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ABSTRACT 

The issue of risk assessment in glaucoma has ‎received 

increasing attention in the past few ‎years. Predictive models 

are in order to ‎estimate the risk that patients with ocular 

‎hypertension will develop to primary open ‎angle glaucoma 

(POAG) if left untreated. ‎These models are based on 

classification ‎techniques on the risk factors. Classification is 

‎accomplished using conventional risk factors ‎besides retinal 

nerve fiber layer (RNFL) ‎thickness. It was found that RNFL is 

sensitive ‎to glaucomatous damage by using different 

‎classification algorithms in order to reach to ‎best prediction 

model.‎ 

We have applied the Decision tree (DT), Fuzzy ‎logic and 

Neural Network to the glaucoma ‎problem. The performances 

of the various ‎classifiers are compared by the area under the 

‎receiver operating characteristics curve ‎‎(AUROC) and the 

accuracy. The decision tree ‎classifier gives the best result with 

accuracy 8o% for the training dataset,  ‎‎68.7% for testing data 

set with AUROC 0.868.     ‎ 
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1. INTRODUCTION 
Glaucoma is the most common optic ‎neuropathic process 

affecting human and ‎the ‎second most common cause of 

blindness ‎world-wide [1], [2]. The prevalence and pattern ‎of 

‎disease varies in different regions of the ‎world. It is estimated 

that 66.8 million ‎people ‎are affected by glaucoma worldwide 

‎and 6.7 million people are bilaterally blinded ‎due ‎to the 

disease. It is a disease in which ‎progressive loss of retinal 

ganglion cells ‎is ‎characterized by a recognizable pattern of 

‎both visual function loss and optic nerve ‎head ‎pallor and 

excavation [1-4]. If untreated, the ‎natural course of the disease 

is ‎towards ‎blindness, or at least significant visual ‎loss 

disability [4]. ‎ 

Glaucoma is called the “sneak thief” of sight ‎because it often 

goes undetected in its earliest ‎stages figure 1. About 50% of 

‎individuals in ‎North America with glaucoma are not aware ‎of 

it, and the problem is worse in less medically ‎advanced 

‎portions of the world [5-6].‎ 

 

Figure.1 Normal eye and eye with glaucoma 

There are several reasons why glaucoma ‎goes undetected [7]:‎ 

 ‎Few programs are directed towards ‎screening exclusively 

for glaucoma.‎ 

 Glaucoma usually does not affect ‎both eyes with the 

same degree of ‎severity at the same time, most ‎patient 

don’t know their condition as ‎there is no clear symptoms 

or ‎complain in early stages of the ‎diseases. ‎ 

 ‎The progression of glaucomatous ‎damage is usually 

slow. So, it is ‎difficult for individuals to notice ‎such 

‎gradual changes.‎ 

 ‎Glaucoma primarily affects ‎peripheral vision until the 

advanced ‎stages of the disease process. As the ‎field of 

the vision of the both eye ‎complete each other.‎ 

Glaucoma can be defined as optic nerve ‎neuropathy 

associated with changes in optic ‎nerve cup/disc ratio and field 

of vision pulse ‎increasing or decreasing in intraocular pressure 

‎‎(IOP), low tension glaucoma (LTG) in which all ‎criteria of 

glaucoma are present but with low ‎IOP according to normal 

intraocular pressure ‎in the general population, ocular 

hypertension ‎‎(OHT) refers to patients who have high IOP 

‎without affecting of field of vision or cup/disc ‎ratio.    ‎ 

‎ There are two main types of glaucoma figure ‎‎2: primary 

open-angle glaucoma (POAG), in ‎which there is no 

anatomical blockage to the ‎trabecular meshwork, and angle-

closure ‎glaucoma (ACG), in which ‎an anatomical ‎blockage 

prevents access to the trabecular ‎meshwork. To ‎distinguish 
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between these ‎causes, it is necessary to perform gonioscopy ‎to 

determine whether the angle is open ‎or ‎closed [7-9]. ‎ 

 

Figure.2 Open and closed angle glaucoma 

In this study we will be interested in estimating ‎the risk of 

progression of cases of OHT to ‎POAG. ‎ 

Primary open angle glaucoma, which affects ‎almost 2% of the 

world ‎population and ‎accounts for most of the glaucoma 

cases.‎Although the pathophysiology of ‎POAG is not ‎precisely 

known, its causes are clearly multi-‎factorial. It is a result of 

‎multiple interactive ‎genetic and environmental effects [10]. ‎ 

In this paper we will seek to develop a ‎considerably powerful 

model that can be used ‎to give the most accurate prediction 

for the ‎progression of OHT to POAG by making a ‎comparison 

between three different ‎approaches, namely decision trees, 

fuzzy logic, ‎and artificial neural networks.  

2. MATERIALS 

2.1 Risk factors for glaucoma development 

The development of predictive models requires ‎a series of 

complex steps which initially ‎involve the acquisition and 

analysis of data ‎from one or multiple longitudinal studies that 

‎have carefully followed patients over time. A ‎critical step is 

the identification of the risk ‎factors associated with the 

outcome one wants ‎to predict. A few large, prospective, 

‎longitudinal studies have provided evidence ‎with regard to the 

risk factors for conversion ‎from ocular hypertension to 

glaucoma  ‏.‏

From these studies, two were randomized ‎clinical trials, the 

Ocular Hypertension ‎Treatment Study OHTS [11] and the 

European ‎Glaucoma Prevention Study (EGPS ‏)‏ ‎ [12]. ‎These 

two studies have provided the basis for ‎the development and 

validation of nowadays ‎available prediction models for 

glaucoma ‎development. Both studies have evaluated a ‎large 

number of predictive factors for their ‎potential association 

with the risk of ‎conversion to glaucoma. When pooled 

‎analyses of the OHTS and EGPS data were ‎conducted, only 

five baseline factors were ‎identified as significantly associated 

with the ‎risk of conversion to glaucoma [13]: ‎ 

Intraocular pressure (IOP)‎, Central corneal thickness, Age, 

The measurement of the vertical ‎cup/disc ratio of the optic 

nerve and The visual-field pattern standard ‎deviation (PSD) ‎ 

Table 1 shows relative risks for the baseline ‎predictive factors 

found to be significantly ‎associated with the risk of 

developing ‎glaucoma in these two studies. These ‎predictive 

factors have been incorporated into ‎predictive models to 

estimate the risk of ‎conversion from ocular hypertension to 

‎glaucoma. 

Table 1. OHTS vs EGPS - risk factors 

 

Below, we review some of the evidence with ‎regard to the 

predictive value of risk factors ‎reported to be associated with 

glaucoma ‎development.‎ 

2.1.1 Intraocular pressure‎ 

In the pooled analysis of the OHTS and EGPS ‎control groups 

(1319 patients followed without ‎treatment), 1 mmHg higher 

baseline IOP was ‎associated with a 9% higher risk of 

developing ‎POAG ( Hazard Ratio HR =1.09; the 95% 

‎confidence interval CI = 1.03–1.17), after ‎adjustment for other 

predictive factor [13]. It ‎is important to note that even for this 

pooled ‎analysis; the 95% confidence interval for the 

‎development of POAG was still relatively large, ‎ranging from 

1.03 to 1.17‎‏.‏‎ That is, each 1 ‎mmHg increased IOP could be 

associated with ‎a 3% to 17% increased risk [14].‎ 

Because of the known association between ‎elevated 

intraocular pressure (IOP) and ‎glaucoma, IOP measurement 

has been ‎considered a fundamental part of glaucoma 

‎evaluations for many years. Today, IOP ‎remains important as 

a diagnostic indicator, ‎but it is not the same critical 

component it used ‎to be in the past. Lowering of IOP is 

unrelated ‎to the diagnosis, although it remains the only 

‎modifiable risk factor in treatment [15]‎‏.‏ 

Historical and current data have demonstrated ‎that lowering 

IOP in confirmed cases of ‎glaucoma can reduce the risk of 

increased ‎damage and functional loss. Unfortunately, we ‎now 

know that most untreated glaucoma ‎patients in Asian 

countries have IOP levels that ‎are considered to be within 

normal limits ‎‎(normal- or low-tension glaucoma) [16-18]. 

‎Also, a large percentage of glaucoma patients, ‎in general, 

have IOP measurements within ‎normal limits for a single 

measurement [6]. ‎Additionally, using IOP as a method of 

‎screening for glaucoma has less likelihood of ‎diagnosing 

glaucoma than other clinical ‎information such as optic disc 

and nerve fiber ‎layer appearance, visual field properties, 

‎central corneal thickness, and age [19].‎ 

2.1.2 Central corneal thickness (CCT) ‎ 

Corneal thickness is another factor that has ‎been associated 

with the risk of conversion ‎from OHT to glaucoma figure 3. 

IOP as ‎assessed by applanation tonometry may be 

‎overestimated or underestimated in thick or ‎thin corneas, 

respectively [20-25]. A ‎considerable subset of patients 

classified as ‎having ocular hypertension may simply have 
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‎thicker than average corneas that result in an‎overestimation of 

what is likely a normal, true ‎IOP. SO,  

 

Figure.3 Central Corneal thickness 

OHT patients with thicker corneas ‎may be at a lower risk for 

glaucoma ‎development. In fact, the OHTS showed that ‎CCT 

was a powerful predictor of development ‎of primary open-

angle glaucoma among ‎ocular hypertensive eyes [11]. Eyes 

with CCT ‎of 555 µm or less had a threefold greater risk ‎of 

developing glaucoma compared with ‎participants who had 

CCT of more than 588 ‎‎µm. A 40 µm thinner cornea was 

associated ‎with a 71% increase in the risk of conversion to 

‎glaucoma among OHTS patients in a ‎multivariate model 

adjusting for other risk ‎factors  ‎ Similar results were found by‏.‏

the ‎EGPS, with a 40 µm thinner cornea being ‎associated with 

a 32% increase in the risk of ‎conversion to glaucoma in the 

multivariate ‎model [22].‎ 

OHT patients with thinner corneas had a ‎higher prevalence of 

abnormalities on this test ‎compared to patients with thicker 

corneas. ‎This additional evidence for the association ‎between 

thinner corneas and the development ‎of glaucomatous 

functional and structural ‎damage supports the importance of 

‎considering central corneal thickness in the ‎assessment of risk 

for the development of ‎glaucoma in patients with ocular 

hypertension  ‎‎The mechanism by which CCT influences the‏.‏

‎risk of developing glaucoma has not been ‎completely 

established. Although the effect of ‎corneal thickness could 

potentially be ‎attributed to an artifact of tonometric 

‎measurements, it is possible that CCT could be ‎a marker for 

biomechanical and structural ‎characteristics of ocular tissues, 

which may ‎influence the risk of development of ‎glaucomatous 

neuropathy. Eyes with thinner ‎corneas could have a particular 

structural ‎susceptibility that would make them more ‎prone to 

develop glaucomatous damage. ‎Further studies are necessary 

to evaluate this ‎hypothesis [23-24].‎ 

2.1.3 Age 

There is strong evidence that older age is an‎independent risk 

factor for the progression of ‎ocular hypertension and 

glaucoma. Older age ‎has been reported as a risk factor for the 

‎development of glaucoma in patients with ‎ocular hypertension 

in multiple longitudinal ‎studies. Several population-based 

studies have ‎also found that the incidence of POAG ‎increases 

with older age. Both the OHTS and ‎the EGPS found that older 

patients with ocular ‎hypertension had an increased risk of 

‎conversion to glaucoma over time [14].‎ 

2.1.4 Cup/ disc ratio and pattern standard 

‎deviation of visual field‎ 

The OHTS as well as the EGPS and several ‎other longitudinal 

studies have found that ‎certain indicators of structural and 

functional ‎integrity at baseline are predictive factors for 

‎development of overt glaucomatous optic ‎neuropathy or 

visual field defects in the future. ‎Two indices that have 

consistently been ‎associated with higher risk of developing 

‎glaucoma are the vertical cup/disc ratio and ‎the visual-field 

PSD, both measured at the ‎baseline visit. Their assessment 

proves to be ‎helpful in predicting which patients are more 

‎likely to develop clinically important stages of ‎disease in the 

future, and their inclusion in ‎predictive models is justified. 

Both vertical ‎cup/disc ratio and PSD were significantly 

‎associated with the risk of developing ‎glaucoma in the 

multivariate model combining ‎OHTS and EGPS datasets. A 

0.1 increase in ‎vertical cup/disc ratio was associated with a 

‎‎19% higher chance of developing glaucoma ‎figure 4 [14]‎‏.‏ 

 

Figure.4 Cup/ Disc Ratio 

For the PSD, a 0.2 dB increase in the baseline ‎PSD value was 

associated with a 13% increase ‎in risk.‎ 

2.1.5 Retinal Nerve fiber Layer (RNFL)‎ 

RNFL assessment for glaucoma diagnosis and ‎follow-up has 

several distinct advantages over ‎current diagnostic 

approaches. It was ‎demonstrated over 30 years ago that RNFL 

‎defects are the earliest sign of glaucoma. Since ‎then, 

numerous studies have found that RNFL ‎defects occur prior to 

visual field loss [26-28]. ‎A study by Sommer et al. [27] found 

that 88% ‎of ocular hypertensives who developed ‎glaucoma 

had RNFL defects at the time the ‎visual field defect was 

detected with standard ‎automated perimetry (SAP). 

Furthermore, 60% ‎of these patients had RNFL defects that 

were ‎present 6 years prior to visual field defect. The 

‎evaluation of the RNFL is important for ‎glaucoma diagnosis 

as RNFL damage often ‎occurs earlier than can be detected 

with visual ‎fields and even before optic nerve head ‎damage  ‎‏.‏

Red-free RNFL photography has ‎many advantages, but the 

subjective ‎interpretation of the results and the practical 

‎limitations of the method limit its usefulness ‎‎[28].‎ 
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2.2 Data collection‎ 

The combination between the structural and ‎functional 

techniques for detecting glaucoma ‎can improve detection, so 

practitioners must ‎determine whether the patient has 

glaucoma or ‎is at risk of developing glaucoma. The ‎clinician 

‎must combine many aspects of information, ‎including 

diagnostic test results, medical ‎history, family history, clinical 

observations, ‎prior examination findings and other related 

‎information‎ [29-31].‎ 

The present study is based on analysis of ‎prospectively 

collected data from randomly ‎selected healthy individuals 

from a defined ‎catchment area and glaucoma patients‎followed 

at the department of ophthalmology ‎of Egypt Air hospital. 

The study includes about ‎‎398 study participants older than 40 

years.‎ 

Each study participant underwent a ‎comprehensive 

ophthalmic evaluation ‎including review of medical history, 

best ‎corrected visual acuity, slit lamp bio-‎microscopy, 

intraocular pressure measurement ‎with Goldmann applanation 

tonometry ‎gonioscopy, dilated slit lamp fundus ‎examination 

with a 90-D lens, SAP ‎using the Swedish interactive threshold 

‎algorithm  (SITA) (Humphrey field ‎analysis II, Carl Zeiss 

Meditec, Inc). Study ‎participants underwent ocular imaging 

with ‎commercially available optical coherence ‎tomography 

(Cirrus OCT, Software 4.0, ‎CarlZeiss, Meditec, Inc) in order 

to measure ‎RNFL thickness. 

Exclusion criteria for both groups included ‎unreliable visual 

fields, angle abnormalities on ‎gonioscopy; any diseases other 

than glaucoma ‎that could affect the visual fields, and 

‎medications known to affect visual field ‎sensitivity. Subjects 

with a best-corrected ‎visual acuity worse than 20/40, spherical 

‎equivalent outside 6.5 diopters and a cylinder ‎correction of 

3.0 diopters were excluded. Poor ‎quality stereoscopic 

photographs of the optic ‎nerve head served as an exclusion 

ground for ‎the glaucoma population. A family history of 

‎glaucoma was not an exclusion criterion  ‏.‏

Inclusion criteria for the glaucoma category ‎were based on 

optic nerve damage and not ‎visual field defects. The 

classification of an‎eye as glaucomatous or normal was based 

on ‎the consensus of masked evaluations of two ‎independent 

graders of a stereoscopic disc ‎photograph  ‏.‏

All photographic evaluations were ‎accomplished using a 

stereoscopic viewer ‎‎(Asahi Pentax Stereo Viewer II) 

illuminated ‎with color corrected fluorescent lighting. 

‎Glaucomatous optic neuropathy (GON) was ‎defined by 

evidence of any of the following: ‎excavation, neuro-retinal 

rim thinning or ‎notching, nerve fiber layer defects, or an 

‎asymmetry of the vertical cup/disc ratio of 0.2. 

‎Inconsistencies between grader’s evaluations ‎were resolved 

through adjudication by a third ‎evaluator  ‎ Inclusion criteria‏.‏

for the normal ‎category required that the subjects have ‎normal 

dilated eye examinations, open angles, ‎and no evidence of 

visible GON. Normal optic ‎discs had a cup-to-disc ratio 

asymmetry <= ‎‎0.2, intact rims, and no hemorrhages, notches, 

‎excavation, or nerve fiber layer defects. ‎Normal subjects had 

intraocular pressure (IOP) ‎‎<= 22mm Hg with no history of 

elevated IOP. ‎Excluded from the normal population were 

‎suspects with no GON and with IOP => 23 mm ‎Hg on at least 

two occasions. These suspects ‎are part of a separate study on 

classification ‎of stratified patient populations.‎. 

3. METHODS 
Although it can be difficult to combine the large amount of 

data provided by currently available glaucoma ‎detection 

techniques in a meaningful way, machine learning classifiers 

(MLC's) can accomplish this ‎objectively.  The application of 

machine learning methods in medicine for automated 

classification is a ‎common practice after all [31-33]. ‎ 

Considering different modern classification methods 

competing for this task is usually insufficient to ‎compare 

diagnostic performance. In clinical applications the definition 

of an examined disease is often ‎complex and different 

examination methods are used [34]. For illustration we use 

available data of clinical ‎study on early detection of 

glaucoma. ‎ 

3.1 Discriminative and Generative 

Classification:‎ 

In a binary classification problem, we are given a training 

dataset {xi, yi}, i = 1,….., N where xi ϵ RD (which ‎could 

contain both continuous and discrete entries) is the input and 

yi = ± 1 is the output label. When ‎performing classification, 

one approach is to first model the class-conditional probability 

p(x|C±) for each ‎class C±, and then employ Bayes' rule.‎ 

Under the Cox axioms [32], Bayes’ rule is the only consistent 

way to manipulate beliefs and plausibility, if ‎they are 

represented by real numbers. Classification using (1) is also ‎ 

known as the generative model, since the probability of 

generating the data point ''x'' is first modeled. This ‎effectively 

reduces the classification problem to that of modeling the 

class-conditional probability ‎distribution p(x|C±) for the two 

classes  ‏.‏

However, it has always been difficult to model p(x|C±) 

accurately. The naive Bayes’ classifier [33] ‎assumes 

independence between the components of the input. Modeling 

p(C±|x) through p(x|C±) is known ‎to be inefficient [34], as it 

generally requires the estimation of more parameters. Take 

the example of ‎performing classification by classical linear 

discriminant analysis (LDA): modeling the two classes of data 

‎with Gaussian densities of same variance but different means. 

It takes D(D+1)/2+D+D parameters to ‎calculate in this 

approach. The resulting classifier is well known to be a linear 

discriminant function U(x) ‎which only needs D+1parameters  ‏.‏

                     

 

   

             

Where wi are the components of the weight vector w.‎ 

For a dataset of finite size, this means that we have fewer data 

points for each parameter in the generative ‎approach. Unless 
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the equi-variance assumption fits well to the data, the classical 

LDA will have low ‎efficiency for the sole purpose of 

classification  ‎ On the other hand, logistic regression [35]‏.‏

makes fewer ‎assumptions about the classes and is generally 

more robust against outliers and noise in the data. Another 

‎weakness of the generative approach is that the model 

parameters are usually optimized by maximum-‎likelihood 

(ML) estimation [36]. It is widely believed that discriminative 

classifiers are to be preferred since ‎the discriminative criterion 

is more closely related to the classification error.‎ 

The above arguments suggest that we may be better off using 

the discriminative approach in which the ‎posterior 

probabilities p(C±|x) are directly estimated. Logistic 

regression is a well-known example of the ‎discriminative 

approach and is widely used in medical research. Decision 

trees, such as CART [37] or C4.5 ‎‎[38], are another kind of 

discriminative classifier. Recently, attention has shifted to 

neural-network-type ‎classifiers [39], [40] and the support 

vector machine (SVM) [41]. In some of these classifiers‎ ‏‏‏ the 

estimation ‎of the posterior probabilities is unnecessary  ‎ The‏.‏

classifier simply returns the label "y" by applying 

‎discrimination functions on the input. The advantage of 

discriminative classifiers is that they concentrate ‎on the 

decision boundary and, hence, are usually strong against 

irrelevant outliers in the training data. ‎However, they provide 

less insight into the structure of the data space and it is 

difficult to handle data ‎containing missing entries.‎ 

3.2 Classifiers 

3.2.1 Decision Tree‎ 

Decision tree learning is one of most widely used and 

practical methods for inductive inference, it is a ‎method for 

approximating discrete-valued target functions in which the 

learned function is represented by ‎decision tree. Decision 

trees classify instances by sorting them down the tree from the 

root to some leaf ‎node, which provides the classification of 

instance. Each node in the tree specifies a test of some 

attribute ‎of instance and each branch descending from the 

node corresponds to one of possible values for this ‎attribute. 

An instance is classified by starting at the root node of the 

tree, testing the attribute specified by ‎this node, and then 

moving down the tree branch corresponding to the value of 

attribute, this process is then ‎repeated for the sub-tree rooted 

at the new node [42, 43].‎ 

Most algorithms that have been developed for learning 

decision trees are a variation on a core algorithm ‎that employs 

a top-down, greedy search through the space of possible 

decision trees. This approach is ‎exemplified by Iterative 

Dischotomiser 3 (ID3) [42] and its successor C4.5 [43].‎ 

The basic algorithm ID3 starts decision tree learning by 

constructing trees top-down, beginning with the ‎question 

"Which attribute should be tested at the root of the tree?" To 

answer this question, each instance ‎attribute is evaluated using 

a statistical test to determine how well does it alone classify 

the training data? ‎Then the best attribute is selected and used 

as a test attribute at the root node of the tree. We define a 

‎statistical property called information gain (IG) that measures 

how well a given attribute separates the ‎training data 

according their target classification [43].‎ 

‎   IG= E_before-E_after                 (3) ‎ 

Where E is the Entropy, which measures the uncertainly 

associated with a random variable, it ‎characterizes the (im) 

purity of an arbitrary collection of data. ‎ 

Given a collection "S", containing positive and negative data 

of some target concept, the entropy of "S" ‎relative to this 

boolean classification is 

                                  

Where P+ is the proportion of the positive data in "S" and P- 

is the proportion of the negative data in "S" ‎‎[Note: the entropy 

is "1" when the collection contains an equal number of 

positive and negative count. If ‎the counts are unequal, the 

entropy is between 0 and 1] [44].‎ 

At each node of the tree, this calculation is done for each 

feature, and the feature with the largest IG is ‎chosen for the 

split, this process continues iteratively until the end. ‎ 

C4.5 is an algorithm used to generate a decision tree 

developed by Ross Quinlan. C4.5 is an extension of ‎Quinlan's 

earlier ID3 algorithm [44].‎ 

C4.5 builds decision trees from a set of training data in the 

same way as ID3, using the concept of ‎information entropy. 

The training data is a set of already classified samples. Each 

sample is a vector which ‎represents attributes or features of 

the sample. The training data is augmented with a vector 

which ‎represents the class to which each sample belongs.‎ 

C4.5 made a number of improvements to ID3. Some of these 

are [43]‎‏:‏ 

 Handling both continuous and discrete attributes . In 

order to handle continuous attributes, C4.5 ‎creates a 

threshold and then splits the list into those whose 

attribute value is above the threshold and those ‎that are 

less than or equal to it.‎ 
 Handling training data with missing attribute values  

C4.5 allows attribute values to be marked as '?' ‎for 

missing. Missing attribute values are simply not used in 

gain and entropy calculations  ‏.‏

 Handling attributes with differing costs  ‏.‏
 Pruning trees after creation C4.5 goes back through the 

tree once it has been created and attempts to ‎remove 

branches that do not help by replacing them with leaf 

nodes.‎ 
 

3.2.2 Fuzzy logic 

In 1982 Marr established two principles [45]:‎ 

‎‎I. Principle of Least Commitment ‎ 

Do not do something that may later have to be undone. ‎ 

II. Principle of Graceful Degradation ‎ 

Degrading the data will not prevent the delivery of at least 

some of the answer. Which means no matter ‎how the quality 

of data still some answers can be extracted from it, both 
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principles are very ‎important in ‎classification and decision-

making processes for expert systems: the first principle is 

‎consistent with the ‎continuous degree of belonging to fuzzy 

sets (equivalent with continuous degree of ‎truth in fuzzy 

logic), ‎and ensures the conservation of uncertainty until a 

crisp (binary) decision becomes ‎necessary. The second 

‎principle asks for robust methods/algorithms to be used. The 

implementation of ‎these two principles can be ‎expressed in a 

natural way by using the fuzzy paradigm and classifications 

‎approaches [46]. ‎ 

Diagnosis as a medical activity will state if a patient suffers 

from a specific disease; and if the answer ‎is ‎yes, the specialist 

will provide a specific treatment.  Despite the difficulties, the 

diagnosis of ‎glaucoma is ‎solved for the majority of cases. An 

important challenge for an ophthalmologist remains ‎on the 

evaluation ‎of the risk of occurrence and the prediction of 

progression to establish the suitable ‎follow up and treatment 

‎accordingly.  A major concern is the reliability of the 

diagnostic tools used by ‎the physician. There is ‎usually low 

confidence in these rules mainly due to their negative 

prediction ‎rate. One of the glaucoma ‎characteristics is that it 

can be “triggered” in very short periods of time (one ‎hour for 

example) and without ‎notice – which makes evident the 

challenge facing any attempt to ‎predict it. Our goal is to face 

this ‎challenge in developing a machine that can evaluate more 

precisely ‎the risk factors [46]. ‎ 

According to the Marr's “Principle of Least Commitment” we 

need to preserve as much as possible ‎the ‎natural embedded 

uncertainty in medical approaches (due of the natural 

complexity of the ‎human); ‎and according to his “Principle of 

Graceful Degradation” we need to build a robust system. And 

‎a ‎natural way to fulfill these natural medical requirements is 

to use fuzzy sets and fuzzy “if-then” rules ‎‎[47], [48].‎ 

Our design of the Fuzzy Glaucoma Diagnosis and Prediction 

System is based on a fuzzy inference system ‎that matches 

some input values with a fuzzy diagnostic model (designed as 

a collection of fuzzy IF-THEN ‎rules) to assign a risk factor 

and/or progression estimation. It uses a process like the one 

described in Figure 5.‎ 

Figure.5 Fuzzy logic decision infrastructure 

 

Figure.5 illustrates the basic flow of information of a fuzzy 

logic decision mechanism  ‏.‏

The knowledge repository contains a set of linguistic variables 

defined as a quintuple of the following form ‎‎<X, T(X), U, G, 

M>, where X is the name of the variable (inputs or outputs), 

T(X) is the set of linguistic ‎terms for X, each of these terms 

has associated a fuzzy set in U, the Universe of discourse. U is 

the range of ‎all possible values for this linguistic variable. The 

syntactic rule G is the grammar for generating the terms ‎in the 

term set T(X). M is a semantic rule used for associating each 

linguistic term from T(X) with its ‎meaning (membership 

function). The linguistic variables are the "vocabulary" that 

the fuzzy rules use to ‎express the mapping from inputs into 

outputs  ‏.‏

For example, we can define “X”, the Intraocular Pressure 

(IOP), as a linguistic variable where the set term ‎could be 

defined as T(IOP) = {Low, Normal, High}‎ 

Each term in T (IOP) can be associated to a fuzzy set of 

values in the Universe of discourse U = [0, 45] ‎‎(measured in 

mm of Hg).‎ 

Data and facts of glaucoma diagnosis and prediction 

(modeling environment) are transformed from a ‎numerical 

level to the conceptual framework of fuzzy sets  ‏.‏

Low might be interpreted as “a pressure above 0 mm Hg and 

around 11mm Hg”; Normal as “a pressure ‎around 16.5 mm 

Hg” and High as “a pressure around 21 mm Hg and below 45 

mm Hg”. Every term can ‎be described as fuzzy sets whose 

membership functions are like the ones drawn in Figure 6.‎ 

Figure.6 Fuzzy sets to characterize the linguistic variable 

IOP‎ 

The processing module is the algorithmic part of the schema, 

and its results are converted by the output ‎interface (using 

some defuzzification technique) and returned to the modeling 

environment.‎ 

Fuzzy IF-THEN Rules (the knowledge representation selected 

for this project) are "extracted" from an‎expert’s knowledge 

and experience in a particular field. In some specific cases it is 

possible to "obtain ‎automatically" such rules from data. This 

is not the case for our Fuzzy Glaucoma Diagnosis and 

Prediction ‎System, due to the complexity of the diagnosis risk 

evaluation and prediction processes. In our case, it is ‎essential 

to work close with medical specialists in order to obtain the 

knowledge necessary to build a ‎complete set of IF-THEN 

rules; and to "confront" these rules with "mathematical tools" 

for verification ‎and validation where appropriate  ‏.‏

An incremental development, a close relation to the 

ophthalmologists and a well-documented progressive ‎work 
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were the foundation for the design of a process to create the 

Fuzzy IF-THEN Rules that will be used ‎in the fuzzy 

Glaucoma Diagnosis and Prediction System  ‏.‏

3.2.3 Artificial Neural Network (ANN)‎ 

Multilayer perceptrons are often used for classification 

problems in medicine [49], [50].‎ 

The MLP is a layered neural network, i.e. its processing units, 

so-called neurons, are arranged in layers 1 to ‎n, where layer 1 

denotes the input layer and layer n denotes the output layer. 

Layers 2 to (n – 1) are called ‎hidden layers. Multilayer 

perceptrons are feedforward networks, i.e. a neuron in layer 'a' 

can send a signal ‎to a neuron in layer 'b' only if b > a. The 

connections between the neurons are weighted. The 

‎computational flexibility of MLPs results from the variability 

of these weights. Training is done by ‎changing the weights in 

a way that the desired output for a given input is reached. 

Back-propagation is an‎efficient training method for MLPs 

[51]. This is a gradient-descent method, where the derivative 

of the ‎neuron's output is needed. Therefore, the threshold 

function that was used in single-layer perceptrons is not 

‎appropriate. A similar function ‏‏‏ which is continuously 

differentiable, is given by the logistic function ‎ 

                                          

The limits of this function are 0 and 1 for z → – ∞ and z → ∞, 

respectively. To prevent over-fitting of ‎MLPs, weight decay 

can be used. With this variant of the learning algorithm, large 

weights are avoided and ‎decision boundaries are smoothed. 

MLP scan separate nonlinearly separable data [51].‎ 

All MLPs consisted of 2 hidden layers with tangent 

hyperbolic transfer functions and an output layer of ‎one 

neuron with a logistic transfer function that provided the MLP 

output. The number of neurons in the ‎hidden layers was 

chosen based on the type of input used in order to achieve the 

best performance as ‎judged by the results derived from the 10-

fold cross validation procedure  ‏.‏

Our ANNs were constructed with the MATLAB Neural 

Network toolbox version 7 and trained with the ‎scaled 

conjugate gradient algorithm described by Moller [52]‎‏.‏ 

ANNs were trained and tested with the 10 fold cross-

validation procedure, to reduce bias from training and ‎testing 

on the same individuals, while fully utilizing our data set. 

Data were randomly divided into ten ‎subsets,‎‏‏‏each containing 

test data from an approximately equal proportion of glaucoma 

patients and ‎healthy individuals  ‏.‏

One subset was used to test classification performance while 

the remaining nine subsets were used for ‎training purposes. In 

our ANN, one out of the nine training subsets was reserved 

for early stopping of the ‎ANNs in order to avoid over-fitting. 

We additionally used bagging [53] of the remaining eight 

subsets to ‎create the training sets used by the ANN ensemble. 

During training, this process was iterated, each time ‎using a 

different subset as the early stopping set, until all the data 

subsets had been used to both train and ‎stop the training of the 

ensemble. We further iterated the training process using each 

time a different test ‎subset, so that all data could be used both 

for training and testing the classifiers, and averaged the test 

‎results in order to produce a single performance measure for 

each ANN. 

4. RESULTS AND DISCUSSION 
The sample was split into a training sample ‎consisting of 200 

patients and a test sample ‎consisting of 198 patients. The 

demographic ‎data are shown in Table 2. ‎A confusion matrix 

contains information ‎about actual and predicted classifications 

‎done by a classification system. Performance ‎of such systems 

is commonly evaluated using ‎the data in the matrix. In the 

field of artificial ‎intelligence, a confusion matrix is a specific 

‎table layout that allows visualization of the ‎performance of an 

algorithm, typically a ‎supervised learning one (in 

unsupervised ‎learning it is usually called a matching matrix). 

‎Each column of the matrix represents the ‎instances in a 

predicted class, while each row ‎represents the instances in an 

actual class [54].‎ 

Table 2. The Demographic data 

Parameter  Min Max Mean Standard 

deviation  

Age 40 75 55.89 10.91 

IOP  23 30 26.695 1.702 

CUP/Disc 0.1 0.7 0.351 0.148 

CCT 480 629 577.4 35.435 

PSD 1 2.2 1.325 0.256 

RNFL -10 -0.06 -2.347 1.486 

Sensitivity, specificity and accuracy are widely ‎used statistics 

to describe a diagnostic test. In ‎particular, they are used to 

quantify how good ‎and reliable a test is  ‎ Sensitivity evaluates‏.‏

how ‎good the test is at detecting a positive disease. ‎Specificity 

estimates how likely patients ‎without disease can be correctly 

ruled out. The ‎ROC curve is a graphic representation of the 

‎relationship between both sensitivity and ‎specificity, and it 

helps to decide the optimal ‎model. Accuracy measures how 

correct a ‎diagnostic test identifies and excludes a given 

‎condition. The accuracy of a diagnostic test ‎can be determined 

from sensitivity and ‎specificity with the presence of 

prevalence ‎‎[54]. ‎ 

There are several terms that are commonly ‎used along with 

the description of sensitivity, ‎specificity and accuracy  ‎ They‏.‏

are true ‎positive (TP), true negative (TN), false negative ‎‎(FN), 

and false positive (FP). If a disease is ‎proven present in a 

patient, and the given ‎diagnostic test also indicates the 

presence of ‎disease, the result of the diagnostic test is 

‎considered TP. Similarly, if a disease is proven ‎absent in a 
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patient, and the diagnostic test ‎suggests that the disease is 

absent as well, the ‎test result is TN. Both true positive and 

true ‎negative suggest a consistent result between ‎the 

diagnostic test and the proven condition ‎‎(also called standard 

of truth). However, no ‎medical test is perfect. If the diagnostic 

test ‎indicates the presence of disease in a patient ‎who actually 

has no such disease, the test ‎result is FP. Similarly, if the 

result of the ‎diagnosis test suggests that the disease is ‎absent 

for a patient with disease for sure, the ‎test result is FN. Both 

false positive and false ‎negative indicate that the test results 

are ‎opposite to the actual condition.‎ 

Sensitivity = TP/ (TP + FN)       (6)‎ 

Specificity = TN/(TN + FP)        (7)‎ 

Accuracy = (TN + TP)/(TN+TP+FN+FP) (8)‎ 

4.1 Training Results 

4.1.1Decision tree‎ 

Table 3 shows the confusion matrix with ‎overall accuracy = 

80% and Table 4 shows the ‎result of True positive rate virus 

False positive ‎rate in order to plot ROC.  

Table.3 The confusion matrix of DT for training data set 

 

Table.4The TPR viruses FPR of DT for training data set 

 

4.1.2 Fuzzy logic ‎ 

Table 5 shows the confusion matrix with ‎overall accuracy = 

77% and Table 6 shows the ‎result of True positive rate virus 

False positive ‎rate in order to plot ROC.‎ 

Table.5 The confusion matrix of Fuzzy logic for training 

data set 

 

Table.6The TPR virus FPR of Fuzzy logic for training 

data set 

 

 

4.1.3 Neural network ‎ 

Table 7 shows the confusion matrix with ‎overall accuracy = 

77% and Table 8 shows the ‎result of True positive rate virus 

False positive ‎rate in order to plot ROC. 

Table.7 The confusion matrix of Neural network for training 

data set 

 

Table.8The TPR virus FPR of Neural network for training 

data set 

 

4.2 Test Results 

4.2.1 Decision tree‎ 

Table 9 shows the confusion matrix with ‎overall accuracy = 

68.7% and Table 10 shows ‎the result of True positive rate 

virus False ‎positive rate in order to plot ROC.  

Table.9 The confusion matrix of DT for testing data set 
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Table.10 The TPR virus FPR of DT  for testing data set 

 

4.2.2 Fuzzy logic‎ 

Table 11 shows the confusion matrix with ‎overall accuracy = 

65.1% and Table 12 shows ‎the result of True positive rate 

virus False ‎positive rate in order to plot ROC.‎ 

Table.11 The confusion matrix of fuzzy logic for testing 

data set 

 

 

 

 

Table.12The TPR virus FPR of fuzzy logic for testing data 

set 

 

4.2.3 Neural network‎ 

Table 13 shows the confusion matrix with ‎overall accuracy = 

67.6% and Table 14 shows ‎the result of True positive rate 

virus False ‎positive rate in order to plot ROC.‎ 

Table 13. The confusion matrix of Neural network for 

testing data set 

 

 

Table 14. The TPR virus FPR of Neural network for 

testing data set 

 

 

 

 

The comparison of classifiers relies on some ‎measure of the 

performance of the recognition ‎system. One performance 

measure that we ‎used is based on the receiver operating 

‎characteristic (ROC ‏)‏ ‎ curve. In general, the area ‎under the 

ROC curve (AUROC) gives the ‎probability that the output 

value from one ‎randomly chosen glaucoma eye, for instance, 

‎will be greater than the output value from one ‎randomly 

chosen normal eye. Given two ‎overlapping two-dimensional 

curves ‎representing the distribution of the output ‎value for 

each class (e.g., glaucoma eyes and ‎normal eyes), the 

sensitivity (i.e., the ‎percentage of glaucoma eyes classified as 

‎glaucoma), and specificity (i.e., the percentage ‎of normal eyes 

identified as normal) will vary ‎as the identification threshold 

is moved from ‎one end of the curve to the other. The graph of 

‎the sensitivity on the y axis vs. 1‎ ‏"‏ ‎ specificity on ‎the x axis is 

the ROC curve. The AUROC ‎indicates with one number the 

performance of ‎the classifier. Chance alone is equivalent to 

an‎area of 0.5 and an area of 1.0, which is ‎equivalent to perfect 

accuracy. Confidence ‎intervals for the AUROC permit 

comparison of ‎the performance of different classifiers.‎ 

‎ It is also possible to measure performance by ‎sensitivity at 

fixed levels of specificity or ‎simply by diagnostic accuracy 

(captured as a ‎single percentage as shown in Figure7. 

 

‎Figure 7. ROC Curve‎ 

5. CONCLUSION‎ 

Of course, there are additional questions to ‎answer. For 

instance what MLC techniques are ‎best for what types of 

data? This question is ‎complicated by the continuous 

development ‎of new MLC techniques that may be better 

‎suited for the task. Because MLCs are very ‎adaptable to data 

structure, it would be ideal ‎to identify techniques that are 
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generalizable to ‎many glaucoma related datasets. Such 

‎techniques should be able to combine ‎information from 

multiple tests that generate ‎data with varying distributions. 

The results of ‎the present study suggest that the demographic 

‎predictive factors for the development or ‎progression of 

glaucoma can be used to create ‎a predictive model based on 

decision tree ‎technique, which is the best technique due to it 

‎has overall accuracy 80% for the training set ‎and about 68.7% 

for the testing set with ‎AUROC 0.868 (Table 15). 

Table.15 Comparison between three classifiers  

 

We can conclude that the decision tree gives ‎the best accuracy 

regarding the training, as well ‎as the testing data set, due to 

the nature of the ‎input data.‎ 

The combination between the information ‎from the optic disc 

measurement and RNFL ‎measurement will provide better 

prediction.       ‎ 

Much work has been done employing  ‎developing machine 

learning techniques for ‎solving the glaucoma classification 

problem ‎during the last decade, automated techniques ‎which 

based on supervised learning can ‎perform as well as accurate 

at identifying ‎glaucoma and detection it's progression .‎ 

6. RECOMMENDATIONS‎ 

The use of predictive models in clinical ‎practice has several 

limitations. Predictive ‎models are based on restricted 

populations of ‎patients that were selected based on strict 

‎inclusion and exclusion criteria and that may ‎not be 

representative of all patients seen at ‎everyday clinical settings. 

Use of these models ‎should be restricted to those patients who 

are ‎similar to the ones included in the studies used ‎to develop 

and/or validate it. It is also ‎important to emphasize that 

although ‎predictive models can provide a more ‎objective 

evaluation of risk, their use does not ‎replace the judgment of a 

clinician when ‎making management decisions.‎ 

Also, it is important to emphasize that current ‎risk calculators 

for glaucoma have been ‎designed to estimate the risk of 

development ‎of the earliest signs of disease, which do not 

‎necessarily have an impact on the quality of ‎vision of the 

patient. Finally, as more evidence ‎regarding risk factors for 

disease development ‎and progression accumulates, newer and 

better ‎refined predictive models will be developed ‎that should 

replace current existing ones.‎ 

7. FUTURE WORK 

The future researches can be focused on ‎development a 

classifier which give high ‎accuracy for the prediction of 

progression of ‎POAG. This classifier may be result from 

‎hybrid technique by using different classifiers ‎or repeating the 

same classifier.‎ 
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