

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 5– No.3, February 2013 – www.ijais.org

42

Development and Evaluation of an Experimental Java-
based Web Server

Syed Mutahar Aaqib

Department of Computer Science & IT
University of Jammu

Jammu, India

Lalitsen Sharma, PhD.

Department of Computer Science & IT
University of Jammu

Jammu, India

ABSTRACT

This paper compares the architecture of multi-threaded and

event-driven web servers and highlights their advantages and

disadvantages. Objective of this paper is to present a model of

a novel web server architecture based on the best properties of

multithreaded and event-driven architectures. Based on this

architecture, an experimental java-based hybrid web server is

implemented. This paper then evaluates and compares its

performance with Apache and μserver for both static and

dynamic workloads. The results of the experiments revealed

that our experimental web server exhibits better performance

than Apache and μserver for static workloads. For dynamic

workloads, this web server shows substantial performance

improvements as compared to Apache and slightly better

performance than μserver web server.

General Terms

Performance Evaluation, Benchmarking, Web Server

Development

Keywords

Web Performance Analysis, Web Server Architectures. Java

Web Servers.

1. INTRODUCTION
The increasing dependence on the internet services

emphasizes importance of stable underlying web server

architecture [1, 2]. Basic goal in the design of efficient web

server architectures is to provide capability of processing long

lasting client sessions, handle large number of concurrent

connections and sustain higher throughput. The most popular

contemporary web servers are based on multithreaded and

event-driven architecture. A multithreaded web server uses

multiple threads to deal with blocking network I/O. In this

architecture, if a thread is blocked in the queue, other threads

can continue their execution. While handling a request, a web

server either uses blocking or non-blocking socket operations.

In case blocking socket operations, calling thread is blocked

till all the data associated with the request is transmitted by

the kernel. While in case of non-blocking operations, calling

thread is allowed to execute while parts of data transmitted by

the kernel are buffered. Former architecture is called

multithreaded while as latter is referred as event-driven

architecture. The multithreaded architectural model leads to a

very simple and natural way of programming. Also

multithreaded web servers are easier to build as they involve

well defined and easily comprehensible logic and the numbers

of possible errors while developing a multi threaded web

server are also very less [3]. Context switching in

multithreaded web servers incurs heavy overhead as the

number of simultaneous executing threads may increase

proportionally with the number of incoming requests [3].

Event-driven web servers like Flash [4] on the other hand

resolve all the issues related with the multi threaded web

servers but they are difficult to develop, debug and involves

complicated logic and flow control [3]. Apache [5], IIS [6]

and Tomcat [7] are based on the multithreaded architecture

whereas Flash [4], Zeus [8], μserver [9] and SEDA [10] are

examples of event-driven architectures. A number of studies

[11, 12, 13, 14, and 15] have compared the features of these

two web server architectures based on their mutually

exclusive features. But till date no substantial work has been

carried out to develop a server that takes advantage of best

characteristics of these two architectures. This paper thus

briefly describes working of multithreaded and event-driven

web server architectures, highlights their advantages and

disadvantages and presents the implementation of a new

experimental web server based on the hybrid model proposed.

Finally, the performance of this new experimental java based

web server is evaluated and compared with Apache and

μserver.

2. WEB SERVER ARCHITECTURES

2.1 Multi-Threaded Architecture
Multithreaded architecture is a natural way of programming a

server and is the most common approach for implementing

web servers, e.g. Apache [5], IIS [6]. In this architecture, one

thread is in charge of handling incoming HTTP requests.

After a connection is established, a worker thread is selected

from a pool of threads and this thread is responsible for

handling all the further client requests on this connection. The

thread pool from which worker threads are allocated is either

implemented in a static or dynamic manner. Static thread

pool has the advantage that it has no overhead of costly

spawning of new worker threads but in situations involving

less number of connections, Static fixed pool of thread results

in under-utilization of thread pool. Dynamically created

worker threads spawns new threads based on the given

workload and thus it helps scaling a server which results in

better performance. Also context switching is used to

interleave simultaneous execution of worker threads.

However, there are a number of disadvantages to this

architecture. A multi threaded web server normally handles

hundreds or even thousands of concurrent connections. This

results in large overhead for context switching and undue

overhead due to the creation of a large memory stacks. The

thread-library used by a web server also plays a significant

role in the overall performance of a web server. Thread-model

implemented by a web server can either use 1:1 model, where

each user-level thread has its corresponding kernel thread

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 5– No.3, February 2013 – www.ijais.org

43

running inside the kernel or M: N threading model where

multiple user threads are multiplexed over few kernel threads.

Thread library that comes with Linux is called NPTL threads

library [16] which uses 1:1 threading model. In this model,

the kernel threads are allowed to wait on blocking system

calls without hampering the execution of other user-level

threads. The server in this case can thus overlap the execution

with I/O and this model can thus be extended over multiple

CPU’s. The only disadvantage of 1:1 threading model is that

it are not able to scale well when there are thousands of

connections involved [17]. In order achieve higher scalability

for thousands of threads, M: N threading model is normally

used. In this model multiple user threads are multiplexed over

few kernel threads and blocking calls are avoided by using

wrapper functions over such system calls that make equivalent

non -blocking system calls. An example of a web server

based on such architecture is Knot [17].

2.2 Event-Driven Web Server Architecture
In an event driven web server architecture, one main thread is

responsible for accepting new client connections and

registering socket channel in a channel selector. This

architecture has the advantage of eliminating the overhead of

blocking I/O operations used by multithreaded servers, thus

reducing the idle times incurred by worker threads. The

worker threads are called only when data is available on the

socket. Once the request is processed, the worker threads are

freed from the channel selector and are assigned to new client

requests. Using this architecture, large numbers of active

clients can be connected to the server without the threads

getting blocked. As there is no limit on number of active

client connections, an admission control policy to limit the

number of incoming connections is required. This

architecture has been implemented as Flash [4], μserver web

server [9] and Zeus [8].

3. MODEL OF EXPERIMENTAL

HYBRID WEB SERVER
In this section, a hybrid architectural model of a web server is

presented. This model takes advantage of features of both

multithreaded and event-driven architecture. In the model

presented, as shown in Figure 1, the incoming client

connections are passed on to a module called

mod_thread_selector in an event-driven fashion. Once a

request is received, mod_thread_selector module chooses one

worker thread from the pool of worker threads and assigns it

the task to process this request. This request is then processed

by the assigned worker thread in a multithreaded fashion. In

this way, this hybrid model receives requests in an event-

driven manner and processes them in a multi-threaded

fashion.

3.1 Hybrid Implementation
To validate this hybrid architectural model, a new java-based

experimental web server is implemented. In this

implementation, a module called mod_thread_selector is

responsible for the task of handling incoming client

connections. Once a request is received, this module chooses

one worker thread from a pool of worker threads already

spawned and assigns it the task of processing each request.

Each worker thread then processes the assigned request in a

multi-threaded fashion till its completion. Once a request is

completed and response sent, the mod_thread_selector

module is invoked again to process clients sending new

requests. This implementation divides the web server logic

into various modules. For workload characterization, this web

server processes static as well as dynamic workloads. For

dynamic workloads, support for CGI files is implemented. As

the objective of this work is to validate the hybrid architecture

proposed, the support for dynamic file extensions like .ASP

and .PHP is not included in this implementation. This web

server implementation contains a configuration class file

called HTTP. class with comprises of all the constants like

URL of various directories, HTTP Port number in use,

SERVER_LOCATION and various response STATUS flags. A

variable CONN_TMT is used to provide the connection

timeout period that enforces a connection timeout period. The

only disadvantage of this implementation is the absence of a

proper admission control module required to solve the

problem that occurs when the number of simultaneous

connections increases many folds as a result of which there is

a considerable decrease in the overall performance.

4. EXPERIMENTAL METHODOLOGY
The test-bed setup for the experiments is depicted in Fig. 2. It

consists of two client machines connected to a server machine

via a switched Giga bit network. The client machines are

running Scientific Linux CERN 5 (2.6.18). Each machine has

a single 2.0 GHz Intel Pentium I3 processor with 1 GB of

RAM and uses “RAM-disk” of 128 MB size for collecting

measurement statistics [18]. The server machine in our test

environment is Intel Pentium I5 machine, with 4 GB of RAM,

running Scientific Linux CERN 5 (2.6.18).

Client NClient 3Client 2Client 1

Module_Thread_

Selector

(Thread 1)

(Thread 2)

(Thread 3)

…

(Thread N)

Main

Web server

Logic

Module

…..

…..

…..
Pool of worker

threads

Client

Connections

Proposed Web Server Architecture.

Fig 1: Proposed model of a hybrid experimental web-

server.

4.1 Performance Tuning
The number of available file descriptors is increased from

1024 to 32,678 and the limit of the local port range is also

increased. TCP TIME_WAIT recycling is enabled to free up

sockets in a TIME_WAIT state more quickly [18], thus

allowing clients to generate and sustain high request rate.

Also, all the non-essential processes and services on the server

as well as client machines are disabled. Also all the web

servers are restarted before and after each experiment.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 5– No.3, February 2013 – www.ijais.org

44

4.2 Client workload generator
The httperf [19] is an open source benchmark developed at

Hewlett-Packard Research Labs. The httperf benchmark is a

flexible HTTP client that requests a file from a web server

multiple times and for number of parallel threads and then

prints out detailed statistics. Its source code is modified in

order to print the server response rate information more

frequently. Thus the output of the httperf provides information

about TCP connection rate; HTTP request rate and HTTP

reply rates after every one second during the experiments.

Client 1

Client 2

1Gbps

Switch

Web Server

System

Experimental Test-Bed

Fig 2: Experimental test-bed.

4.3 Web servers evaluated
The experiments carried out in this paper compare the

performance of our experimental hybrid java based web

server with multithreaded Apache 2.2 and event-driven

μserver. These web servers were configured and tuned to

optimize their performance. Arlitt [20] and Grottke et al. [21]

in their work suggested that the two configuration parameters

for Apache web server, MaxRequestsPerChild and

MaxClients should be set to 0 and 250 respectively. Based on

this insight, in the main experiments the Apache web server is

tuned by setting MaxClients and MaxRequestsPerChild to

these values. In addition to that, a kernel-based TUX web

server has been used in the preliminary experiments to

validate the request generation capabilities of the test-bed.

4.4 Validation of the Test Environment
In order to validate the request generation capabilities of the

test-bed, TUX web server [22] is used. The purpose of this

validation is to show that clients can generate and sustain high

amount of requests rates during the experiments, possibly

large enough to saturate the web server, and thus are not a

bottleneck. These tests are performed for a 1KB static file.

Figure 3 shows the result for this experiment. This figure has

three sets of data plotted which includes average number of

TCP connections, average rate of HTTP requests and the

average number of HTTP responses. The results depict that

clients are able to generate and sustain workload of 10,000

requests per second for a static 1kb file. Also the server

platform and the network could support up to 10,000

responses per second for a static 1 KB file. Thus, the achieved

response rates lower than these in the main experiments

would indicate a bottleneck related to the particular server

software technology being tested.

5. EXPERIMENTAL RESULTS
In this section, a comparison is made among our experimental

hybrid web server, multi-threaded Apache and event-driven

μserver for both static and dynamic workloads. The metrics

chosen include TCP connection rate, HTTP request rate,

HTTP reply rate, HTTP reply time. Experiments are designed

for a static plain workload and dynamic workloads comprising

of scripts written in Perl CGI. The workloads chosen in this

set of experiments consist of plain static workload files. The

results, as shown in Figure 4 depict that all the three servers’

exhibit same performance up to the target request rate of 1500

reqs/sec after which there is a sudden decrease in the

performance of multithreaded apache web server.

Fig 3: Validation experiment for test-bed involving TUX

web-server

5.1 Results of experiments involving static

workloads
After attaining saturation level Apache web server exhibited

lower performance than the other two web servers. The

performance of μserver and the experimental hybrid web

server is approximately equal. The recorded saturation point

of μserver, experimental hybrid, and Apache web server is

1711 reqs/sec, 1723 reqs/sec and 1619 reqs/sec respectively

which are attained at the target request rate of 2000 reqs/sec.

Fig 4: Result of the experiments involving static workloads

using various web servers

5.2 Results of experiments involving

dynamic workloads
This section presents results of the experiments carried out

using Apache, μserver and our experimental hybrid web

server involving dynamic workloads. The results, as shown in

Figure 5 depict that the performance difference between these

three servers increases at the target request rate of 500

reqs/sec. In these experiment, Apache web server exhibited

lower performance than other two web servers and attained

saturation level at the target request rate of 2000 reqs/sec. The

performance of our experimental hybrid web server is better

than multithreaded Apache and slightly better than event-

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 5– No.3, February 2013 – www.ijais.org

45

driven μserver. As depicted in Figure 5, μserver and

experimental hybrid web server exhibits steady and a stable

performance compared to multithreaded Apache with

experimental hybrid server leading in terms of achieved

response rate. The performance of the experimental hybrid

web server slightly exceeds to that of μserver. At the target

request rate of 2500 and 3000 reqs/sec, it is found that neither

μserver nor the experimental hybrid web server saturates

although there is some variations in the resulting achieved

response rate.

Fig 5: Result of the experiments involving dynamic

workloads using various web servers.

6. CONCLUSION AND FUTURE WORK
This paper describes the working of multithreaded and event-

driven web server architectures, highlights their advantages

and disadvantages. Objective of this paper is to present a

model of hybrid web server architecture. Based on this

architecture an experimental java-based web server is

developed. This paper then evaluates the performance of this

web server with multi-threaded Apache and event-driven

μserver. The workloads chosen include both static and

dynamic files. The result of the experiments revealed that the

experimental hybrid web server exhibits better performance

than multi-threaded Apache and event-driven μserver for

static workloads. For dynamic workloads, experimental

hybrid web server showed substantial performance

improvements as compared to multithreaded Apache and

exhibited slightly better performance as that of the event-

driven μserver web server. The goal of this evaluation is not

to establish the experimental web server as better than other

web servers, but only to validate the model proposed. The

architecture thus presented can thus be used as reference

model. Also, a proper admission control module can be

included in this model. For further performance evaluation

studies, web server based on the model proposed can be tested

for scalability studies with respect to their horizontal and

vertical characteristics.

7. ACKNOWLEDGMENTS
Authors are thankful to the Head, Department of computer

Science & IT, and University of Jammu for his kind support.

8. REFERENCES

[1] S.M. Aaqib, L. Sharma, “Analysis of Compute Vs

Retrieve Intensive Web Applications and Its

Impact on the Performance of a Web Server”,

International. Journal Advanced Networking and

Applications Vol. 03 Issue 04, pp. 1233- 1239, 2012.

[2] L. A. Adamic, B. A. Huberman, “Zipf’s law and the

Internet”, Glottometrics,Vol. 3 pp. 143-150. 2002.

[3] Beltran, V., Carrera, D., Torres, J. and Ayguadé, E.

(2004) ‘Evaluating the scalability of java event-

driven web servers’, International Conference on Parallel

Processing (ICPP’04) , pp.134–142. 2004

[4] V. S. Pai, P. Druschel, and W. Zwaenepoel. “Flash: An

efficient and portable Web server”, In Proceedings of the

USENIX Annual Technical Conference, 1999.

[5] Apache software foundation. The Apache web server.

URL :http://httpd.apache.org.

[6] Microsoft IIS web server, URL:- http://www.iis.net/

[7] Tomcat Apache, URL:- http://tomcat.apache.org/

[8] Zeus server. URL: - http://www.zeus.com/products/zws.

[9] The μserver home page. HP Labs, 2005. URL:-

http://www.hpl.hp.com /research/linux/userver/ 2005.

[10] M. Welsh, D. Culler, and E. Brewer. “SEDA: An

architecture for well-conditioned, scalable Internet

services”, In Proceedings of the eighteenth ACM

symposium on Operating systems principles, pp 230–

243, New York, NY, USA, 2001.

[11] Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.

Douceur. “Cooperative task management without manual

stack management”, In the Proceedings of the General

Track of the annual conference on USENIX Annual

Technical Conference, pp.289–302,Berkeley, CA, USA,

2002.

[12] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazi`eres, and

R. Morris. “Event-driven programming for robust

software”, In Proceedings of the 10th ACM SIGOPS

European Workshop, pp 186–189, New York, NY, USA,

2002.

[13] H.C. Lauer and R. M. Needham. “On the duality of

operating systems structures”, In the Proceedings of the

2nd International Symposium on Operating Systems,

IRIA, October 1978.

[14] J. K. Ousterhout. “Why threads are a bad idea (for most

purposes)”, Presentation given at the 1996 USENIX

Annual Technical Conference 1996.

[15] R. Behren., J. Condit, and E. Brewer. “Why events are a

bad idea for high- concurrency servers”, In 9th

Workshop on Hot Topics in Operating Systems (HotOS

IX), 2003.

[16] U. Drepper and I. Molnar. The native POSIX threads

library for Linux, URL:http://people.redhat.com

/drepper/nptl-design.pdf.

[17] R. Behren, J. Condit, F. Zhou, G. C. Necula, and

E.Brewer, “Capriccio:Scalable threads for Internet

services”, In Proceedings of Nineteenth ACM

Symposium on Operating Systems Principles, pp. 268–

281, New York, USA, 2003.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 5– No.3, February 2013 – www.ijais.org

46

[18] S.M. Aaqib and L. Sharma, “Analysis of Delivery of

Web Contents for Kernel-mode and User-mode

Web Servers”, International Journal of Computer

Applications Vol 12, Issue 9 , pp 37–42, Published by

Foundation of Computer Science. January 2011.

[19] Mosberger D, Jin T.“httperf: A Tool for Measuring Web

server performance.” The First Workshop on Internet

Server Performance, pp.59-67 Madison, WI, 1998.

[20] Grottke M., Li L., Vaidyanathan K., and Trivedi

K.S.“Analysis of software aging in a web server”.

IEEE Transactions on Reliability, Volume 55, Issue 3,

pp.411-420, 2006.

[21] Arlitt M., Williamson C., “Understanding Web server

configuration issues”. Software: Practice and Experience.

Volume 34, Issue 2, pp. 163–186, 2004.

[22] Lever C., Eriksen M., and Molloy S. “An analysis of the

TUX web server”. Technical report, pp.00-8 University

of Michigan, 2000.

