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ABSTRACT 

In electronics memories are the widely used elements. As the 

transistor size shrinks multiple-bit upset (MCUs) are 

increasing due to radiation effects in memories. This affects 

the reliability of memories. Interleaving and built-in current 

sensors (BICS) have been success in the case of single event 

upset (SEC). The process is taken one step further by 

proposing specific error correction codes to protect memories 

against multiple-bit upsets and to improve yield have been 

proposed. The method is evaluated using fault injection 

experiments. The results are compared with known techniques 

such as Hamming codes. The proposed codes provide a better 

performance compared to that of the hamming codes in terms 

of Single Event Upset. In the case of the Multi Bit Upset it 

provides better coverage in error deduction and correction 

schemes. 
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1. Introduction 

CMOS scaling process provides high-density, low cost, low 

power, high-speed integrated circuits with a small noise 

margin. Due to this features susceptible temporary faults will 

be increased [1]. In very deep sub-micron technologies due to 

atmospheric neutrons and alpha particles the device’s field-

level reliability is severely impacted by single-event upset 

(SEU) and multi-bit event upset (MBU). When these particles 

hit the devices silicon bulk, they produce minority carrier, 

which produces voltage change at the nodes. Due to this not 

only memories but logic are also affected. 

 

In combinational circuits soft error rate has drawn a major 

attention as the numbers of fault in the devices have increased 

significantly. Effective solutions in protecting memories are 

also provided in [2]. Circuit latch up at output due to neutron 

effect have become second point, not many techniques cope 

with this problem. Transient faults in space applications are 

potential consequences for the space craft that includes loss of 

information, functional failure of the craft [3]. Although SEUs 

are major concern, multiple-bit upset (MBU) has become 

important problem in the design processes of the memories. 

The probabilities of multiple errors due to technology 

shrinkage have been already discussed in [4] and [5]. As the 

size of the memories increases the probability of having 

multiple bits upset increase since large number of memory 

cells has been discussed in [6] and [7]. 

 

Unfortunately packing and shielding cannot be effective 

against SEUs and MBUs since the neutrons can easily 

penetrate through the shield packages [5], [8].  

 

Common approach is to use memory interleaving, in which 

the cell that belonging to the same logical word are placed at 

different positions during the design. Since the MBU errors 

are caused to the cells that are closer discussed in [9]. 

However this method cannot be used in larger memories 

because if the high accesses time, power consumption and 

floor plan discussed in [10]. 

 

An alternative to protect memories is by using built-in current 

sensors (BICS) that can deduct errors by detecting changes in 

the current as in [11], [12]. The protection can be optimized 

with the error correction codes (ECC) to cope up with MBUs. 

This is the objective of this paper proposing a new ECC to 

overcome MBUs. 

 

2. Error correcting codes 

Error correcting codes are widely used in protecting memories 

against the soft errors that are occurring due to the changes in 

the environment and the operating point of the devices. 

Hamming codes are widely used to protect memories against 

SEU because of the reduced area and performance. The 

hamming code implementation is composed by a 

combinational encoder block, this includes extra latches or 

flip-flops since the parity bits are included and another 

combinational decoder block. The encoder block calculates 

parity and it can be implemented by a set of 2-input XOR 

gates. The decoder block is more complex because it needs 

not only to detect the fault, but also correct it. The decoder 

block can also be composed of a set of 2-input XOR gates and 

some INVERTER gates. In order to improve the efficiency of 

the error correction, Triple modular redundancy (TMR) is 

used. But TMR uses poling methods that increase the area 

along with hamming code can correct only one error. Hence 

BICS are used along with ECC with a trade-off with area. 

Different methods are proposed that depends on redundancy 

that gradually increases the area. 

Error deduction and correction in memories should be simple 

since accesses time is a major criteria. Due to high bandwidth 

used in memories in SOC applications the efficiency of 

repairing the memories decreases and redundant methods 

cannot be used. Examples of such applications are presented 

in [13] [14]. In order to cope up with the errors during the 
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manufacturing processes certain times half of the device is 

used this is done by setting the MSB of the memory to be 0 or 

1. Divide by half technique to cope with this problem has 

been proposed [15], to improve the efficiency of the memories 

novel techniques are required in the error correction. The 

technique that is used here gradually can correct more number 

of the errors with improving the overall system reliability. 

3. Error Detection/Correction Scheme 

In this detection/correction scheme the message bits are 

arranged in a matrix format. This is a combination of the 

parity codes and the hamming codes. The n-bit code word is 

divided into n1 sub-words of width    (i.e.       ). A 
        matrix is formed where    and    represents the 

numbers of rows and columns, respectively. For each of the n1 

rows, the check bits are added for single error 

correction/double error detection. Another n2 bits are added as 

vertical parity bits. 

M0 M1 M2 M3 M4 M5 M6 M7 C0 C1 C2 C3 C4 

M8 M9 M10 M11 M12 M13 M14 M15 C5 C6 C7 C8 C9 

M16 M17 M18 M19 M20 M21 M22 M23 C10 C11 C12 C13 C14 

M24 M25 M26 M27 M28 M29 M30 M31 C15 C16 C17 C18 C19 

P0 P1 P2 P3 P4 P5 P6 P7      

 

Fig 1: 32-bit logical organization 

The technique is explained by considering a 32-bit word 

length memory, which is divided into a matrix format as 

shown in Fig. 1, where      and     ,    through      

are the data bits, C0 through C19 are the horizontal check bits, 

   –    are the vertical parity bits. Hamming codes are 

applied to each row. For an 8-bit data, 5 Hamming check bits 

are required. Hence 5 check bits are added at the end of the 8 

bits. 

As mentioned above the horizontal bits    –    are calculated 

using the ordinary parity generators. While the entire right 

side bits    –     are calculated as follows: 

                       (1) 

                        (2) 

                      (3) 

                   (4) 

                            (5) 

 Accordingly, we calculate all check bits for all rows using     

                and                  , where    is the 

position of check bit in the row, o is the row number where is 

the corresponding check bit’s position in the first row and   is 
the corresponding data bit’s position in this first row. For the 

parity row we use the following formula:   

                            (6) 

Where is column number from 0 to 7 for eight parity bits. 

A Hamming decoder is used to decode each row. This process 

is carried out in two steps. First, the horizontal check bits are 

calculated using the saved data bits and compared with the 

saved horizontal check bits. This procedure is called 

syndrome bit generation and    is called syndrome bit of 

check bit   . Second, using syndrome bits Si, the single error 

detection (SED)/double error detection (DED)/no error (NE) 

signals are generated for each row. If DED is activated 

(double error is detected in a row), we use the vertical 

syndrome bits     and the saved value of the bit we can 

correct any single or double erroneous bits in each row using 

(7) 

                                                (7) 

where       is the erroneous bit, O represents the decoder 

output corresponding to the erroneous bit i,      is the DED 

signal of row j and     the syndrome parity of the 

corresponding parity of the bit, e.g., for     , we have SP2. 

1 1 0 1 1 0 1 1 1 1 1 1 0 

1 0 1 1 0 0 0 1 0 1 1 1 0 

0 0 1 1 0 1 0 1 1 1 1 0 0 

1 0 1 1 1 0 0 0 1 1 0 1 0 

1 1 1 0 0 1 1 1  

 

Fig 2: proposed 32bit code 

 

It is important to mention that if more than two errors are 

present in the code word, this technique can correct errors in 

any row assuming that no error in the same column . If only 

two errors occur, they these can be corrected without any 

restriction. Algorithm 1 shows the procedure of detection and 

correction in the proposed   method which is applied on a 

code word M, where   
  and   

  are the check bits and the 

parity bits that are calculated using the saved data bits in the 

memory. These are then compared with saved memory check 

bits and parity bits to calculate the syndrome bits SC and SP. 

Algorithm 1:   code verification algorithm ( : data) 

                                 

                                                  –       

                                             –        

                                                 
  –   

   

                                              –       

                                                       

                             

Let us give an example of the technique. Suppose the code 

word “11011011 10110001 00110101 10111000” is saved to 

the memory. Check bits    –     will be equal to “11110 

01110 11100 11010” and according to parity equations, parity 

bits    –    will be equal to “        ”. The physical 

layout of this code word with check and parity bits is shown 

in Fig. 2. Suppose that while reading the code word from the 

memory  ,    and    are erroneous.    Changed from 1 to 

0,    from 1 to 0 and value    is changed from      . Using 

the decoding algorithm one can easily correct the two 

erroneous bits. This procedure is shown in Example 1.With 
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this technique we can correct any kind of single or double 

errors in each row.  

Example 1: The procedure of error detection/correction 

1.                           
                                      

2.                                             

  
  –    

                              

3.                                        

     –                                 

4.                                             

   
  –   

                 

5.                                        

     –                     

6.                                                      

7.                                         

8.                              

9.                                         

10.                                        

11.                              

12.                                         

13.                                        

14.                             

15.                                         

16.                               

                                    

The read and write procedure for the memory with error 

correcting technique can be explained as follows. Word in the 

modules is segmented into multiple bit segments. Then each n 

bit segment is encoded to   bit segment of         check 

bits. Algorithms 2 and 3 show the procedure for 

reading/writing words from a memory location or to a 

memory location, respectively. 

 

Fig 3: Simulated output of fault simulation contains data bits 

Algorithm 2: MEMORY READ 

1. Read the word which contains the desired bits. 

2. Correct for any errors. 

3. Route the desired bits on the tree to the root node 

 

Algorithm 3: MEMORY WRITE 

1. Read the word which includes the desired bit. 

2. Check for errors and correct them (if any) 

3. Compare the value of the bit to be written against 

the value stored in the memory. 

4. if bits are different then 

5. Re-compute the check bits based on this new value. 

6. Write back the data and the newly computed check 

bits  

7. Else 

8. Write back the data and the newly computed check 

bits 

9. end if 

Hence based on the algorithm the error deduction/correction is 

carried out 

4. Simulation Results 

The entire coding is done in verilog HDL and simulated. Fault 

injection is one of the key methods to estimate the error 

detection/correction capabilities of the circuits which utilize 

error detection and correction codes. Using a fault injection 

method, the coverage of the proposed technique was 

estimated. A thousand of faults were thrown and results were 
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analysed. Compared to the previous methods the proposed 

method was able to deduct and correct up to eight errors in a 

row with a condition that no errors occur in the same column. 

Since this technique can correct only one error per row. 

Figure 3 shows the simulated fault injection method with 

three faults in data bits     and   positions. And the result 

shows a successful error correction by using this method. 

Figure 4 shows the deduction and the correction coverage per 

code word of 8bits and found that the proposed technique 

Proves to be a more efficient method for multi-bit correction 

methods. 

 

Fig 4: Fault coverage 

5. Conclusion 

Here a high level error detection and correction method is 

introduced. The proposed protection code combines Hamming 

code and Parity code, so that multiple errors can be detected 

and corrected. The fault-injection based experimental results 

show that the proposed method provides better Detection and 

correction coverage than the Hamming codes. A    bit 

encoder and decoder are designed and simulated. By using the 

fault simulation method faults are forced for multiple bits by 

using forcing value in modelsim and results are verified. The 

code is able to deduct SEU/MBU and correct the errors. 
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