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ABSTRACT 

The aim of this paper is to present an experimental evaluation 

of a parallel derived subgraph algorithm PDSA using MPI. 

The performance of the algorithm PDSA is verified by 

computational experiments on some special graphs with 

different size, run in a cluster of workstations. MPI seems to 

be appropriate for these kind of experiments as the results are 

reliable and efficient. 
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1. INTRODUCTION 

A union-closed family of sets A is a finite collection of sets 

not all empty such that the union of any two members of A is 

also a member of A . The following Conjecture is due to Peter 

Frankl [1, 2, 3]. 

Conjecture 1.  Let A = { A1, A2, . . . , An } be a union-closed 

family of  n distinct sets. Then there exists an element which 

belongs to at least n / 2 of the sets in A. 

Let A = iA . If we replace each set Ai by Bi = A - Ai then 

we get an intersection-closed family of sets, which we call the 

dual family of A. Therefore Conjecture 1 is equivalent to the 

following. 

Conjecture 2.  Let B = { B1, B2, . . . , Bn } be an intersection-

closed family of n distinct sets. Then there exists an element 

which belongs to at most n / 2 of the sets in B . 

An induced subgraph S of a graph G is called a derived 

subgraph of G if S contains no isolated vertices. An edge e of 

G is said to be residual if e occurs in more than half of the 

derived subgraphs of G otherwise e is non-residual. Let D(G) 

denote the set of derived subgraphs of G and put nd(G) = 

|D(G)|. A graph-theoretic version of the union-closed sets 

conjecture due to El-Zahar [4]. He formulated a weaker 

version of Conjecture 1 specialized for graphs as the 

following. 

Conjecture 3.  Every non-empty graph contains a non-

residual edge.  

 

B. Llano et al proved that the every simple graph with at least 

one edge contains a non-residual edge (Conjecture 3) [5]. 

In this paper we examine the computational performance of a 

parallel version of the sequential derived subgraph algorithm 

SDSA [6] on some special graphs with different size. We 

perform experiments using the communication package 

Message Passing Interface (MPI) [7]-[8]-[9] . Our preliminary 

results reveal that if the parallel version of the derived 

subgraph algorithm run in 16 processors then we can achieve 

a speed-up factor of  about 3.5 times faster comparing with 

the sequential version of the derived subgraph algorithm. 

The paper is organized as follows: In Section 2 we introduce a 

serial derived subgraphs for a given graph G. The parallel 

derived subgraphs algorithm PDSA is presented in Section 3. 

To continue with, some preliminary computational results on 

some special graphs are reported in Section 4. Finally, we 

present the conclusion in Section 5.  

2.  Serial Derived Subgraph Algorithm 

In this Section, we introduce a serial derived subgraphs 

algorithm SDSA [6] which calculates the number of derived 

subgraphs for a given graph G . The algorithm also 

determines the residual and non-residual edges. The 

parameters of the algorithm are :  

A[i, j]      : the adjacency matrix of G. 

S [i]    : all of the subsets of V(G). 

(i,j)    : the entry of the matrix E(i,j) which is equal to the 

number of derived subgraphs that contain vivj  

total       : the number of all derived subgraphs of G. 

Let G be a graph which has n vertices and m edges. We can 

represent the graph G by the Adjacency-Graph class, where 

a[i][j] is the entry element (i,j) in the adjacency matrix A. The 

algorithm finds all subsets of the vertex set V(G); then it 

checks if the current subset induces a derived subgraph or not. 

The algorithim finds the number of derived subgraphs that 

contain any edge e   E(G).  

Our main algorithm SDSA calls three procedures Initialize-

Subset, Get-Next-Subset and Check-Subset as follows: 
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Algorithm 1: A serial derived subgraphs algorithm  SDSA  

 

Input : A[i][j] the adjacency matrix of G. 

Output :  ( total ) the number of all derived subgraphs of G. 

 

1: Call Algorithm2 ( Initialize-Subset ) 

2: while Not Done do 

3:  Call Algorithm3 ( Get-Next-Subset ) 

4:  Call Algorithm4 ( Check-Subset )  

5:  if DERIVED then 

6:   total   total + 1 

7:   for i=1n do 

8:                          for j=i+1n do 

9:    if S[i] = S[j] = 1 then 

10:     E[i,j]   E[i,j] + 1 

11:    end if 

12:         end for 

13:                    end for 

14:  end if 

15: end while  

16: Return total 

17: For each e =(vi, vj)  if E[i,j] > total / 2 the edge e is 

residual otherwise is non-residual.  

 

The Initialize-Subset procedure initializes the initial subset of 

V(G) as array  S[j] =  0. The subgraph induced by the initial S 

is the empty derived subgraph. We outline below the 

initialize-Subset procedure which considers the empty 

subgraph as the first derived one. 

 

Algorithm 2:  Initialize-Subset  

1: Take the empty set to be the initial subset S 

2: Set the value of total = 1 

3: For every edge e = ( i, j ) let E[i,j] = 0 

4: Done False  

 

The Get-Next-Subset procedure generates all subsets of V(G) 

by the method is known as a binary counting representation. 

 

 

 

 

 Algorithm 3: Get-Next-Subset  

1: j   n + 1 

2: repeat 

3:  j   j – 1 

4: until (( S[j] = 0) or ( j = 0) 

5: if j   0 then 

6:  S[j]   1 

7:  MAX   j 

8:  for i= MAX +1 n do 

9:   S[i] = 0 

10:  end for 

11: else 

12:  Done   True 

13: end if   

 

The Check-Subset verifies the current subset S as a derived 

subgraph or not. A precise description of this process is the 

following. 

Algorithm 4: Check-Subset  

1: DERIVED   False 

2: count   1 

3: for k = 1   n  do 

4:  if S[k] = 1 then 

5:   sum = 0 

6:   for j = 1 n do 

7:         sum = sum + a[k][j] *S[j] 

8 :        if sum   0 then  

9:                   sum   1 

10:    count   count * sum 

11:    end if 

12:   end for 

13:  end if 

14: end for 

15: if count   0 then 

16: DERIVED   True 

17: end if    
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3.   MPI Parallel Version of the Derived 

Subgraph Algorithm. 

We introduce a parallel derived subgraphs algorithms PDSA 

which cluclates the number of derived subgraphs for a given 

graph G. The main idea in this algorithm is that each 

processor generates 2n/NPRS subsets such that NPRS is the 

number of processors and n is the size of a adjacency  matrix 

of a graph G. 

Parallel Derived Subgraph Algorithm 

Begin 

1- /* All processors read the adjacency matrix A[ ] [ ] 

*/ 

for 1 ≤ i ≤ n do 

for 1 ≤ j ≤ do 

     Read A[i][j] 

2- /* All processors initialize the set S[ ] and the 

matrix E[ ] [ ]  */ 

for 1 ≤ i ≤ n do 

Set S[i]=0 

for 1 ≤ j ≤ n do 

for 1 ≤ k ≤ n do 

 Set E[j][k]=0 

3- /* for 2n subsets each processor generates q = 

2n/NPRS subsets */ 

for  0 ≤ i ≤ NPRS  pardo 

Each processor generates q subsets only. 

4- /* Each processor check their subsets */ 

Set Derived = 0 

Set COUNT = 1 

for 1 ≤ k ≤ n do 

Begin 

 if S[k] = 1 

 begin 

  Set SUM = 0 

 for 1 ≤ k ≤ n do 

           Set  SUM = SUM + 

A[k][j]*S[j] 

 If ( SUM<>0   

  Set SUM = 1 

            Set COUNT = COUNT * SUM 

    End 

 End 

If ( COUNT <> 0)  

     Set DERIVED = 1 

Else 

     Set DERIVED = 0 

If (DERIVED = 1 ) 

Begin  

     Set mytotal = mytotal + 1 

     for 1 ≤ i ≤ n do 

                      for i+1 ≤ j ≤ n do 

                             if ( S[i] = 1 and S[j] = 1 ) 

   Set E[i][j] = E[i][j] + 1 

 End 

5- Combine the values " mytotal " from all processors 

and put it in "total". 

6- /* Each processors checks all the edges are residual 

or not */ 

Set myresidual = 0 

for 1 ≤ i ≤ n do 

Begin 

 for i+1 ≤j≤ n do 

 Begin 

 if ( A[i][j] = 0 and E[i][j] > total/2) 

                             Set myresidual = myresidual + 1 

 End 

End 

7- Reduce the values " myresidual" on all processors to 

a single value " residual". 

 

4 Computational Results 

The algorithm described in Section 3 has been experimentally 

implemented. In this Section, the numerical experiments are 

presented. It must be mentioned that the computational results 

demonstrate a speedup for the PDSA algorithm on some 

special graphs ( path graph, the cyclic graph, complete graph 

and bipartite graph ). 

All test runs were carried out on 16 uniprocessors Intel 

Pentium III 500MHz with 512 KB L2 Cache. The processors 

were interconnected using Fast Ethernet and Scalable 

Coherent Interface (SCI). Furthermore, the machine precision 

was 32 decimal digit. The reported CPU times were measured 

in seconds. MPI implementation MPICH v.1.2.6 was used and 

appropriately configured for our cluster. Usage of this 

machine was provided by the National University of Athens, 

School of Electrical and Computer Engineering. 
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TABLE 1 

P18 

No_DS = 1 7991 & No_NRE = 17 

No. 

Processors 

Time (secs.) Speed up 

1 4.318319 1.0000 

2 3.299953 1.3086 

4 2.823169 1.5296 

8 2.439094 1.7705 

16 1.290226 3.3469 

 

 

TABLE 2 

P20 

No_DS = 55405 & No_NRE = 19 

No. 

Processors 

Time (secs.) Speed up 

1 20.275985 1.0000 

2 14.582843 1.3904 

4 13.490342 1.5030 

8 11.733871 1.7280 

16 6.151799 3.2959 

 

                

Fig.1 PDSA on a path graph with 18 vertices  

                

Fig.2 PDSA on a path graph with 20 vertices 

 

Figure 1 to 8 show the computation performance of various 

problem sizes over various numbers of CPUs. The problem 

sizes are the path graph with 18 and 20 vertices, the cyclic 

graph with 18 and 20 vertices, the complete graph with 18 and 

20 vertices and the complete bipartite graph with 18 and 20 

vertices. Each data set was executed 3 times so we reported 

the average time.  

TABLE 3 

C18 

No_DS = 24914 & No_NRE = 18 

No. 

Processors 

Time (secs.) Speed up 

1 4.139703 1.0000     

2 3.275599 1.2638     

4 2.790309 1.4836    

8 2.489729 1.6627     

16 1.303223 3.1765 

 

TABLE 4 

C20 

No_DS = 76725 & No_NRE = 20 

No. 

Processors 

Time (secs.) Speed up 

1 20.632824 1.0000 

2 14.860864 1.3884 

4 13.642449 1.5124 

8 11.845963 1.7418 

16 6.209620 3.3227 

 

 

 

0 5 10 15 20
1

2

3

4

Number of Processors

S
p
e
e
d
u
p

Problem Size:Path Graph with 18 vertices

0 5 10 15 20
1

2

3

4

Number of Processors

S
p
e
e
d
u
p

Problem Size:Path Graph with 20 vertices



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 4– No.8, December 2012 – www.ijais.org 

 

5 

Someone may ask, why then not using smaller problem sizes? 

Well the answer to this, is that if we use the smaller problem 

size, we can not get a good speed up because the 

communication time is greater than the computation time. 

 

Fig.3 PDSA on a cycle with 18 vertices 

 

Fig.4 PDSA on a cycle with 20 vertices 

First of all it is well understandable that for 1 CPU, as a 

separate source code was developed, communication time 

does not exist, because the master does not send anything to 

any worker. It does all the computation on its own. It had to 

be done using this pattern, for having accurate results and the 

reason was that the same computer architecture should be 

used. If the code for excution on 1 CPU was executed on 

machine with a newer CPU the times should be quite 

different. As a result this should be executed on the head of 

the cluster called as " master". 

TABLE 5 

K18 

No_DS = 262126 & No_NRE = 153 

No. 

Processors 

Time (secs.) Speed up 

1 4.968775 1.0000     

2 3.822134 1.3000    

4 3.294506 1.5082     

8 2.864973 1.7343   

16 1.518253   3.2727 

 

TABLE 6 

K20 

No_DS = 1048556 & No_NRE = 190 

No. 

Processors 

Time (secs.) Speed up 

1 24.708195 1.0000    

2 17.700548 1.3959     

4 16.143871 1.5305    

8 13.893427 1.7784     

16 7.212622 3.4257 

 

 

Fig.5  PDSA on K18 

 

Fig.6  PDSA on K20 

Looking at Table 8, comparing the time for 1 CPU and the 

time for 16 CPUs, we can understand the difference in time, 

and how many times faster the results occur with 

parallelization. To be more specific with 16 CPUs and the 

complete bipartite graph with 20 vertices, we can achieve a 

speed up of 3.4 times ( timecpu[1] / timecpu[16] ). 
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TABLE 7 

K9,9 

No_DS = 261122 & No_NRE = 81 

No. 

Processors 

Time (secs.) Speed up 

1 4.987248 1.0000 

2 3.590531 1.3890 

4 3.296264 1.5130 

8 2.863984 1.7414 

16 1.509900 3.3030 

 

TABLE 8 

K10,10 

No_DS = 1046530 & No_NRE = 100 

No. 

Processors 

Time 

(secs.) 

Speed up 

1 24.832957 1.0000 

2 17.753043 1.3988 

4 16.174660 1.5353 

8 13.834818 1.7950 

16 7.245751 3.4272 

 

 

Fig.5  PDSA on K9,9 

 

Fig.6  PDSA on K10,10 

5. Conclusion 

We have presented a parallel implementation of the derived 

subgraphs algorithms PDSA. The proposed implementation 

has an advantage. It leads to important reduction in total 

solution time of a derived sungraphs problem. The 

performance analysis also, shows that the speed up obtained is 

highly sensitive to communication among the processors. 

6. References 

[1]  I. Rival (Ed.), Graphs And Order, Reidel, Dordrecht-

Boston,(1985), p.25. 

 [2]  R. P. Stanley, Enumerative Combinatorics, vol. I, 

Wadsworth & Broks/Cole, Belmont, CA, (1986). 

[3]  B. Poonen, Union-Closed Families, J. Combin. Theory, 

A 59 (1992), 253-268. 

[4]  M. H. El-Zahar , A Graph-Theoretic Version Of The 

Union-Closed Sets Conjecture, J.Graph Theory 26 

(1997), no. 3, 155-163. 

[5]  B. Llano, J. Montellano-Ballesteros, E. Rivera-Campo 

and R. Strauz " On Conjecture of Frankl and El-Zahar" J. 

Graph Theory 57: 344-352 (2008). 

[6]  M. I. Moussa and E. M. Badr, A Computational Study 

for the Graph-Theoretic Version of the Union-Closed 

Sets Conjecture, International Journal of Computer 

Applications, Volume 50 – No.12, July 2012. 

[7]  I. Foster, Desiging and Building Parallel Programs: 

Concepts and Tools for Parallel Software Engineering. 

Addison-Wesley, 1995. 

[8]  W.Groop, E. Lusk, and A. Skjellum, Using MPI: 

Portable Parallel Programming with the Message 

Passing-Interface. MIT Press, 1994. 

[9]  E. M. Badr, M. I. Moussa, K. Paparrizos, N. Samaras and 

A. Sifaleras, Some Computational results on MPI 

Parallel Implementations of Dense Simplex Methods, 

Transactions on Engineering, Computing and 

Technology, vol. 17, pp. 228-231, 2006. 

 

 

 

0 5 10 15 20
1

2

3

4
Problem Size:complete bipartite  Graph w ith 18 vertices

Number of Processors

S
p
e
e
d
u
p

0 5 10 15 20
1

2

3

4
Problem Size:complete bipartite  Graph w ith 20 vertices

S
p
e
e
d
u
p

Number of Processors


