

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 5– No.3, February 2013 – www.ijais.org

15

Multi-Bit Upset Deduction/Correction for
Memory Applications

X. Jushwanth Xavier
M.E Student,

Applied Electronics,
Velammal Engineering College

Chennai, India.

Lakshmi Kantham
Assistant Professor,

Dept. of Electronics and communication,
Velammal Engineering College

Chennai, India.

ABSTRACT

In electronics memories are the widely used elements. As the

transistor size shrinks multiple-bit upset (MCUs) are

increasing due to radiation effects in memories. This affects

the reliability of memories. Interleaving and built-in current

sensors (BICS) have been success in the case of single event

upset (SEC). The process is taken one step further by

proposing specific error correction codes to protect memories

against multiple-bit upsets and to improve yield have been

proposed. The method is evaluated using fault injection

experiments. The results are compared with known techniques

such as Hamming codes. The proposed codes provide a better

performance compared to that of the hamming codes in terms

of Single Event Upset. In the case of the Multi Bit Upset it

provides better coverage in error deduction and correction

schemes.

General Terms

Error correction, VLSI

Keywords

Multi-bit error correction, Single event upset, hamming codes.

1. Introduction

CMOS scaling process provides high-density, low cost, low

power, high-speed integrated circuits with a small noise

margin. Due to this features susceptible temporary faults will

be increased [1]. In very deep sub-micron technologies due to

atmospheric neutrons and alpha particles the device’s field-

level reliability is severely impacted by single-event upset

(SEU) and multi-bit event upset (MBU). When these particles

hit the devices silicon bulk, they produce minority carrier,

which produces voltage change at the nodes. Due to this not

only memories but logic are also affected.

In combinational circuits soft error rate has drawn a major

attention as the numbers of fault in the devices have increased

significantly. Effective solutions in protecting memories are

also provided in [2]. Circuit latch up at output due to neutron

effect have become second point, not many techniques cope

with this problem. Transient faults in space applications are

potential consequences for the space craft that includes loss of

information, functional failure of the craft [3]. Although SEUs

are major concern, multiple-bit upset (MBU) has become

important problem in the design processes of the memories.

The probabilities of multiple errors due to technology

shrinkage have been already discussed in [4] and [5]. As the

size of the memories increases the probability of having

multiple bits upset increase since large number of memory

cells has been discussed in [6] and [7].

Unfortunately packing and shielding cannot be effective

against SEUs and MBUs since the neutrons can easily

penetrate through the shield packages [5], [8].

Common approach is to use memory interleaving, in which

the cell that belonging to the same logical word are placed at

different positions during the design. Since the MBU errors

are caused to the cells that are closer discussed in [9].

However this method cannot be used in larger memories

because if the high accesses time, power consumption and

floor plan discussed in [10].

An alternative to protect memories is by using built-in current

sensors (BICS) that can deduct errors by detecting changes in

the current as in [11], [12]. The protection can be optimized

with the error correction codes (ECC) to cope up with MBUs.

This is the objective of this paper proposing a new ECC to

overcome MBUs.

2. Error correcting codes

Error correcting codes are widely used in protecting memories

against the soft errors that are occurring due to the changes in

the environment and the operating point of the devices.

Hamming codes are widely used to protect memories against

SEU because of the reduced area and performance. The

hamming code implementation is composed by a

combinational encoder block, this includes extra latches or

flip-flops since the parity bits are included and another

combinational decoder block. The encoder block calculates

parity and it can be implemented by a set of 2-input XOR

gates. The decoder block is more complex because it needs

not only to detect the fault, but also correct it. The decoder

block can also be composed of a set of 2-input XOR gates and

some INVERTER gates. In order to improve the efficiency of

the error correction, Triple modular redundancy (TMR) is

used. But TMR uses poling methods that increase the area

along with hamming code can correct only one error. Hence

BICS are used along with ECC with a trade-off with area.

Different methods are proposed that depends on redundancy

that gradually increases the area.

Error deduction and correction in memories should be simple

since accesses time is a major criteria. Due to high bandwidth

used in memories in SOC applications the efficiency of

repairing the memories decreases and redundant methods

cannot be used. Examples of such applications are presented

in [13] [14]. In order to cope up with the errors during the

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 5– No.3, February 2013 – www.ijais.org

16

manufacturing processes certain times half of the device is

used this is done by setting the MSB of the memory to be 0 or

1. Divide by half technique to cope with this problem has

been proposed [15], to improve the efficiency of the memories

novel techniques are required in the error correction. The

technique that is used here gradually can correct more number

of the errors with improving the overall system reliability.

3. Error Detection/Correction Scheme

In this detection/correction scheme the message bits are

arranged in a matrix format. This is a combination of the

parity codes and the hamming codes. The n-bit code word is

divided into n1 sub-words of width (i.e.). A
 matrix is formed where and represents the

numbers of rows and columns, respectively. For each of the n1

rows, the check bits are added for single error

correction/double error detection. Another n2 bits are added as

vertical parity bits.

M0 M1 M2 M3 M4 M5 M6 M7 C0 C1 C2 C3 C4

M8 M9 M10 M11 M12 M13 M14 M15 C5 C6 C7 C8 C9

M16 M17 M18 M19 M20 M21 M22 M23 C10 C11 C12 C13 C14

M24 M25 M26 M27 M28 M29 M30 M31 C15 C16 C17 C18 C19

P0 P1 P2 P3 P4 P5 P6 P7

Fig 1: 32-bit logical organization

The technique is explained by considering a 32-bit word

length memory, which is divided into a matrix format as

shown in Fig. 1, where and , through

are the data bits, C0 through C19 are the horizontal check bits,

 – are the vertical parity bits. Hamming codes are

applied to each row. For an 8-bit data, 5 Hamming check bits

are required. Hence 5 check bits are added at the end of the 8

bits.

As mentioned above the horizontal bits – are calculated

using the ordinary parity generators. While the entire right

side bits – are calculated as follows:

 (1)

 (2)

 (3)

 (4)

 (5)

 Accordingly, we calculate all check bits for all rows using

 and , where is the

position of check bit in the row, o is the row number where is

the corresponding check bit’s position in the first row and is
the corresponding data bit’s position in this first row. For the

parity row we use the following formula:

 (6)

Where is column number from 0 to 7 for eight parity bits.

A Hamming decoder is used to decode each row. This process

is carried out in two steps. First, the horizontal check bits are

calculated using the saved data bits and compared with the

saved horizontal check bits. This procedure is called

syndrome bit generation and is called syndrome bit of

check bit . Second, using syndrome bits Si, the single error

detection (SED)/double error detection (DED)/no error (NE)

signals are generated for each row. If DED is activated

(double error is detected in a row), we use the vertical

syndrome bits and the saved value of the bit we can

correct any single or double erroneous bits in each row using

(7)

 (7)

where is the erroneous bit, O represents the decoder

output corresponding to the erroneous bit i, is the DED

signal of row j and the syndrome parity of the

corresponding parity of the bit, e.g., for , we have SP2.

1 1 0 1 1 0 1 1 1 1 1 1 0

1 0 1 1 0 0 0 1 0 1 1 1 0

0 0 1 1 0 1 0 1 1 1 1 0 0

1 0 1 1 1 0 0 0 1 1 0 1 0

1 1 1 0 0 1 1 1

Fig 2: proposed 32bit code

It is important to mention that if more than two errors are

present in the code word, this technique can correct errors in

any row assuming that no error in the same column . If only

two errors occur, they these can be corrected without any

restriction. Algorithm 1 shows the procedure of detection and

correction in the proposed method which is applied on a

code word M, where
 and

 are the check bits and the

parity bits that are calculated using the saved data bits in the

memory. These are then compared with saved memory check

bits and parity bits to calculate the syndrome bits SC and SP.

Algorithm 1: code verification algorithm (: data)

 –

 –

 –

 –

Let us give an example of the technique. Suppose the code

word “11011011 10110001 00110101 10111000” is saved to

the memory. Check bits – will be equal to “11110

01110 11100 11010” and according to parity equations, parity

bits – will be equal to “ ”. The physical

layout of this code word with check and parity bits is shown

in Fig. 2. Suppose that while reading the code word from the

memory , and are erroneous. Changed from 1 to

0, from 1 to 0 and value is changed from . Using

the decoding algorithm one can easily correct the two

erroneous bits. This procedure is shown in Example 1.With

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 5– No.3, February 2013 – www.ijais.org

17

this technique we can correct any kind of single or double

errors in each row.

Example 1: The procedure of error detection/correction

1.

2.

 –

3.

 –

4.

 –

5.

 –

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

The read and write procedure for the memory with error

correcting technique can be explained as follows. Word in the

modules is segmented into multiple bit segments. Then each n

bit segment is encoded to bit segment of check

bits. Algorithms 2 and 3 show the procedure for

reading/writing words from a memory location or to a

memory location, respectively.

Fig 3: Simulated output of fault simulation contains data bits

Algorithm 2: MEMORY READ

1. Read the word which contains the desired bits.

2. Correct for any errors.

3. Route the desired bits on the tree to the root node

Algorithm 3: MEMORY WRITE

1. Read the word which includes the desired bit.

2. Check for errors and correct them (if any)

3. Compare the value of the bit to be written against

the value stored in the memory.

4. if bits are different then

5. Re-compute the check bits based on this new value.

6. Write back the data and the newly computed check

bits

7. Else

8. Write back the data and the newly computed check

bits

9. end if

Hence based on the algorithm the error deduction/correction is

carried out

4. Simulation Results

The entire coding is done in verilog HDL and simulated. Fault

injection is one of the key methods to estimate the error

detection/correction capabilities of the circuits which utilize

error detection and correction codes. Using a fault injection

method, the coverage of the proposed technique was

estimated. A thousand of faults were thrown and results were

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 5– No.3, February 2013 – www.ijais.org

18

analysed. Compared to the previous methods the proposed

method was able to deduct and correct up to eight errors in a

row with a condition that no errors occur in the same column.

Since this technique can correct only one error per row.

Figure 3 shows the simulated fault injection method with

three faults in data bits and positions. And the result

shows a successful error correction by using this method.

Figure 4 shows the deduction and the correction coverage per

code word of 8bits and found that the proposed technique

Proves to be a more efficient method for multi-bit correction

methods.

Fig 4: Fault coverage

5. Conclusion

Here a high level error detection and correction method is

introduced. The proposed protection code combines Hamming

code and Parity code, so that multiple errors can be detected

and corrected. The fault-injection based experimental results

show that the proposed method provides better Detection and

correction coverage than the Hamming codes. A bit

encoder and decoder are designed and simulated. By using the

fault simulation method faults are forced for multiple bits by

using forcing value in modelsim and results are verified. The

code is able to deduct SEU/MBU and correct the errors.

6. References

[1] Hareland, S., Maiz, J., Alavi, Mistry, K., Walsta, S.,

Changhong Dai, “Impact of CMOS process scaling and

SOI on the soft error rates of logic processes”, VLSI

Technology, 2001. Digest of Technical Papers. 2001

Symposium on, 73 - 74

[2] Cardarilli, G., Leandri, A, Marinucci, P., M. Ottavi,

Pontarelli, S., M. Re, and Salsano, A., “Design of a fault

tolerant solid state mass memory,” IEEE Transactions on

Reliability., vol. 52, no. 4, pp. 476–491, Dec. 2003.

[3] Ferreyra, P.A., Marques, C.A., Ferreyra, R.T., Gaspar,

J.P., “Failure map functions and accelerated mean time

to failure tests: New approaches for improving the

reliability estimation in systems exposed to single event

upsets,” IEEE Trans. Nucl. Sci., vol. 52, no. 1, pp. 494–

500, Jan. 2005.

[4] Hazucha, P., Svensson, C. “Impact of CMOS technology

scaling on the atmospheric neutron soft error rate,” IEEE

Trans. Nucl. Sci., vol. 47, no. 6, pp. 2586–2594, Dec.

2000.

[5] Karlsson, J., Liden, P., Dahlgren, P., Johansson, R.,

Gunneflo, U. “Using heavy-ion radiation to validate

fault-handling mechanisms,” IEEE Trans.

Microelectron., vol. 14, pp. 8–23, 1994.

[6] Reed, R.A., Carts, M.A., Marshall, P.W., Marshall, C.J.,

Musseau, O., McNulty, P.J., Roth, D.R., Buchner, S.,

Melinger, J., Corbiere, T. “Heavy ion and proton-

induced single event multiple upset,” IEEE Trans. Nucl.

Sci., vol. 44, no. 6, pp. 2224–2229, Dec. 1997.

[7] Seifert, N., Moyer, D., Leland, N., Hokinson, R.

“Historical trend in alpha-particle induced soft error rates

of the Alpha microprocessor,” in Proc. 39th Annu. IEEE

Int. Reliab. Phys. Symp., 2001, pp. 259–265.

[8] Satoh, S., Tosaka, Y., Wender, S.A. “Geometric effect

of multiple-bit soft errors induced by cosmic ray

neutrons on DRAM’s” IEEE Electron Device Lett., vol.

21, no. 6, pp. 310–312, 2000.

[9] Dutta, A., Touba, N.A. “Multiple bit upset tolerant

memory using a selective cycle avoidance based SEC-

DED-DAEC code.” in Proc. IEEE VLSI Test Symp.

(VTS), 2007, pp. 349–354.

[10] Nicolaidis, M., Vargas, F., Courtois, B. “Design of built-

in current sensors for concurrent checking in radiation

environments,” IEEE Trans. Nucl. Sci., vol. 40, no. 6, pp.

1584–1590, Dec. 1993.

[11] Lo, J,. “Analysis of a BICS-only concurrent error

detection method,” IEEE Trans. Computers, vol. 51, no.

3, pp. 241–253, 2002.

[12] Lu, S. K., “Efficient built-in redundancy analysis for

embedded memories with 2-D redundancy,” IEEE Trans.

Very Large Scale Integr. (VLSI) Systems, vol. 14, no. 1,

pp. 34–42, Jan. 2006.

[13] Shyue-Kung Lu, Shih-Chang Huang, “Built-in self-test

and repair (BISTR) techniques for embedded RAMs,” in

Proc. Int.Workshop, Memory Technol. Des. Test., Aug.

2004, pp. 60–64.

[14] Argyrides, C., Al-Yamani, A., Lisboa, C., Carro, L.,

Pradhan, D. “Increasing memory yield in future

technologies through innovative design,” in Proc. 8th Int.

Symp. Quality Electron. Des. (ISQED), Mar. 2009, pp.

622–626.

[15] Elmer, B., Tchon, W., Denboer, A., Kohyama, S.,

Hirabayashi, K., Nojima, I. “Fault tolerant 92160 bit

multiphase ccd memory,” in IEEE Int. Conf. Solid-State

Circuits. Dig. Techn. Papers, Feb. 1977, 116–117.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8

%
 o

f
co

v
er

ag
e

of faults per codeword

Hamm Corr Cov.

Hamm Det Cov.

Prop cor Cov.

Prop Det Cov.

