

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, December 2012 – www.ijais.org

32

Microcontroller based Automatic Face Recognition

Attendance System

Siddharth Vohra
AITTM, Amity University, Noida

(UP) Sector-125

Sagar Khattar
AITTM, Amity University, Noida

(UP) Sector-125

Arvind Kumar
AITTM, Amity University, Noida

(UP) Sector-125

ABSTRACT

The automatic face recognition attendance system was

designed with the aim of marking attendance of the students

present in a classroom based on facial recognition and give

out a marked attendance sheet.

The system provides an efficient way of marking and storing

the attendance without having to physically call out the name

of each student. It helps save time and the attendance shall be

directly stored without having to maintain a physical record.

General Terms

Face recognition, face detection, eigen-faces, eigen-vectors,

servo motors, Arduino micro-controller, openCV, auto-focus,

Laplace transform, webcam, Principle Component Analysis

(PCA).

1. INTRODUCTION
This project is based on C programming language and makes

use of the Open CV library, developed by Intel and now

maintained by Willow Garage and Itseez. Open CV (Open

Source Computer Vision) is a library of programming

functions for real time computer vision. Open CV provides

pre-defined functions for face detection as well as for Eigen-

faces which is the algorithm which has been used to recognize

faces.

Face detection is the process of detecting a face in a frame

whereas face recognition is the process of giving name to that

face i.e. identifying the person. The project utilizes the Eigen

faces algorithm for face recognition.

Servo motors are used to control a lens system which provides

us with optical zoom and the focus is adjusted automatically

using an auto-focus algorithm implemented in C program and

making use of Open CV library. The C programming

language is integrated with the Arduino microcontroller to

provide serial communication, allowing us to control stepper

motors from the C program itself.

1.1 How OpenCV stores images?
Open CV stores images as a C structure- IPL Image where

IPL stands for Image Processing Library.

In addition to raw pixel data, it contains a number of

descriptive fields, collectively called the Image Header. These

include

• Width - image width in pixels.

• Height - image height in pixels.

• Depth - the number of bits per pixel per channel.

For example, if depth=IPL_DEPTH_16U, data for each pixel

channel are stored as sixteen-bit, unsigned values.

• nChannels - the number of data channels (from one

to four). Each channel contains one type of pixel data. For

example, Grayscale images contain only one channel - pixel

brightness. RGB images have three channels - red, green, and

blue intensities.

2. Eigen faces for Face recognition
Eigen faces uses statistical approach to recognize unknown

faces using a set of training face which we also refer to as the

database of the students. Each face image is matrix of pixels

which is viewed as a vector of length equal to the number of

elements in the matrix. Consider for example a square (N*N)

image of N2 pixels as shown in the Fig.1. It is equivalent to a

vector of length N2 units, where each unit represents a pixel.

Figure 1: an image represented as a vector

Distance, also called Euclidean distance, is measured as the

point-to-point distance. In two dimensions (2D), the

Euclidean distance between points P1 and P2 is

where , and .

This vector belongs to the image space, where all the images

of the same number of pixels belong to this image space as

shown in Fig.2. Since human faces are similar to each other,

the face image vectors are clustered together in a small part of

the image space.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, December 2012 – www.ijais.org

33

Hence we can infer that the whole of image space is not

optimal for face description. Hence we aim to build a face

space which better describes the face and the basis vectors of

this face space are known as principal components. The

dimensions of the image space are equal to the total number

of pixels of the image. The dimensions of the face space

cannot be determined but are far less than the dimensions of

the image space.

In order to perform face recognition of an unknown face, we

must have a database of face images of all the students in the

classroom. At least 10 (120*120) face images of each student

with variations in expressions and angle must be fed into the

database. The Eigen faces algorithm works independent of the

color of the skin; hence the face images are converted to

grayscale and processed with histogram equalizer before

being stored into the database.

The second step in the Eigen faces algorithm is to calculate

the mean image of all the face images present in the database.

This mean face image is then subtracted from each of the

training face image.

where corresponds to the nth image in the database.

Next we calculate the eigen-vectors that correspond to the

highest eigen-values of the co-variance matrix of the set of

training images.

The eigen-vectors can be thought of as a set of features which

characterize the variation between face images. Eigen-vectors

have ghostly face appearance; and hence are also referred to

as eigen-faces as shown in Fig.3.

The technique of Principal Component Analysis (PCA) is

used to generate the set of eigen-vectors (eigen-faces). The

number of eigen-vectors is equal to the number of training

face images in the database as shown in Fig.4.

The face images in the training set are then re-constructed by

a weighted sum of a small set of characteristic images.

All the training face images are projected onto the face space.

The test face images are also projected onto the face space and

the distances between the test image and all the training face

images are calculated. The Euclidean distance is used as the

basis for calculating the distance between the face images.

The training face image for which the Euclidean distance is

the minimum is identified as the unknown face.

3. Installing the lens system (optical zoom)
A webcam does not provide optical zooming capability; hence

it does not prove to be very useful since the detected faces in

the captured frames must have dimensions greater than

120*120 pixels (standard size). A webcam is able to do so

only if the object (the person) is close enough; but in a

classroom the students are situated at an appreciable distance

from the whiteboard/webcam and hence the webcam is not

very useful.

In order to overcome this limitation a lens mechanism is

installed in front of the webcam’s CCD sensor. The lens

mechanism consists of a series of lenses divided into two

sections- one for zooming and the other for focusing. Hence

we can now zoom and focus accordingly by adjusting the

zoom lens and focus lens respectively and the distance of the

object from the webcam is no longer a limitation.

But with this advantage comes another problem of adjusting

the zoom and focus lenses respectively separately. So in order

to overcome this problem two separate servo motors are used

and their armatures are connected to the lenses with the help

of strings similar to a pulley system as shown in Fig.6. The

servo motors are deliberately used for this purpose because

they are easy to install and use, plus they are very compact

Figure 2: Eigen-vectors or Eigen-faces

Figure 4: reconstructed face from eigen-faces

Figure 3: image space

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, December 2012 – www.ijais.org

34

and light. Also the servo motors can be controlled precisely

and can provide feedback which helps us to know their

present position.

4. Rotation and Inclination
As the level of zoom increases the frame becomes smaller and

smaller and is unable to capture all the faces in a single frame

at a time. Hence in order to capture all the faces of the

students present in a classroom, the frame must be rotated

through an angle sufficient enough to cover the width of the

classroom. Also since the webcam plus lens system was

supposed to be mounted right above the whiteboard, a

provision for inclination was required as well.

To provide the webcam plus lens system rotating capability it

was mounted onto a third servo motor with its side further

adhered to another fourth servo motor’s armature as shown in

the Fig.6. The fourth servo motor was further adhered

horizontally onto a heavy base to provide the whole system

stability. With the help of the above steps the frame could be

rotated and also the inclination could be adjusted accordingly

to cover the entire classroom and capture all the faces of the

students inside it irrespective of where they were seated in the

classroom.

5. Controlling the Servo Motors
In order to be able to control the servo motors efficiently a

serial protocol was devised which allow us to control all the

four servo motors directly from the C program itself by

writing values to the serial port to which the Arduino was

connected. The drawback of using this serial port protocol

was that it allow us to control only one servo motor at a time

and not altogether.

The job of the Arduino was reduced to listening to the serial

port and reading the serial data once it was available on the

port. If the received serial data was equal to 111 then the next

subsequent serial data was used to position the zoom servo

motor, else if it was 222 the next subsequent serial data was

used to position the focus servo motor, else if it was 333 the

next subsequent serial data was used to position the rotation

servo motor, else if it was 444 the next subsequent serial data

was used to position the inclination servo motor. These values

were chosen arbitrarily.

After writing the value to position the respective servo motor,

if the next received serial data was equal to 1, then the

subsequent received serial data was used to again position the

same servo and so on in a loop. If the received serial data after

positioning the servo was equal to 0, then the loop was exited

and the subsequent serial data was used to decide which servo

motor to control.

6. Autofocus mechanism
The focus of the image needs to be adjusted every time the

zoom level is changed. One way to go about adjusting the

focus is to determine the focus values for each zoom level

before-hand and then use them during run-time. This method

is static in nature and may produce enormous errors for

slightest change in the physical layout of the classroom. The

other way is to let Open CV determine the focus on its own by

analyzing the captured frames. The method is dynamic in

nature but is a little more time consuming than the former.

In order to set the focus automatically we need to analyze the

captured frames at all points within the focus range and

determine the point which corresponds to the sharpest

captured frame.

The autofocus mechanism is based on the Laplace Transform.

Open CV provides inbuilt function Laplace() to calculate the

Laplace Transform. The function calculates the Laplacian of

the source image by summing up the second order x and y

derivatives calculated using the Sobel operator. The Laplacian

operator is given by

Figure 5: Principle Component Analysis (PCA)

Figure 6: servos for rotation and inclination

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, December 2012 – www.ijais.org

35

The Laplace() function takes in an input greyscale image and

processes it with Laplace Transform to give an output image

which reflects all the sharp points in the input image. The

more focused the image, the sharper it will be and hence

higher will be the intensity of pixels in greyscale.

In 8- bit greyscale the intensity of pixels is expressed from

00000000 corresponding to zero intensity (black) to 11111111

corresponding to highest intensity (white). The better focused

the image; higher will be the intensity of pixels i.e. it will be

more towards white and hence higher will be the pixel values

as shown in Fig &.

The entire focus range was divided into 20 steps and a frame

was captured for each step. The captured frames were

converted to greyscale and then processed with Laplace

Transform. The processed frames were then compared with

each other and the one with the highest pixel value was

chosen as the best focus step. The best focus step is then

passed to the Arduino micro-controller which adjusts the

focus servo.

6.1 A. Sample program for auto-focus
#include <stdio.h>

#include <opencv2/imgproc/imgproc.hpp>

#include <opencv2/imgproc/imgproc_c.h>

#include <opencv2/highgui/highgui.hpp>

int main() {

FILE* fp=fopen("/dev/ttyACM0","w");

CvCapture* pCapture=cvCaptureFromCAM(1);

cvSetCaptureProperty(pCapture,CV_CAP_PROP

_FRAME_WIDTH,1280);

cvSetCaptureProperty(pCapture,CV_CAP_PROP

_FRAME_HEIGHT,720);

IplImage**

capture_arr=(IplImage**)cvAlloc(20*sizeof

(IplImage*));

IplImage**

grey_arr=(IplImage**)cvAlloc(20*sizeof(Ip

lImage*));

IplImage**

laplace_arr=(IplImage**)cvAlloc(20*sizeof

(IplImage*));

IplImage**

abs_laplace_arr=(IplImage**)cvAlloc(20*si

zeof(IplImage*));

int max_pos=0;

cvNamedWindow("win",CV_WINDOW_AUTOSIZE);

for(int step=0;step<20;step++) {

char path[]="/home/siddharth/minor-

project/";

char temp[100];

int a=step/10;

int b=step%10;

temp[0]=48+a;

temp[1]=48+b;

temp[2]='\0';

strcat(temp,".png");

strcat(path,temp);

int f_step=step+30;

fprintf(fp,"%d\n",f_step);

capture_arr[step]=cvQueryFrame(pCapture);

grey_arr[step]=cvCreateImage(cvSize(1280,

720),IPL_DEPTH_8U,1);

cvCvtColor(capture_arr[step],grey_arr[ste

p],CV_BGR2GRAY);

laplace_arr[step]=cvCreateImage(cvSize(12

80,720),IPL_DEPTH_32F,1);

cvLaplace(grey_arr[step],laplace_arr[step

],1);

abs_laplace_arr[step]=cvCreateImage(cvSiz

e(1280,720),IPL_DEPTH_8U,1);

cvConvertScaleAbs(laplace_arr[step],abs_l

aplace_arr[step], 1, 0);

cvShowImage("win",abs_laplace_arr[step]);

cvSaveImage(path,abs_laplace_arr[step]);

cvWaitKey(1000);

}

short max_lap_k[20];

for(int k=0;k<20;k++)

Figure 8: the focus lens is connected to the servo motor

which displaces it in small steps

Figure 7: Laplace Transform

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, December 2012 – www.ijais.org

36

{

short maxLap = -32767;

short* imgData =

(short*)abs_laplace_arr[k]->imageData;

for(int i =0;i<(abs_laplace_arr[k]-

>imageSize/2);i++)

{

if(imgData[i] > maxLap) maxLap =

imgData[i];

}

max_lap_k[k]=maxLap;

}

for(int l=0;l<19;l++)

{

if(max_lap_k[max_pos]<max_lap_k[l+1])

{

max_pos=l+1;

}

}

int f_max=max_pos+30-6;

fprintf(fp,"%d\n",f_max);

cvReleaseCapture(&pCapture);

cvReleaseImage(capture_arr);

cvReleaseImage(grey_arr);

cvReleaseImage(laplace_arr);

cvReleaseImage(abs_laplace_arr);

fclose(fp);

return 0;

}

7. Runtime algorithm
The system is initialized as follows:

1. The rotation and inclination servos are adjusted so that the

system points to one end of the first row of the classroom.

2. The zoom level is adjusted sufficiently enough to detect

faces greater than size (120*120).

Then the face recognition process is started and the system is

rotated through an angle sufficient enough to make the system

point to the other end of the row while the face recognition

process continues to run along with it. During the rotation the

system captures frames continuously and detects faces in it,

which are there after extracted, resized, processed with

histogram equalizer and then recognized. This process

continues while the system is rotating to the other end and

then back to its initial position.

The face recognition process is then paused and the

inclination is incremented so that the system points to one end

on the same side of the next row. The zoom level is then

incremented sufficiently to capture faces of the students

greater than 120*120 pixels. The system is again rotated and

the face recognition process is resumed simultaneously until it

reaches the other end and back. The above steps are repeated

until all the rows of the classroom are covered.

After the whole of the classroom is covered, the system is

reset to its initial position and started all over again. It is run

for several rounds throughout the duration of the lecture.

At the end of the lecture if the total number of times a

student’s face is recognized is above a certain threshold value,

then he/she is marked present for the lecture, else he/she is

marked absent. This step is taken to overcome any errors

which may have been produced during the face recognition

process.

8. Conclusion
The system provides an efficient way of marking and storing

the attendance without having to physically call out the name

of each student. It helps save time and the attendance can be

directly stored without having to maintain a physical record.

Its algorithm for face recognition can be updated easily

without an expense with advancement in technology. The

system will also help save tons of paper which is wasted every

academic year maintaining attendance of the students in

schools and colleges throughout the globe.

Figure 9: working model

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.8, December 2012 – www.ijais.org

37

9. REFERENCES
[1] M. Turk and A. Pentland (1991). "Face recognition using

eigenfaces". Proc. IEEE Conference on Computer Vision

and Pattern Recognition.

[2] “Seeing With OpenCV” - A Five-Part Series by Robin

Hewitt, published in the SERVO magazine 2007 issue.

[3] M. Turk, A Random Walk through Eigenspace, IEICE

Transactions on Information and Systems, Vol. E84-D,

No. 12, December 2001, pp. 1586-1595K. Elissa, “Title

of paper if known,” unpublished.

[4] Learning OpenCV: Computer Vision with the OpenCV

Library [Paperback] Gary Bradski(Author), Adrian

Kaehler.

Figure 7: side view of the working model

