

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.2, January 2013 – www.ijais.org

24

Plagiarism Detection using Sequential Pattern Mining

Ali El-Matarawy
Faculty of Computers and

Information, Cairo University

Mohammad El-Ramly
Faculty of Computers and

Information, Cairo University

Reem Bahgat
Faculty of Computers and

Information, Cairo University

ABSTRACT

This research presents a new technique for plagiarism

detection using sequential pattern mining titled EgyCD. Over

the last decade many techniques and tools for software clone

detection have been proposed such as textual approaches,

lexical approaches, syntactic approaches, semantic approaches

…, etc. In this paper, the research explores the potential of

data mining techniques in plagiarism detection. In particular,

the research proposed a plagiarism technique based on

sequential pattern mining (SPM), words/statements are treated

as a sequence of transactions processed by the SPM algorithm

to find frequent itemsets. The research submits an experiment

to discover copy/paste in the text source and it gave good

results in a reasonable and acceptable time.

Keywords

Plagiarism Detector, Plagiarized Clones, Textual Approach,

Lexical Approach, Syntactic Approach, Data Mining,

Apriori Property, Sequential Pattern Mining.

1. INTRODUCTION
When the work of someone else is reproduced without

acknowledging the source, this is known as plagiarism [1].

Probably the most frequent cases appear in academic

institutions where students copy material from books,

journals, the Internet, their peers etc. without citing

references. Although sometimes intentional, there are many

cases where students actually plagiarize unintentionally

simply because they are not aware of how sources should be

used within their own work. This problem is not just limited

to written text, but also regularly found in software code

where chunks are copied and re-used without reference to the

original author/s [2].

Computer technology spreads too fast, and hence everyone

can see easily that using computer is in everywhere especially

in schools, colleges and universities. Most of student's work

assignments are now expected to be submitted in electronic

form. Although convenient and easier for both student and

lecturer alike, the electronic version provides the student with

an easier opportunity to plagiarize. With advanced word

processors it is much easier to cut and paste large amounts of

text to create a single work from a number of electronic

sources including the Internet, electronic journals, books,

newspapers and magazines etc [2].

Helping to make access to electronic versions of written text

easier is the Internet. The Internet is growing at a remarkable

rate and fast becoming a common resource for students. A

recent study by IBM, Compaq and Alta Vista involved

analyzing more than 600 million unique pages1 across a wide

variety of subjects. It is probably true to say that a search on

the Internet today for even the most obscure of topics will

almost certainly return some relevant result. The Internet

provides a global resource accessible by anyone from

anywhere in the World that makes keeping track of electronic

documents much harder than ever before and plagiarism much

easier. However, the teacher’s foe can also be their friend [2].

Using Internet search engines such as Google, Alta Vista and

Yahoo, teachers can search for ―unusual‖ phrases they find in

student’s work to identify potential sources [1].

As mentioned in [3] there are Four Categories of Plagiarism:-

a. Unauthorized and/or unacknowledged collaborative

work: While students are expected to do their own

research and writing, instructors also understand that

students may discuss their own research projects with

other students in the same course. Instructors strongly

suspect collaborative plagiarism when the same or similar

phrases, quotations, sentences, and/or parallel

constructions appear in two or more papers on the same

topic. To protect yourself, you should acknowledge—in a

footnote or endnote—any significant discussions you have

had with others, as well as any advice, comments, or

suggestions that you have received from others, including

your instructor or other instructors if appropriate.

b. Attempting to pass off, as your own work, a whole

work or any part of a work belonging to another

person, group or institution: This includes borrowing,

buying, commissioning, copying, receiving, downloading,

taking, using, and/or stealing a paper that is not your own.

Submitting an entire work which is not your own also

constitutes research or academic fraud.

c. The use of any amount of text that has been

improperly paraphrased constitutes plagiarism.

Suggesting an improper reliance on a single source, this

includes ―mosaic plagiarism‖ or ―cut-and-paste

plagiarism.‖

d. The use of any amount of text, that is properly

paraphrased—but which is either not cited or which is

improperly cited—constitutes plagiarism. This includes

papers in which a general failure to cite sources or a gross

negligence in citing sources is apparent. Moreover,

attaching false, misleading, or improper

attributions/citations to properly paraphrased texts still

constitutes plagiarism.

The rest of this paper is organized as following: some related

work on plagiarism detection in section 2. In sections 3, an

overview for data mining and its techniques are introduced,

particularly the ones relevant to plagiarism detection. In

sections 4, 5 and 6, the research introduces the new approach

for detecting plagiarism. A case study is reported in section 7.

Section 8 introduces the conclusion and future work. Finally

section 9 and 10 are the acknowledgements and references.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.2, January 2013 – www.ijais.org

25

2. RELATED WORK
According [4], copy prevention and detection methods can be

combined to reduce plagiarism. While copy detection methods

can only minimize it, prevention methods can fully eliminate

it and decrease it. Notwithstanding this fact, prevention

methods need the whole society to take part, thus its solution

is non trivia [5]. Copy plagiarism detection methods, on the

other hand, are easier to implement, and tackle different

levels, from simple manual comparison to complex automatic

algorithms [6,7]. A short discussion on plagiarism detection

methods is presented.

Some methods have been developed in order to find original

plagiarized text pairs on the basis of flexible search strategies

(able to detect plagiarized fragments even if they are modified

from their source). If two (original and suspicious) text

fragments are close enough, it can be assumed that they are a

potential plagiarism case that needs to be investigated deeper

[8]. A simple option is to carry out a comparison of text

chunks based on word-level n-grams. In Ferret [9], the

reference and suspicious texts are split into trigrams,

composing two sets that are after compared. The amount of

common trigrams is considered in order to detect potential

plagiarism cases. Another option is to split the documents into

sentences. PPChecker [10] detects potentially plagiarized

sentences on the basis of the intersection and complement of

the reference and suspicious sentences vocabulary.

Considering complement avoids detecting casual common

text substrings as plagiarism cases.

Our algorithm depends on data mining, it is Apriori based so

it detects all plagiarized text inside the source text files in an

reasonable and acceptable time.

3. DATA MINING OVERVIEW.

Data mining [11, 12] is the process of extracting interesting

(non-trivial, implicit, previously unknown and potentially

useful) information or patterns from large information

repositories such as: relational database, data warehouses,

XML repository, etc. Also data mining is known as one of the

core processes of Knowledge Discovery in Database (KDD).

Sequential Pattern Mining.

Definition 1: Sequential pattern mining [12] is trying to find

the relationships between occurrences of sequential events, to

find if there exists any specific order of the occurrences.

In data mining [13] frequent itemsets are used to illustrate

relationships within large amounts of data. The classical

example is the analysis of the buying-behavior of customers.

The database consists of a set of transactions, and each

transaction is a set of items from a universal itemset I.

The goal is to find itemsets I that are subsets of many

transactions T in the database D, (I ∈ T). An itemset is

called frequent, if it occurs in a percentage that exceeds a

certain given support count σ [14]:

σ (I) =
| 𝑇∈𝐷 |{𝐼⊆𝑇}|

|𝐷|
 ≥ σ

In EgyCD, no interest in the percentage of itemsets is needed.

Instead the algorithm is interested in their count

 σ (I) = | 𝑇 ∈ 𝐷 |{𝐼 ⊆ 𝑇}| ≥ σ where σ > 1

Most SPM algorithms are based on Apriori algorithm [13].

AprioriAll. Sequential pattern mining was first introduced in

[15] by Agrawal, three Apriori based algorithms were

proposed. Given the transaction database with three attributes

customer-id, transaction-time and purchased-items, the

mining process were decomposed into five phases:

Sort Phase: the original transaction database is sorted with

customer-id as the major key and transaction time as the

minor key, the result is set of customer sequences.

L-itemsets Phase: the sorted database is scanned to obtain

large 1-itemsets according to the predefined support

threshold..

Transformation Phase: the customer sequences are replaced

by those large itemsets they contain, all the large itemsets are

mapped into a series of integers to make the mining more

efficient.

Sequence Phase: all frequent sequential patterns are

generated from the trans-formed sequential database.

Maximal Phase: those sequential patterns that are contained

in other super sequential patterns are pruned in this phase,

since only interesting in maximum sequential patterns.

Since most of the phases are straightforward, researches

focused on the sequence phase in [16].

4. GENERAL DESCRIPTION OF

EGYCD.

Following Apriori-based approaches, our approach builds up

larger itemsets (words/statements in this case) from

combining smaller ones and then efficiently searches inside

the text files to verify their presence.

EgyCD tool consists of four steps:

a. The user selects the source files either it is in the directory

or in different directories to apply the tool on.

b. The tool transforms the source files to transactions of

itemsets.

c. EgyCD algorithm is applied to discover frequent itemsets

in the text files that exceed a given frequency threshold.

d. The algorithm prunes all plagiarized text that appear

completely in other plagiarized text to avoid duplicate

results and report only original plagiarized not included in

others.

Now a brief description for how EgyCD algorithm works is

introduced. Assume that T is the set of all statements, where

each statement is considered a transaction. First, the algorithm

starts by getting the first itemset F which is the set of all

repeated statements in the text files. Then it initializes a

counter i to 1. It also initializes a set CC equal to F where CC

is a set will always contain all plagiarized text discovered so

far. Set CCi is a sub set of CC always contains all plagiarized

text of length i while i increases for an iteration to the next.

The second step is to do Cartesian product CCi x F and store

the results in CCi+1. The third step is checking each item in the

Cartesian product of length i + 1 against Apriori property

which states that any subset of any frequent itemset should be

frequent, to reduce the time of this check, only two subsets for

any item in CCi+1 are checked, the first subset is equal to the

same item in CCi+1 but after removing its first element, and

the second subset is equal to the same item in CCi+1 but after

removing its last element. If any of those two subsets is not

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.2, January 2013 – www.ijais.org

26

frequent the item will be removed from CCi+1. The fourth step

is checking each item in the Cartesian product of length i + 1

to see if it exists in the set of all transactions T (i.e., the set of

all statements in sequence) or not. If an item in the Cartesian

product (after checking apriori property for all of its elements)

set exists as subsequence of transactions in T, then it is added

to the plagiarized text set CC. Since the result of the Cartesian

product can be massive, it is possible to generate the results

on the fly in the memory without storing them and process

them directly in the third step by checking their presence in

the transactions. The fifth step is prune all plagiarized text in

CC of length i that exist in plagiarized text of length i + 1. The

fifth step is incrementing i by 1. The sixth step is trying to

reduce the set F by pruning all items that didn't appear as a

last item in any of plagiarized text of length i. Finally the

algorithm iterates over steps two to six until all items of the

Cartesian product don't exist in any transactions. Below is the

pseudo code of the algorithm.

1. T = set of all source lines

2. F = set of repeated source lines

3. CC = F

4. stillMore = true

5. i = 1

6. While (stillMore)

7. {

8. stillMore = false

9. CCi+1 = CCi x F

10. If i > 1 then

11. CCi+1 = Check_Apriori(CCi+1,CCi)

12. End if

13. For all e ∈ CCi+1
14. {

15. if e ∈ T then
16. add e to CC

17. stillMore = true

18. end if

19. }

20. prune CC by removing all e ∈ CC

where |e| = i and e S and S ∈
CC where |S| = i+1

21. i = i + 1

22. prune all non used elements in F

23. }

Pseudo-code of EgyCD Algorithm

1. Check_Apriori(CCi+1,CCi)

2. {

3. For all e ∈ CCi+1
4. {

5. a = all elements in e except

first element

6. if a ∉ CCi then
7. prune e from CCi+1

8. else

9. b = all elements in e

except last element

10. if b ∉ CCi then
11. prune e from CCi+1

12. end if

13. end if

14. }

15. Return CCi+1

16. }

Pseudo-code of Check_Apriori(CCi+1,CCi)

To explain how the algorithm work on an example of

detecting plagiarized text

Example
Suppose the following text:

My name is Ali

I live in Egypt

..........

..........

My name is Ali

I live in Egypt

..........

..........

The final result should be CC= {(My name is Ali, I live in

Egypt)}

Tracing of the algorithm

F = { My name is Ali, I live in Egypt }

CC = F

i = 1

stillMore = true

iteration 1:

{

 stillMore = false

CCi+1 = {My name is Ali, I live in Egypt} x {My name

is Ali, I live in Egypt}

 CCi+1 = {(My name is Ali, My name is Ali)

 , (My name is Ali, I live in Egypt)

 , (I live in Egypt , My name is Ali)

 , (I live in Egypt; , I live in Egypt)}

 CCi+1 = { My name is Ali, I live in Egypt

 , (My name is Ali, I live in Egypt)}

 CCi+1 = { (My name is Ali, I live in Egypt) }

 CC = { My name is Ali, I live in Egypt ,(My name is

Ali, I live in Egypt)

 //after pruning CC will be

 CC = { (My name is Ali, I live in Egypt) }

 stillMore = true

 i = 2

 F = { I live in Egypt } // after pruning

}

Iteration2:

{

 stillMore = false

CCi+1 = { (My name is Ali, I live in Egypt) } x { I live

in Egypt }

CCi+1 = { (My name is Ali, My name is Ali , I live in

Egypt) }

 CCi+1 = Ф //After Apriori property check

 stillMore = false

 CC = { (My name is Ali, I live in Egypt) }

 i = 3

 F = Ф

}

No more loops since stillMore = false and

CC = { (My name is Ali, I live in Egypt) }

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.2, January 2013 – www.ijais.org

27

5. OPTIMIZATION TRICKS ADDED TO

APRIORI
The research did some modifications to Apriori for increasing

the speed of EgyCD such as:-

a. Pruning F set at the end of each iteration to decrease the

cardinality of the first itemset and consequently the

cardinality of the resultant set of the Cartesian product.

b. The Apriori property states that any subset of a frequent

set is frequent [12]. For stores system sorting items in

transactions is meaningless but in plagiarized text sorting

statements is a major concept, so a check to Apriori

property only for two subsets that are the union of a

plagiarized text but after removing the first statement or

the last statement of that plagiarized text and the new

added statement.

c. By using the SQL features in where conditions, all items

of CCi+1 that exist in sequence in the text files has been

got then the algorithm checks if it is a plagiarized text or

not.

d. Applying EgyCD inside the database not in the

application, this speed its execution time.

6. IMPLEMENTATION DETAILS

The algorithm was implemented in a database application.

using Adaptive Server SQL Anywhere version 11.0 with add

on In-Memory version 11.0 and PowerBuilder 11.5. This has

multiple advantages. First, it perfectly matches the application

of Apriori-based algorithms which are developed for mining

databases. Second, the expressive power of SQL supports

processing of transactions very easily and smoothly. Finally,

PowerBuilder has powerful visualization capabilities that

allow us to visualize plagiarized text in very simple ways and

can also be upgraded with new views if needed. For every

language to be supported, language specific tables are filled

with the style of comments, reserved words and symbols,

begin and end markers of compound statements, statements

separator, etc.

The proposed algorithm can be used to detect plagiarism in

written text.

There are two modes for EgyCD, prune and no prune, if the

user want to see all plagiarized text and its subsets plagiarized

text in the source text files he will use no prune mode and if

the user wants to see only all plagiarized text and the program

should remove delete all of plagiarized text subsets, hence the

user should select prune mode.

In detecting plagiarism a minor transformation is done to the

imported text such as replacing multiple consequent spaces

with only one space and all tab or multiple consequent tabs

with one space.

6.1 VISUALIZING THE PLAGIARIZED

TEXT AND ITS QUALITY
To make good visualization to the plagiarized clones, EgyCD

lets the user defines the quality of the text clones in the

application setting screen. Four fields control that, two fields

for defining the excellent quality for text clones, the length of

the text clone field and the count of text clone field. The same

two fields are used for defining good quality for text clone. If

the resultant text clone length is greater than or equal the

length field value for excellent quality and its repetition is

greater than or equal to the count text clone field value for

excellent quality then the background of this text clone will be

in red. And if the resultant text clone length is greater than or

equal the length field value for good quality and its repetition

is greater than or equal to the count text clone field value for

good quality then the background of this texct clone will be in

orange otherwise the text clone background color is green.

By using this way, the user can easily notice and differentiate

the most important text clones.

6.2 CALCULATING TEXT CLONE FILE

RATIO.
To submit some information that may be useful to EgyCD

users, we calculate a ratio called text clone file ratio (TCFR)

for each file selected by the user for detecting text clones

inside it. It is equal to the full size in lines of all text clones

inside the file over the total size of the file in lines

TCFR = Size of text clones in the file in lines / size of the file

in lines

The user can see this ratio if he displayed again his selected

files. The user will find that this ratio is calculated and

displayed in the row of each file. If the ratio is greater than a

specific percent set by the user in the EgyCD setting then the

background color will be red for this row otherwise the

background will be in white.

7. CASE STUDIES.
The research submits a case study that shows No. of

plagiarism detected and its corresponding time. EgyCD is

applied over 720 files and its size is 1.31 MB. These files are

divided into 5 groups; the first group contains 144 files and

each consequent group contains the files of the pervious group

and has 144 additional files, so the last group contains 720

files. The total size of these files is 1.31MB and they

collectively contain about 45454 lines. The hardware used in

this case is Intel® Core™ 2 Duo CPU E7200 Processor, 2.53

GHz, 2GB RAM, running windows XP.

Table (1) – Case Information

Seq.
Size in

Lines

Clone

Size

No. of

Clones

Time in

Min.

1 8426 1637 419 0.68

2 16138 2966 770 1.45

3 25330 4259 988 3.00

4 34972 5931 1510 5.00

5 44268 7564 1822 8.87

Table (1) and graph (1) show that No. of clones increases with

the increase of size of files in lines.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.2, January 2013 – www.ijais.org

28

Graph (1) - No. of Detected Clones

Table (1) and graph (2) show that the time of detecting clones

increases with the increase of size of files in lines, and this is

logic and reasonable since more text clones needs more

detected time to detect. Also detecting time is short in minutes

not hours and hence EgyCD execution time is acceptable.

Graph (2) – Time of Detected Clones

8. CONCLUSIONS & FUTURE WORK
The research presented a new plagiarism detection algorithm

that utilizes sequential pattern mining to discover copy/paste.

EgyCD detects all copy/paste in the source text files with

100% precision and recall, this is due to the nature of our

Apriori-based algorithm. Precision and high recall was shown

by experimental study to be excellent. Good visualization and

some new information have been submitted such as text clone

quality and text clone file ratio.

Future work will include the utilization of multi-threaded

database programming and distributed systems to speed up

EgyCD. It will also include the deployment of further data

mining and non Apriori-based SPM algorithms to further

investigate the value of this family of algorithms in plagiarism

detection EgyCD.

9. ACKNOWLEDGMENTS
Thanks to. Chanchal K. Roy, for his support, technical

comments and research as well as his encouragement

for this work, also thanks for Auni Ku and Ira for his

support.

10. REFERENCES

[1] D. A. Black, Tracing Web Plagiarism – A guide for

teachers, Internal Document, Department of

Communication, Seton Hall University, Version 0.3, Fall

1999.

[2] P. Clough ,Plagiarism in natural and programming

languages: an overview of current tools and technologies,

July 2000, Department of Computer Science, University

of Sheffield

[3] L. R. Jones, Academic Integrity & Academic

Dishonesty:A Handbook About Cheating & Plagiarism,

Revised & Expanded Edition, Florida Institute of

Technology, Melbourne, Florida.

[4] Schleimer, S., Wilkerson, D.S., Aiken, A.: Winnowing:

local algorithms for document fingerprinting. In:

SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD

international conference on Management of data. pp. 76–

85. ACM, New York, NY, USA (2003).

[5] Approaches for Intrinsic and External Plagiarism

Detection Notebook for PAN at CLEF 2011, Gabriel

Oberreuter, Gaston L’Huillier, Sebastián A. Ríos, and

Juan D. Velásquez, Department of Industrial

Engineering, University of Chile.

[6] Potthast, M., Barrón-Cedeño, A., Eiselt, A., Stein, B.,

Rosso, P.: Overview of the 2nd international competition

on plagiarism detection. In: Braschler, M., Harman, D.

(eds.) Notebook Papers of CLEF 2010 LABs and

Workshops, 22-23 September, Padua, Italy (2010).

[7] Potthast, M., Stein, B., Eiselt, A., Barrón-Cedeño, A.,

Rosso, P.: Overview of the 1st international competition

on plagiarism detection. In: Stein, B., Rosso, P.,

Stamatatos, E., Koppel, M., Agirre, E. (eds.) SEPLN

2009 Workshop on Uncovering Plagiarism, Authorship,

and Social Software Misuse (PAN 09). pp. 1–9. CEUR-

WS.org (Sep 2009), http://ceur-ws.org/Vol-502.

[8] A. B. Cede˜no, P. Rosso ,On Automatic Plagiarism

Detection Based on n-Grams Comparison, Natural

Language Engineering Lab., Dpto. Sistemas

Inform´aticos y Computaci´on, Universidad Polit´ecnica

de Valencia, Spain.

[9] Lyon, C., Barrett, R., Malcolm, J.: A Theoretical Basis to

the Automated Detection of Copying Between Texts, and

its Practical Implementation in the Ferret Plagiarism and

Collusion Detector. In: Plagiarism: Prevention, Practice

and Policies Conference, Newcastle, UK (2004).

[10] Kang, N., Gelbukh, A.: PPChecker: Plagiarism Pattern

Checker in Document Copy Detection. In: Sojka, P.,

Kopeˇcek, I., Pala, K. (eds.) TSD 2006. LNCS, vol.

4188, pp. 661–667. Springer, Heidelberg (2006).

0

300

600

900

1200

1500

1800
8
4
2
6

1
6
1
3
8

2
5
3
3
0

3
4
9
7
2

4
4
2
6
8N

o
. o

f
D

e
te

ct
e

d
 P

la
gi

ar
is

m

Size in Lines

No. of Clones EgyCD

0.00

1.50

3.00

4.50

6.00

7.50

9.00

8
4
2
6

1
6
1
3
8

2
5
3
3
0

3
4
9
7
2

Ti
m

e
 in

 M
in

s.

Siz in Lines

Detecting Time Egy…

http://ceur-ws.org/Vol-502

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 5– No.2, January 2013 – www.ijais.org

29

[11] M.-S. Chen, J. Han, and P. S. Yu. Data mining: an

overview from a database perspective. IEEE Trans. On

Knowledge And Data Engineering 8, 866-883 (1996).

[12] Q. Zhao, S.S. Bhowmick, Sequential pattern mining: a

survey, Technical Report Center for Advanced

Information Systems, School of Computer Engineering,

Nanyang Technological University, Singapore, (2003).

[13] C. Liu, C. Chen, J. Han and P. Yu, GPLAG: Detection of

Software Plagiarism by Program Dependence Graph

Analysis, in: Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, KDD 2006, pp. 872-881 (2006).

[14] Vera Wahler, Dietmar Seipel, J¨urgen Wolff v.

Gudenberg, and Gregor Fischer. Clone Detection in

Source Code by Frequent Itemset Techniques, Source

Code Analysis and Manipulation, 2004. Fourth IEEE

International Workshop on16-16 Sept. 2004.

[15] M. Gabel, L. Jiang and Z. Su, Scalable Detection of

Semantic Clones, in: Proceedings of the 30th

International Conference on Software Engineering, ICSE

2008, pp. 321-330 (2008).

[16] A. Leitlao, Detection of Redundant Code Using R2D2,

Software Quality Journal, 12(4):361-382 (2004).

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9523
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9523
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9523

