

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.8, December 2012 – www.ijais.org

1

Some Computational Results on MPI Parallel
Implementation of Derived Subgraph Algorithm

E. M. Badr
Scientific Computing

Department, Faculty of
Computer Science and

Informatics, Benha University,
Benha, Egypt.

ABSTRACT

The aim of this paper is to present an experimental evaluation

of a parallel derived subgraph algorithm PDSA using MPI.

The performance of the algorithm PDSA is verified by

computational experiments on some special graphs with

different size, run in a cluster of workstations. MPI seems to

be appropriate for these kind of experiments as the results are

reliable and efficient.

Keywords

Union closed sets conjecture, induced graphs, derived

subgraphs, parallel algorithms, parallel processing.

1. INTRODUCTION

A union-closed family of sets A is a finite collection of sets

not all empty such that the union of any two members of A is

also a member of A . The following Conjecture is due to Peter

Frankl [1, 2, 3].

Conjecture 1. Let A = { A1, A2, . . . , An } be a union-closed

family of n distinct sets. Then there exists an element which

belongs to at least n / 2 of the sets in A.

Let A = iA . If we replace each set Ai by Bi = A - Ai then

we get an intersection-closed family of sets, which we call the

dual family of A. Therefore Conjecture 1 is equivalent to the

following.

Conjecture 2. Let B = { B1, B2, . . . , Bn } be an intersection-

closed family of n distinct sets. Then there exists an element

which belongs to at most n / 2 of the sets in B .

An induced subgraph S of a graph G is called a derived

subgraph of G if S contains no isolated vertices. An edge e of

G is said to be residual if e occurs in more than half of the

derived subgraphs of G otherwise e is non-residual. Let D(G)

denote the set of derived subgraphs of G and put nd(G) =

|D(G)|. A graph-theoretic version of the union-closed sets

conjecture due to El-Zahar [4]. He formulated a weaker

version of Conjecture 1 specialized for graphs as the

following.

Conjecture 3. Every non-empty graph contains a non-

residual edge.

B. Llano et al proved that the every simple graph with at least

one edge contains a non-residual edge (Conjecture 3) [5].

In this paper we examine the computational performance of a

parallel version of the sequential derived subgraph algorithm

SDSA [6] on some special graphs with different size. We

perform experiments using the communication package

Message Passing Interface (MPI) [7]-[8]-[9] . Our preliminary

results reveal that if the parallel version of the derived

subgraph algorithm run in 16 processors then we can achieve

a speed-up factor of about 3.5 times faster comparing with

the sequential version of the derived subgraph algorithm.

The paper is organized as follows: In Section 2 we introduce a

serial derived subgraphs for a given graph G. The parallel

derived subgraphs algorithm PDSA is presented in Section 3.

To continue with, some preliminary computational results on

some special graphs are reported in Section 4. Finally, we

present the conclusion in Section 5.

2. Serial Derived Subgraph Algorithm

In this Section, we introduce a serial derived subgraphs

algorithm SDSA [6] which calculates the number of derived

subgraphs for a given graph G . The algorithm also

determines the residual and non-residual edges. The

parameters of the algorithm are :

A[i, j] : the adjacency matrix of G.

S [i] : all of the subsets of V(G).

(i,j) : the entry of the matrix E(i,j) which is equal to the

number of derived subgraphs that contain vivj

total : the number of all derived subgraphs of G.

Let G be a graph which has n vertices and m edges. We can

represent the graph G by the Adjacency-Graph class, where

a[i][j] is the entry element (i,j) in the adjacency matrix A. The

algorithm finds all subsets of the vertex set V(G); then it

checks if the current subset induces a derived subgraph or not.

The algorithim finds the number of derived subgraphs that

contain any edge e  E(G).

Our main algorithm SDSA calls three procedures Initialize-

Subset, Get-Next-Subset and Check-Subset as follows:

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.8, December 2012 – www.ijais.org

2

Algorithm 1: A serial derived subgraphs algorithm SDSA

Input : A[i][j] the adjacency matrix of G.

Output : (total) the number of all derived subgraphs of G.

1: Call Algorithm2 (Initialize-Subset)

2: while Not Done do

3: Call Algorithm3 (Get-Next-Subset)

4: Call Algorithm4 (Check-Subset)

5: if DERIVED then

6: total  total + 1

7: for i=1n do

8: for j=i+1n do

9: if S[i] = S[j] = 1 then

10: E[i,j]  E[i,j] + 1

11: end if

12: end for

13: end for

14: end if

15: end while

16: Return total

17: For each e =(vi, vj) if E[i,j] > total / 2 the edge e is

residual otherwise is non-residual.

The Initialize-Subset procedure initializes the initial subset of

V(G) as array S[j] = 0. The subgraph induced by the initial S

is the empty derived subgraph. We outline below the

initialize-Subset procedure which considers the empty

subgraph as the first derived one.

Algorithm 2: Initialize-Subset

1: Take the empty set to be the initial subset S

2: Set the value of total = 1

3: For every edge e = (i, j) let E[i,j] = 0

4: Done False

The Get-Next-Subset procedure generates all subsets of V(G)

by the method is known as a binary counting representation.

 Algorithm 3: Get-Next-Subset

1: j  n + 1

2: repeat

3: j  j – 1

4: until ((S[j] = 0) or (j = 0)

5: if j  0 then

6: S[j]  1

7: MAX  j

8: for i= MAX +1 n do

9: S[i] = 0

10: end for

11: else

12: Done  True

13: end if

The Check-Subset verifies the current subset S as a derived

subgraph or not. A precise description of this process is the

following.

Algorithm 4: Check-Subset

1: DERIVED  False

2: count  1

3: for k = 1  n do

4: if S[k] = 1 then

5: sum = 0

6: for j = 1 n do

7: sum = sum + a[k][j] *S[j]

8 : if sum  0 then

9: sum  1

10: count  count * sum

11: end if

12: end for

13: end if

14: end for

15: if count  0 then

16: DERIVED  True

17: end if

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.8, December 2012 – www.ijais.org

3

3. MPI Parallel Version of the Derived

Subgraph Algorithm.

We introduce a parallel derived subgraphs algorithms PDSA

which cluclates the number of derived subgraphs for a given

graph G. The main idea in this algorithm is that each

processor generates 2n/NPRS subsets such that NPRS is the

number of processors and n is the size of a adjacency matrix

of a graph G.

Parallel Derived Subgraph Algorithm

Begin

1- /* All processors read the adjacency matrix A[] []

*/

for 1 ≤ i ≤ n do

for 1 ≤ j ≤ do

 Read A[i][j]

2- /* All processors initialize the set S[] and the

matrix E[] [] */

for 1 ≤ i ≤ n do

Set S[i]=0

for 1 ≤ j ≤ n do

for 1 ≤ k ≤ n do

 Set E[j][k]=0

3- /* for 2n subsets each processor generates q =

2n/NPRS subsets */

for 0 ≤ i ≤ NPRS pardo

Each processor generates q subsets only.

4- /* Each processor check their subsets */

Set Derived = 0

Set COUNT = 1

for 1 ≤ k ≤ n do

Begin

 if S[k] = 1

 begin

 Set SUM = 0

 for 1 ≤ k ≤ n do

 Set SUM = SUM +

A[k][j]*S[j]

 If (SUM<>0

 Set SUM = 1

 Set COUNT = COUNT * SUM

 End

 End

If (COUNT <> 0)

 Set DERIVED = 1

Else

 Set DERIVED = 0

If (DERIVED = 1)

Begin

 Set mytotal = mytotal + 1

 for 1 ≤ i ≤ n do

 for i+1 ≤ j ≤ n do

 if (S[i] = 1 and S[j] = 1)

 Set E[i][j] = E[i][j] + 1

 End

5- Combine the values " mytotal " from all processors

and put it in "total".

6- /* Each processors checks all the edges are residual

or not */

Set myresidual = 0

for 1 ≤ i ≤ n do

Begin

 for i+1 ≤j≤ n do

 Begin

 if (A[i][j] = 0 and E[i][j] > total/2)

 Set myresidual = myresidual + 1

 End

End

7- Reduce the values " myresidual" on all processors to

a single value " residual".

4 Computational Results

The algorithm described in Section 3 has been experimentally

implemented. In this Section, the numerical experiments are

presented. It must be mentioned that the computational results

demonstrate a speedup for the PDSA algorithm on some

special graphs (path graph, the cyclic graph, complete graph

and bipartite graph).

All test runs were carried out on 16 uniprocessors Intel

Pentium III 500MHz with 512 KB L2 Cache. The processors

were interconnected using Fast Ethernet and Scalable

Coherent Interface (SCI). Furthermore, the machine precision

was 32 decimal digit. The reported CPU times were measured

in seconds. MPI implementation MPICH v.1.2.6 was used and

appropriately configured for our cluster. Usage of this

machine was provided by the National University of Athens,

School of Electrical and Computer Engineering.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.8, December 2012 – www.ijais.org

4

TABLE 1

P18

No_DS = 1 7991 & No_NRE = 17

No.

Processors

Time (secs.) Speed up

1 4.318319 1.0000

2 3.299953 1.3086

4 2.823169 1.5296

8 2.439094 1.7705

16 1.290226 3.3469

TABLE 2

P20

No_DS = 55405 & No_NRE = 19

No.

Processors

Time (secs.) Speed up

1 20.275985 1.0000

2 14.582843 1.3904

4 13.490342 1.5030

8 11.733871 1.7280

16 6.151799 3.2959

Fig.1 PDSA on a path graph with 18 vertices

Fig.2 PDSA on a path graph with 20 vertices

Figure 1 to 8 show the computation performance of various

problem sizes over various numbers of CPUs. The problem

sizes are the path graph with 18 and 20 vertices, the cyclic

graph with 18 and 20 vertices, the complete graph with 18 and

20 vertices and the complete bipartite graph with 18 and 20

vertices. Each data set was executed 3 times so we reported

the average time.

TABLE 3

C18

No_DS = 24914 & No_NRE = 18

No.

Processors

Time (secs.) Speed up

1 4.139703 1.0000

2 3.275599 1.2638

4 2.790309 1.4836

8 2.489729 1.6627

16 1.303223 3.1765

TABLE 4

C20

No_DS = 76725 & No_NRE = 20

No.

Processors

Time (secs.) Speed up

1 20.632824 1.0000

2 14.860864 1.3884

4 13.642449 1.5124

8 11.845963 1.7418

16 6.209620 3.3227

0 5 10 15 20
1

2

3

4

Number of Processors

S
p
e
e
d
u
p

Problem Size:Path Graph with 18 vertices

0 5 10 15 20
1

2

3

4

Number of Processors

S
p
e
e
d
u
p

Problem Size:Path Graph with 20 vertices

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.8, December 2012 – www.ijais.org

5

Someone may ask, why then not using smaller problem sizes?

Well the answer to this, is that if we use the smaller problem

size, we can not get a good speed up because the

communication time is greater than the computation time.

Fig.3 PDSA on a cycle with 18 vertices

Fig.4 PDSA on a cycle with 20 vertices

First of all it is well understandable that for 1 CPU, as a

separate source code was developed, communication time

does not exist, because the master does not send anything to

any worker. It does all the computation on its own. It had to

be done using this pattern, for having accurate results and the

reason was that the same computer architecture should be

used. If the code for excution on 1 CPU was executed on

machine with a newer CPU the times should be quite

different. As a result this should be executed on the head of

the cluster called as " master".

TABLE 5

K18

No_DS = 262126 & No_NRE = 153

No.

Processors

Time (secs.) Speed up

1 4.968775 1.0000

2 3.822134 1.3000

4 3.294506 1.5082

8 2.864973 1.7343

16 1.518253 3.2727

TABLE 6

K20

No_DS = 1048556 & No_NRE = 190

No.

Processors

Time (secs.) Speed up

1 24.708195 1.0000

2 17.700548 1.3959

4 16.143871 1.5305

8 13.893427 1.7784

16 7.212622 3.4257

Fig.5 PDSA on K18

Fig.6 PDSA on K20

Looking at Table 8, comparing the time for 1 CPU and the

time for 16 CPUs, we can understand the difference in time,

and how many times faster the results occur with

parallelization. To be more specific with 16 CPUs and the

complete bipartite graph with 20 vertices, we can achieve a

speed up of 3.4 times (timecpu[1] / timecpu[16]).

0 5 10 15 20
1

2

3

4
Problem Size:Cyclic Graph with 18 vertices

S
p
e
e
d
u
p

Number of Processors

0 5 10 15 20
1

2

3

4

Number of Processors

S
p
e
e
d
u
p

Problem Size:Cyclic Graph with 20 vertices

0 5 10 15 20
1

2

3

4
Problem Size:complete Graph with 18 vertices

Number of Processors

S
p
e
e
d
u
p

0 5 10 15 20
1

2

3

4
Problem Size:complete Graph with 20 vertices

Number of Processors

S
p
e
e
d
u
p

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.8, December 2012 – www.ijais.org

6

TABLE 7

K9,9

No_DS = 261122 & No_NRE = 81

No.

Processors

Time (secs.) Speed up

1 4.987248 1.0000

2 3.590531 1.3890

4 3.296264 1.5130

8 2.863984 1.7414

16 1.509900 3.3030

TABLE 8

K10,10

No_DS = 1046530 & No_NRE = 100

No.

Processors

Time

(secs.)

Speed up

1 24.832957 1.0000

2 17.753043 1.3988

4 16.174660 1.5353

8 13.834818 1.7950

16 7.245751 3.4272

Fig.5 PDSA on K9,9

Fig.6 PDSA on K10,10

5. Conclusion

We have presented a parallel implementation of the derived

subgraphs algorithms PDSA. The proposed implementation

has an advantage. It leads to important reduction in total

solution time of a derived sungraphs problem. The

performance analysis also, shows that the speed up obtained is

highly sensitive to communication among the processors.

6. References

[1] I. Rival (Ed.), Graphs And Order, Reidel, Dordrecht-

Boston,(1985), p.25.

 [2] R. P. Stanley, Enumerative Combinatorics, vol. I,

Wadsworth & Broks/Cole, Belmont, CA, (1986).

[3] B. Poonen, Union-Closed Families, J. Combin. Theory,

A 59 (1992), 253-268.

[4] M. H. El-Zahar , A Graph-Theoretic Version Of The

Union-Closed Sets Conjecture, J.Graph Theory 26

(1997), no. 3, 155-163.

[5] B. Llano, J. Montellano-Ballesteros, E. Rivera-Campo

and R. Strauz " On Conjecture of Frankl and El-Zahar" J.

Graph Theory 57: 344-352 (2008).

[6] M. I. Moussa and E. M. Badr, A Computational Study

for the Graph-Theoretic Version of the Union-Closed

Sets Conjecture, International Journal of Computer

Applications, Volume 50 – No.12, July 2012.

[7] I. Foster, Desiging and Building Parallel Programs:

Concepts and Tools for Parallel Software Engineering.

Addison-Wesley, 1995.

[8] W.Groop, E. Lusk, and A. Skjellum, Using MPI:

Portable Parallel Programming with the Message

Passing-Interface. MIT Press, 1994.

[9] E. M. Badr, M. I. Moussa, K. Paparrizos, N. Samaras and

A. Sifaleras, Some Computational results on MPI

Parallel Implementations of Dense Simplex Methods,

Transactions on Engineering, Computing and

Technology, vol. 17, pp. 228-231, 2006.

0 5 10 15 20
1

2

3

4
Problem Size:complete bipartite Graph w ith 18 vertices

Number of Processors

S
p
e
e
d
u
p

0 5 10 15 20
1

2

3

4
Problem Size:complete bipartite Graph w ith 20 vertices

S
p
e
e
d
u
p

Number of Processors

