

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 5, April 2013 – www.ijais.org

22

Multi-Agents Systems – Modeling, Programming and

Applications

Adil SAYOUTI, Hicham MEDROMI
Team Architecture of Systems

LISER - Laboratory
ENSEM, Hassan II University

BP 8118, Oasis, Casablanca, Morocco

Faissal ELMARIAMI, Abdelaziz BELFQIH
Team Electrical Systems

ENSEM, Hassan II University
BP 8118, Oasis, Casablanca, Morocco

ABSTRACT

A multi-agents system is a system composed of multiple

interacting intelligent agents who can be used to solve

problems which are difficult or impossible for an individual

agent or monolithic system to solve. Multi-agents systems are

open and extensible systems that allow for the deployment of

autonomous and proactive software components. This is the

reason why they are brought up and used in several

application domains. In this paper, we present the application

of the multi-agents systems in the remote control, network

security and telecommunication domains. Those applications

are realized by the System Architecture Team of the ENSEM,

Hassan II University.

In the first section of this paper, we present the multi-agents

approach. In the second section, we describe different

architectures, based on multi-agents systems, proposed by the

system architecture team of ENSEM, Hassan II University. In

the third section, we present a realization in order to validate

our architectures and the choice of the multi-agents approach.

Keywords

Multi-Agents System, Distributed System, Autonomous and

Intelligent System, Mobile System, Telecommunication,

Network Security.

1. INTRODUCTION
Agent-based computing represents a novel software

engineering paradigm that has emerged from merging two

technologies [1], namely artifcial intelligence (AI) and object

oriented distributed computing [2]. Agent-based systems aim

to strike a balance between artificial intelligence and

computational utility.

Agents are intelligent, autonomous, software components

capable of interacting with others within an application,

attaining a common goal and thereby contributing to the

resolution of some given problem. They are important

because they inter-operate within modern applications like

remote control, telecommunications, network security [3] and

electronic commerce.

Over the years, a wide range of software engineering

paradigms have been devised (e.g., procedural programming,

structured programming, declarative programming, object-

oriented programming, design patterns, application

frameworks and component-ware) to deal with the increasing

complexity of software applications. Although each

successive development claims to make the engineering

process easier, researchers continually strive for more

efficient and powerful software engineering techniques,

especially as solutions for ever more demanding applications

are required. Most real-world applications of today are

significantly more complex than before as they contain many

dynamically interacting components, each with its own thread

of control. Most software engineering paradigms are unable to

provide structures and techniques that make it easier to handle

this complexity. Consequently a lot of research has now been

directed toward treating computation as a process of

interactions. Tools and technologies have been developed to

understand, model, and implement systems in which

interactions are the norm.

Furthermore, software development has now become a

knowledge-intensive activity. Current software

representations (from modeling to programming languages)

are non-intentional. They are meant to record the results of

software work but not the process or the reasoning behind

them. Thus there is a reason to develop a framework of

software engineering that accounts for the intentional

dimensions, namely intents and motivations, goals and

reasons, alternatives, beliefs and assumptions in its

methodologies.

Against this background, we will argue that analyzing,

designing, and implementing software as a collection of

interacting intelligent agents represents a promising approach

[4] to software engineering. An agent is an encapsulation of

goals, know-how and resources. Agent-oriented techniques

provide a natural way for modeling complex systems, by

decomposing its problem space into autonomous agents and

their interactions. Moreover, they enhance the reliability and

reduce the cost and time-to-market of software applications by

allowing their development through the assembly of a set of

reusable software agents.

In the next section, we make a strong case for agent-oriented

approach for software engineering and advance our arguments

by comparing their effectiveness against object-oriented

approach.

2. MULTI-AGENTS APPROACH

2.1 Agent characteristics
A characteristic is an intrinsic or physical property of an

agent. The following are some common agent characteristics

[5]:

 Autonomy: An agent can act on another’s behalf without

much guidance.

 Communication: An agent can communicate with other

agents on a common topic of discourse by exchanging a

sequence of messages in a speech-act-based language that

others understand. The domain of discourse is described by

its ontology.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 5, April 2013 – www.ijais.org

23

 Mobility: An agent can migrate from one system to another

in a pre-determined fashion or at its own discretion.

Accordingly, agents can be static or mobile.

 Learning: An agent can have the ability to learn new

information about the environment in which it is deployed

and dynamically improve upon its own behavior.

 Cooperation: An agent can collaborate and cooperate with

other agents or its user during its execution to minimize

redundancy and to solve a common problem.

In the next section, we present the main differences between

an agent and an object

2.2 Approach agent vs. approach object
The multi-agents system is considered as an object-oriented

system that is associated to an intelligent meta-system. By this

way, an agent is viewed as an object that has a layer of

intelligence, comprising a number of capabilities such as

uniform communication protocol, perception, reaction and

deliberation, all of them not inherent to objects. However, the

Agent oriented approach (AOP) has code, states and agent

invocations. The agents also have individual rules and goals to

make them appear like active objects within initiative. In AOP

the class is replaced by role, state variable with

belief/knowledge and method with message. The role

definitions describe the agent capability and the information

needed to desired results. In order to the agents act with

intelligence in their environment, the idea is to develop the

complex entities and provide the agents with the knowledge

and beliefs to be able to achieve their desires.

The table 1 illustrates the differences between the agent

approach and the object approach.

Table 1. Agent approach vs. object agent

The cooperation in a multi-agents system is based on the

communication and the interaction between agents. This axis

will be detailed in the next section.

2.3 Agent communication
The agent communication, also known as the agent-based

messaging paradigm [6], provides a universal messaging

language with a consistent speech-act-based, uniform

messaging interface for exchanging information, statically or

dynamically, among software entities. Agent communication

has the following advantages over the traditional client-server

(RPC) based communication:

 De-centralized, peer-peer communication, as opposed to the

traditional client-server roles

 Asynchronous exchange of messages

 Universal message-based language with speech-act-based

interface

 Single method invocation for all types of message

exchanges (FIPA : Foundation for Intelligent Physical

Agents)

The communication involves at least two parties: a sending

agent that generates the information and transmits it and a

receiving agent that receives the message and uses the

information.

The information that is exchanged between the

communicating parties may be formally coded into a

universally understood agent communication language (ACL)

with a speech act based interface. The sending agent on

generating this ACL coded message string invokes the

message method of the recipient and passes the string through

it (FIPA framework). The receiving agent, on receiving this

message, decodes the information and then performs the

necessary actions. In case of a bidirectional communication, it

may communicate the result back to the sender by

reciprocating the same process.

2.4 Agent Communication Language
Agent communication, under this paradigm, is accomplished

through the use of three components: ontology, content

language, and agent communication language. Ontology

enumerates the terms comprised by the application domain.

The content language is used to combine terms in the

ontology into meaningful sentences in the language as defined

by the grammar. Sometimes the two are so tightly coupled

that they become one. Finally, the agent communication

language acts as a medium for exchanging dialogs among

agents, containing sentences of the content language. It

provides the outer encoding layer, which determines the type

of agent interaction, identifies the network protocol with

which to deliver the message, and supplies a speech act also

known as communicative act or performative. The

communicative act indicates whether the message is an

assertion, a query, a command or any other acceptable speech

form. ACLs range from some form of primitive

communication to elaborated standards. Two of the most

widely used ACLs are knowledge query manipulation

language (KQML) and FIPA ACL [7]. Knowledge

interchange format (KIF) is often used as a content language

with KQML. Likewise, semantic language (SL) is often used

to represent the application domain, even though the FIPA

ACL specification document does not make any commitment

to a particular content language.

Fig. 1. The three layers of a KQML message

2.5 Interaction Protocols
Although FIPA uses AUML [8] to represent its standard

interaction protocols, we use colored Petri nets (CPNs) [9],

because their formal properties facilitate the modelling of

http://www.google.com/url?sa=t&rct=j&q=fipa&source=web&cd=3&ved=0CDwQFjAC&url=http%3A%2F%2Fwww.fipa.org%2F&ei=Z8c4Uca4Cuq57AbUqYHADA&usg=AFQjCNG4AKdzDwhnrZRv4hMHLU1gqqzDzQ
http://www.google.com/url?sa=t&rct=j&q=fipa&source=web&cd=3&ved=0CDwQFjAC&url=http%3A%2F%2Fwww.fipa.org%2F&ei=Z8c4Uca4Cuq57AbUqYHADA&usg=AFQjCNG4AKdzDwhnrZRv4hMHLU1gqqzDzQ
http://www.google.com/url?sa=t&rct=j&q=fipa&source=web&cd=3&ved=0CDwQFjAC&url=http%3A%2F%2Fwww.fipa.org%2F&ei=Z8c4Uca4Cuq57AbUqYHADA&usg=AFQjCNG4AKdzDwhnrZRv4hMHLU1gqqzDzQ

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 5, April 2013 – www.ijais.org

24

concurrent conversations in an integrated fashion. The

availability of net analysis tools, means that it is possible to

check the designed protocols and role interactions for

undesired loops and deadlock conditions, and this can then

help eliminate human errors introduced in the design process.

Figures 2 and 3 shows the representation of the FIPA request

interaction protocol. Each interaction protocol is modeled in

terms of the individual agent roles in the interaction: for each

individual role there is a separate Petri net. The collection of

individual Petri nets associated with all the relevant roles

represents the entire interaction protocol. For every

conversation, there are always at least two roles: that of the

initiator of the conversation and the roles of the other

participants in the conversation.

Fig. 2. Request interaction protocol for the Initiator role

Figure 2 depicts the initiator of the FIPA request interaction,

and Figure 3 shows the Participant interaction. For

diagrammatic simplicity, we omit the inscriptions from the

diagram, but we will describe some of them below. The In

place (in this and the following Petri net diagrams) will have

tokens placed there when the agent receives messages from

other agents.

Fig. 3. Request interaction protocol: the Participant role

The In place is a fusion node (a place common to two or more

nets): the very same In place may exist on other Petri nets that

also represent conversations in which the agent may be

engaged. When the agent receives a message from another

agent, a token with information associated with the message is

placed in the In place, which may be shared by several Petri

nets. The transitions connected to the In place have guards on

them such that the transitions are only enabled by a token on

the In place with the appropriate qualification.

The Initiator of the request interaction will have a token

placed in the Start place, and this will trigger the Send request

transition to place a token in the Out place. We assume that

the communication transport machinery causes tokens to

disappear from a Petri net’s Out place and (usually) a

corresponding token to appear on the In place of another

agent. The transfer may not be instantaneous, or even

guaranteed to occur; it is possible for a token to disappear

from one role’s Out place without a corresponding token

appearing at another agent’s In place.

Note that the Initiator could be involved in several concurrent

request interaction conversations, and the placement of

specific tokens in the Agree place enables this agent to keep

track of which responses correspond to which conversations.

This shows how the colored Petri net representation facilitates

the management of concurrent interactions involving the same

protocol.

In the next section, we present the application of multi-agents

systems in different fields. In the first time, we describe the

different architectures. Then, we present some realizations.

3. THE PROPOSED ARCHITECTURES

BASED ON MULTI-AGENTS SYSTEMS
In this section, we present the architectures proposed by the

system architecture team. We are interested in this section to

the following areas: Mobile systems [10], Telecom and

network security.

3.1 Remote control on Internet domain
Our architecture EAAS1 (version 1), for remote control over

Internet [11], consists in five agents: interface agent, actions

selection agent, perception agent, action agent and hardware

link agent.

Fig. 4. The proposed Architecture - EAAS2

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 5, April 2013 – www.ijais.org

25

The interface agent is the high level of our control

architecture. It must generate a succession of goal, or missions

for the actions selection agent, according to the general

mission of the mobile system. It is the “ultimate” mobile

system autonomy concept: the mobile system generates itself

its own attitudes and its own actions by using its own

decisions. The perception agent manages the processing of

incoming data (the sensor measurements) and creates

representations of the environment. The actions selection

agent must choose the robot behavior according to all

information available and necessary to this choice: the fixed

goal, representations and the robot localization.

In order to give to the remote user the possibility to tele-

operate the mobile system. This architecture gives to the

operator the possibility to communicate with the physical

system. New agents have been added to the EEAS1. The

EAAS2 (version 2) [12] consists in the EAAS1 and the

agents: communication agent, recovery agent, interface agent

and real world agent.

3.2 Telecommunication domain
The architecture proposed [13] in this work is a multi agent

architecture, in which each agent is autonomous and able to

cooperate, coordinate and communicate with other agents

intelligently to achieve the system task. The agents can be

reactive or cognitive. They are provided with two functions,

the communication and the realization of its own task. The

task of communication consists of passing information to the

other agents or simply to relieve messages for the other

agents. The specifics tasks consist of checking, trying,

normalizing data or make decision… The SMS gateway

which is the essential element of our platform appears in the

form of two under multi agent system called sensor

management and Robot control. These under system

collaborate between them in a continuous way to command

the robots and to assure an adapted communication to the

need of our platform. Bellow a description of the gateway

multi agent systems. Our architecture consists in six agents:

interface agent, perception agent, management agent,

Learning agent, action selection agent and action agent.

 The interface agent: this agent is the high level of our

control architecture. It must generate a succession of goal as

the objective coordinates, the physical data to be captured ...

The Gateway generates itself the robot attitudes and actions

as well as the radio management communication of the

robots by using its own decisions

 The Management agent: this agent analyzes the data

received by the user, if they are correct he launches the

proprio/extro sensors to localize the robots then, the

connexion sensors to detect the radio communication media

existent in each robot and the battery level of these robots.

Data captured are then transmitted to the perception agent

that analyze and normalize it for creating a representation of

environment. The management agent decide depending on

the content of the representation, it’s knowledge base and

the location of the objective, which robot he will activate

and which radio communication he will use to communicate

with this robot. When the choice is made, the agent disables

the radio communication that will not be used by the

gateway and the robot. All decisions taken by the

management agent is stored in its knowledge base, and an

update of the representation is made.

 The learning agent: this agent made the connection between

the management agent and the knowledge base (BC). BC

contains all the rules necessary to the box for making his

decision (Robot to activate, radio communication to

choose….) we can also find the history of past orders ;this

history allow the management agent to define directly and

rapidly the action plan of the robot without redoing the

representation of the environment.

Fig. 5. Gateway multi agent architecture

 The actions selection agent must choose the robot behavior

according to all information available and necessary to this

choice: the fixed goal, representations and the robot

localization. The actions selection agent contains a path

planner, a navigator and a pilot. The path planner may take

a goal as input and give a path for achieving the goal as

output. The Navigator must translate a path into a trajectory

for the pilot. The path does not take into account physical

constraints of the robot, but the trajectory that it delivers

must integrate them. The function of the pilot is to convert

this trajectory into orders to be performed by the action

agent.

 The action agent consists of a set of behaviors controlling

the robot effectors.

3.3 Architecture of proposed platform of

intrusion detection
The proposed architecture [14] consists of several agents

distributed at different network points with different roles.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 5, April 2013 – www.ijais.org

26

The proposed intrusion detection architecture consists of

several agents, monitoring the network or sensitive

positions, with the following characteristics:

The analyzer based on a distributed approach, using multi-

agent system, includes: Agents; responsible for collecting

sensor data exchanged on the network or those who arrive

at a sensitive position and will be transmitted to

comparators. Comparators agents with reactive capacity;

responsible for comparing the flow of events with the

rules and procedures describing the unintended uses.

Fig. 6. Proposed platform of intrusion detection.

If a rule is violated when there is interference and the degree

of threat that may represent the intrusion, the officer will

compare the direct traffic to the cognitive agent to search

further, or it blocks traffic and cuts the connection.

Cognitive agents with adaptive and learning function; their

role is to check whether the event may represent a low

threat and react quickly when an intrusion blocks traffic

and prevent the agent generator warning. Agents generating

alerts; their role is to generate an alert message to the

appropriate administrator and store information about the

event in a log file.

4. REALIZATION
In this section, we propose an application [16] realized by the

system architecture team of the ENSEM, Hassan II

University. In this application, we use the different

architectures presented in the previous sections. This

realization is an application of the multi-agents system in the

remote control and the telecommunication domains.

After the design phase of the proposed model, we have built

the first prototype of our solution shown in figure.7. We use

soekris box net 5501 to act as a gateway and an open source

distribution (Perl) to develop our control architecture for the

GSM-based remote wireless automatic monitoring system.

The robots used are NXT and Khepera. Concerning the

commands send from a cellular phone, they are writing in text

message. Once the message is written, we send it. The

gateway starts the processes and performs the desired task like

the state of the gateway and the bandwidth.

Fig. 7. Prototype of the system

5. CONCLUSION
In this work, we have shown that multi-agents systems

applications are numerous. The multi-agents systems can be

used for designing and developing distributed, autonomous

and intelligent architectures in different fields like remote

control, security and telecommunications. The

implementations presented in this paper validate the choice of

the multi-agents systems.

In future work we hope to increase the intelligence of the

agents of our architectures and create a global architecture that

allows a securised control on Internet of telecommunications

equipments using mobile systems.

6. REFERENCES
[1] Ferber, J. “Multi-agents systems, an introduction to

distributed artificial intelligence”, Addison-Wesley,

1999.

[2] Medromi, H., Qrichi Aniba, F., Sayouti. A. “Real Time

Distributed Architecture based on Multi-Agent System”.

2ème Journées d'informatique et de mathématiques

décisionnelles (JIMD'2008), ENSIAS, Rabat, Maroc, 3-5

Juillet, 2008.

[3] Benhadou, S., Raoui D., Medromi H. “Nouvelle

méthodologie distribuée de sécurité à base de

système multiagents”, ICeP’09 Marrakech, September

25 – 27, 2009.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5 – No. 5, April 2013 – www.ijais.org

27

[4] Sayouti, A. “Conception et Réalisation d’une

Architecture de Contrôle à Distance Via Internet à Base

des Systèmes Multi-Agents”. Phd. Thesis, ENSEM,

Hassan II University, 2009.

[5] Ferber, J. “The multi-agents systems - to collective

intelligence”, Paris, InterEditions, 1995.

[6] Shoham, Y. “Agent-oriented programming”. Journal of

Artifcial Intelligence, 60(1), 51-92, 1993.

[7] FIPA 97 specifcation Part 2: Agent communication

language, Version 2.0. Foundation for Intelligent

Physical Agents. Retrieved from www.fpa.org, 1997.

[8] Odell, J., Paranuk, H. V., Bauer, B. “Extending UML for

agents”. Proceedings of the AOIS Workshop at the 17th

National Conference on Artifcial Intelligence (pp. 3-17),

2000.

[9] David, R., Alla, H. “Petri Nets and Grafcet - Tools for

modelling discrete event systems”. Prentice Hall, 1992.

[10] Sayouti, A., Medromi, H. “Chapter Title: Autonomous

and Intelligent Mobile Systems based on Multi-Agent

Systems, Book Title: Multi-Agent Systems - Modeling,

Control, Programming, Simulations and Applications”,

INTECH, http://www.intechweb.org, 2011.

[11] Sayouti, A., Medromi, H. “Book Title: Les Systèmes

Multi-Agents : Application au Contrôle sur Internet.”

Academic Publishing in Europe, August 2012.

[12] Moutaouakkil, F., Medromi, H. “Book Title: Les

plateformes de Contrôle autonome distribuée :

Application en Robotique Mobile, Academic Publishing

in Europe, 2012.

[13] Mansouri, H., Medromi, H., SAYOUTI, A. “A GSM

based remote control”, The Fourth Workshop on

Information Technologies and Communication (Wotic),

ENSEM, Casablanca, MOROCCO, 2011.

[14] Benhadou, S., Medromi, H. “Book Title: Sécurité et

Détection d'Intrusion à base des Systèmes Multiagent:

Nouvelle Approche Distribuée Temps Réel, Academic

Publishing in Europe, 2012.

[15] Raoui, D., Benhadou, S., Medromi, H. “New distributed

platform for intrusion detection based on multi-agents

system”, Journal of Engineering and Technology

Research Vol.2(10), pp. 200-206, October 2010.

[16] Mansouri, H., Medromi, H., SAYOUTI, A. “A GSM

based remote wireless automatic monitoring of mobile

Robot”, International Journal of Research and Reviews

in Computer Science (IJRRCS)”, Vol. 3, No. 3, ISSN:

2079-2557, June 2012.

http://mts.intechweb.org/addchapter/index/books_id/79/chapters_id/9099
http://mts.intechweb.org/addchapter/index/books_id/79/chapters_id/9099
http://www.intechweb.org/

