better values in 

comparison. The values obtained for the intra-edges and inter-

edges by the ECA approach are shown in Table 6. As in the 

case of MCA approach, MHypEA is again able to attain 

higher intra-values and lower inter-values in all the test 

problems in comparison; pointing towards good modular 

structures. 

Table 7 compares the values of MQ obtained by MCA and 

ECA approaches using MHypEA. The assessment between 

the two approaches indicates that MHypEA is able to achieve 

comparable values of MQ in both the cases; proving its 

consistency in achieving good modular structures irrespective 

of the approach chosen. 

 

Coming to the second comparison criteria, the computational 

time is measured in terms of number of function evaluations. 

Table 8 depicts the number of function evaluations expended 

by both the algorithms. Remarkably, MHypEA is able to 

obtain high quality solutions with a computational time of 

nearly one-twentieth of the computational time spent by the 

Two-Archive Multi-objective Evolutionary algorithm, which 

clearly indicates that the hyper-heuristic approach is “fast” 

enough to reach out to the optimum.

 

 

Table 4 Intra-edges and Inter-edges of the best solutions found by the MCA approach 

 

Test Problem Two-Archive Algorithm MHypEA 

 Intra-edges Inter-edges Intra-edges Inter-edges 

 Mean STD Mean STD Mean STD Mean STD 

mtunis 24.633 2.092 64.733 4.185 26.333 1.516 61.333 3.032 

ispell 23.100 3.220 159.800 6.440 29.667 2.581 146.667 5.163 

rcs 45.133 15.335 235.733 30.669 49.500 9.306 227.000 18.612 

bison 40.367 8.231 277.267 16.463 49.933 4.593 258.133 9.187 

grappa 84.767 11.190 420.467 22.380 98.625 9.023 392.750 16.853 

incl 91.767 14.024 536.467 28.048 138.213 11.985 444.834 23.071 

 

 

 

Table 6 Intra-edges and Inter-edges of the best solutions found by the ECA approach 
 

Test Problem Two-Archive Algorithm MHypEA 

 Intra-edges Inter-edges Intra-edges Inter-edges 

 Mean STD Mean STD Mean STD Mean STD 

mtunis 27 0 60 0 27 0 60 0 

ispell 30.033 2.798 145.933 5.595 31.066 2.503 140.867 4.006 

rcs 47.567 7.859 230.867 15.719 51.600 6.538 222.800 12.076 

bison 52.800 6.217 252.400 12.434 54.100 4.279 249.800 10.559 

grappa 101.167 8.301 387.667 16.601 105.600 7.861 381.800 15.722 

incl 140.200 3.836 439.600 7.673 148.453 3.002 428.870 7.098 
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Table 5 MQ values of the best solutions found by the ECA 

approach 

Test 

problem 

Two-Archive 

Algorithm 

MHypEA 

 Mean STD Mean STD 

mtunis 2.314 0.000 2.314 0.000 

ispell 2.339 0.022 2.341 0.021 

Rcs 2.239 0.022 2.242 0.019 

bison 2.648 0.029 2.651 0.026 

grappa 12.578 0.053 12.584 0.050 

incl 13.511 0.059 13.518 0.052 

 

 

7. CONCLUSION 
This paper presents a Fast Multi-objective Hyper-heuristic 

Evolutionary Algorithm (MHypEA) for the solution of Multi-

objective software module clustering. Software module 

clustering is an important problem in software engineering;  as  

good modular structures facilitates easy maintenance of the 

software systems. MHypEA incorporates twelve low-level 

heuristics which are based on different methods of selection, 

crossover and mutation operations of Evolutionary 

Algorithms. The designed selection mechanism selects a low-

level heuristic based on reinforcement learning with adaptive 

weights. The incorporation of Hyper-heuristic, makes 

MHypEA fast and effective by suitably adapting itself to the 

dynamics of the problem by invoking a suitable heuristic for 

the purpose. The MHypEA is found to be quite promising in 

maintaining the right balance between exploration and 

exploitation of the search space which is a key issue in 

optimisation. MHypEA effectively solves the multi-objective 

software module clustering problem and produces good 

modular structures with high cohesion and low coupling. The 

efficacy of MHypEA for the solution of Multi-Objective 

software module clustering is evaluated on six real-world 

software module clustering problems and is compared against 

the Two-Archive Multi-objective Evolutionary algorithm. The 

comparison is based on three main objectives – MQ, intra-

edges and inter-edges; along with the number of function 

evaluations. In all the six test problems the MHypEA 

produced high quality solutions with a computational time of 

one-twentieth of the time expended by Two-Archive Multi-

objective Evolutionary algorithm.  
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Table 7 MQ values obtained by MHypEA 

 

Table 8 Number of function evaluations 

 

Test Problem Two-Archive 

Algorithm 

MHypEA 

mtunis 800000 40200 

ispell 1152000 57840 

rcs 1682000 84390 

bison 2738000 137270 

grappa 14792000 740460 

incl 60552000 3029340 
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