

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

35

Return on Investment and Effort Expenditure in the

Software Development Environment

Dinesh Kumar Saini

Faculty of Computing and IT, Sohar University,
Oman

Faculty of Engineering and IT, University of
Queensland, Australia

Moinuddin Ahmad
Faculty of Business, Sohar University, Oman

ABSTRACT

Software development is tedious, expensive and requires lot

of resources and investment. Justification of the resources and

investments are highly required in the software industry.

Development of reliable and quality software has become

increasingly important in today’s world. A static model of the

software development life cycle that treats all modules

similarly is becoming inadequate to the task. In this paper

efforts are made to quantify the concept of return on

investment and factors responsible for improving the return on

investment. In the second part of the paper, we are trying to

justify the effort expenditure and how to optimize the effort

expenditure.

General Terms

Business, Software Systems, Software Development

Environment, Software Testing

Keywords

Software, effort, Return on Investment, Testing, Model

1. INTRODUCTION

A dynamic model of reengineering in the development

processes is needed to achieve the high level of quality in the

software development. This paper focuses on reengineering

the business processes that produce commercial software to

take advantage of software quality modeling technology. In

particular, this paper presents how to analyses the costs and

benefits of the accuracy of a software quality and cost of

quality by measuring the efforts [1, 2]. A cost-benefit analysis

gives insight into the implications of implementing the

recommendations of a software quality model in the context

of a dynamic development process [3]. Logistic regression in

conjunction with a specialized mathematical model, which we

have been proposed, predicted whether each module was

fault-prone or not [4].

2. RETURN ON INVESTMENT
Successes and failures of large-scale software development

and Information Technology projects have negative

repercussions on stock prices and market capitalization of the

enterprise [5]. It also impacts existing and future customers’

perceptions about the enterprise. Financial metrics and ROI

are becoming mandatory tools to convey effective decision

making and value creation ability of a successful software

development enterprise. Business value drivers are

established using ROI. Progress monitoring should be done

over the project duration and it helps put milestones and

metrics in place. ROI is used in review and decision making

in the software development environment. Mission and vision

of the enterprise is established using ROI and it enables

management and developers to participate in a shared

common vision of business success and to identify risks. The

data collected and analyzed during the ROI calculation is

useful tool for future projects and new contracts[6].

ROI analyses can be extended to measure and govern other

metrics such as days sales outstanding (DSO), receivables

outstanding, excess inventory, inventory cycle rates, and

collection efficiency.

One of the characteristics of a good ROI analysis is

identifying risks, trade-offs, and challenges associated with

maximizing benefits and minimizing costs. Care should be

exercised that risks are properly weighted so that they are not

marginalized and similarly a healthy dose of skepticism

should be exercised with rewards. Once the ROI analysis is

completed and areas of potential improvement identified, it

becomes a perfect opportunity to step back and look at the

entire scenario. The business value benefits, the new

environments, the software applications, the resources, the

cost outlay, and the processes will become clear. A good ROI

analysis injects a healthy dose of reality. Applications

providing self-service search, virtual customer

representatives, and natural language interactions are more

complex to test [7]. Users may interact with the applications

in various ways and the interaction varies significantly

between individual users

ROI = (Net Benefits/Net Costs)* 100

ROI Percentage = (Net Benefits/Net Costs) x100%

NPV = Initial Investment+ [Net Benefit for Year 1/(1 +

discount rate)]+ [Net Benefit for Year 2/(1 + discount rate)]2+

… ….+ [Net Benefit for Year N/(1 + discount rate)].

Net benefits can be either direct, in terms of incremental

revenue generated, productivity gained, or expense saved, or

indirect, the redeployment of resources or tasks that the

organization would alternatively have had to hire new and like

resources to perform. Net costs include recruiting, salaries,

and benefits, software licensing, and general and

administrative overheads.

3. HOW ROI IMPROVES THE

SOFTWARE DEVELOPMENT

ENVIRONMENT

Productivity and ROI generally improve with software

developers who follow the guidelines listed below.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

36

 Software quality and software productivity are closely

related. Both have to be simultaneously improved. More

software development does not translate to better quality

and vice versa, and a balance of both must be constantly

maintained.

 Working long hours on a project does not signify success

or higher productivity. When the business model and

requirements are not greater, more effort is spent in

writing the code.

 Automation tools are used where appropriate at each

stage of the project. Manual and repetitive component

building and testing leads to lowered productivity,

efficiency, and developer dissatisfaction.

 Better tools in the hands of bad developers do not make

better code. There is no magic the best people should be

driving the most crucial aspects of software application

development.

 Define and manage interfaces at the design level and not

at the code level.

4. WHEN ROI IS HARD TO QUANTIFY

What we have discussed so far are quantifiable aspects of ROI

analysis. Several business values of ROI are hard to quantify.

These include the improvements attained in customer

satisfaction, customer service, and support organizations [8].

Additional issues such as business brand name and

 Time-to-market improvements.

 Improvements in customer service and support leading to

overall improvement in customer expectation

management and satisfaction.

 Improved business agility.

 Reduction in uncertainty that may have existed due to

lack of business process automation.

 Improvement in brand name and value of the enterprise.

 Increased business-to-business collaboration.

4.1 Software Quality, Testing and ROI

ISO/IEC 15939 standard describes the organizational

elements required to support a measurement process and it

organizes measurement into four key activities:

 Establish capability

 Plan measurement

 Perform the measurement process

 Evaluate measurement

5. SOFTWARE TESTING ROI

Let us begin with the costs of quality and testing and how to

determine baseline ROI. We will discuss how co-sourcing and

automated test tools improve ROI. We will discuss several

models with examples and cases to illustrate best mechanisms

of Applied ROI [9]

Validation is the process of evaluating a system or component

during or at the end of the development process to determine

whether or not it satisfies specified requirements. Validation

activities can be divided into the following [10]

Low level testing:

– Unit testing

– Integration testing

 High level testing:

– Functional testing

– System testing

– Sanity testing

– Regression testing

– Acceptance testing

– Stress testing

– Usability testing

– Security testing

5.1 Cost of Quality and Testing

Let us discuss the cost metrics for software development and

quality that apply to software testing. It will be good to

establish a KPI for each of these cost metrics [11]. Some of

these cost metrics are reviewed below.

5.2 Defects per 1000 Lines of Code

Most organizations have between 9 and 10 defects in every

1000 lines of code [6]. Some organizations have reported, as

per a Verizon IT study listed earlier, reduction of defects by

approximately 25 percent.

5.3 Fully Loaded Tester Cost

Most enterprises in the United States, the European Union,

and Japan use this metric to include costs of salary, benefits,

workers compensation, taxes for payroll and state disability

fund, operational costs including computers, utilities, and

office space. This is placed at between $10,000 Software

Quality and Test ROI and $15,000 per tester. These costs are

sometimes substantially lower for outsourced locations where

wages are less. A co-sourcing model as we will discuss later

where in-house SQA teams are supplemented by outsourced

quality and testing can lead to best of both worlds[13].

5.4 Developer Time and Cost to Fix

Defects

According to published studies [7, 8], on average it takes

about 6.3 hours for a developer to find and fix a defect.

Usually, the average time spent fixing each bug is multiplied

by the average number of bugs in a project to arrive at metrics

for all the department’s projects. Automated bug tracking

tools, issue management processes, and good debugging tool

sets reduce this time.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

37

Figure1: Cost Vs. Defect

Recognize
Problem

Design Implement Test Maintain

Escalating Costs off Fixing Defects

Feasible Deploy

Accept Analyze

Software Development Life Cycle

10 X

100 X

 X

C
o

st

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

38

Figure 3 shows how security testing can be distributed among

in-house and outsource and manual versus automated axes.

Penetration testing is generally preferred done in-house and

manually, but vulnerability scanning; including perimeter

scanning can be automated and outsourced. Co-sourcing can

be applied to either case because, unlike pure outsourcing,

internal resources are available.

In addition to the direct benefits of co-sourcing, there are

several intangible benefits as discussed below:

 Proven methodologies — established co-sourcing QA

and test companies have streamlined operations and test

 practices. Documentation, test plan templates,

methodologies, and processes of a good Software Quality

and Test ROI co-sourcing partner can help QA managers

effectively plan, manage, and deliver results.

 Resource strengths — most good co-sourcing QA and

test companies have highly trained and enthusiastic

engineers who are familiar with a gamut of tools and

technologies. This provides significant resource strength

and team motivation required for the success of projects.

 Faster time-to-market — co-sourcing enables 24/7 test

and QA cycles and reduces the time required for

conceptualization to the final product. Ramping up of a

large pool of resources becomes possible.

Fig.2. Typical Distribution of Security testing

In-house or co-source Outsource or co-source

High

Low

A
u

to
m

at
io

n

Penetration Testing

Vulnerability Scanning

Application Testing

Code Reviews Automated Testing

Internal Scanning Perimeter Scanning

Maximizing ROI on Software Development

Figure3: Lifecycle of a Bug

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

39

Fig.4. Life cycle of a Bug in Software Life Cycle

Figure 3 discuss the life cycle of the bug and how the bugs are

handled for the quality improvement.

 Opens new bug.

 Assigns bug.

 Reviews bug for fixes or declined reason.

 If fixed or reason for declination is appropriate, the

testing and QA team closes bug with matching

reason.

 If not fixed or testing and QA team finds reason for

reopening the declined bug, it is assigned back to

the developer

6. Statistical Modeling of Effort

Expenditure

Expression of manpower distribution on a software project

over time is the main

concern these days. Rayleigh curve play an important role in

studying these cases (Figure.1). We can model the curve by

2

2 tteM
dt

ds (1)

Where ‘ds/dt’ is the staff build-up rate, ‘t’ is the time interval

between the start of design and product replacement. ‘α’ is the

QA opens

bug

QA assigns

bug

Developer

reviews bug

Developer

acknowledges bug

QA reviews bug for

fixes or declined

reason

If fixed or reason for

declination is appropriate, QA

closes bug with matching reason

If not fixed or QA finds

reason for reopening

declined bug, QA assigns it

back to the developer

Developer

declines bug

Developer

fixes bug

Developer

assigns bug

back to QA

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

40

physics of the curve supposed to be constant and M is the area

under the curve, which represents the total life-cycle effort

including maintenance.

By the theoretical definition of productivity in software,

e

s
s

D

S
P (2)

Where ‘Ss’ is the size of the software product and ‘De’ is the

development effort.

Productivity in software can be linked to Rayleigh manpower

distribution model. Suppose in the Rayleigh model, the top of

the curve corresponds to the development time ‘dτ’. Then the

area under the curve which is approximately 48% of M,

represents the development effort De. On the basis of the

available project date, it is found that more productive

projects had an initial slower staff building and the less

productive projects had an initial faster staff build-up. Assume

‘Pδ’ be the difficulty of the projects which corresponds to

initial staff build-up of a project. At t=0, the slope of the

Rayleigh curve represents ‘Pδ’ (Figure.5)

Thus,
2

d

M
P

 (3)

Which is obtained by taking the derivative of (1) and setting

t=0.Equation (3) defines difficulty.

Also, 3/2

 PPs (4)

Figure 4 : Effort Expenditure

Equation (4) defines a relation between difficulty and

productivity, where γ is proportionality constant. Also, it was

defined and assumed earlier.

ofMDe %48 ` (5)

Thus from equation (2), (3), (4) and (5) we have,

3/2

2
48

d

M

M

Ss (6)

Or,

3/43/148.0

 dMSs
 (7)

Thus, the total life-cycle effort is given as

3/4

3/1

48.0 t

s

d

S
M

 (8)

Let 0.48xr = Tf = Technology factor, which may differences

among projects such as programming skills/environment,

hardware conditions and individual expertise.

Thus,

43

3

)(dT

S
M

f

s
 (9)

Hence,

4

3

1
48.0

dT

S
D

f

s
e

 (10)

7 CONCLUSIONS

The development effort increases as the cube of the size of the

software product, if the schedule remains constant. Also, the

effort increases as the inverse of the fourth power of

development time for a fixed program size. It is found that a

static model of the software development life cycle that treats

all modules similarly is becoming inadequate to the task. In

this paper efforts are made to quantify the concept of return

on investment and factors responsible for improving the return

on investment. we are trying to justify the effort expenditure

and how to optimize the effort expenditure in the software

development environment.

8. LIMITATION

The concept of return on investment is to be verified on the

certain number of software development projects so that

formulated concept can be supported by the data. The data

support of the model is to be implemented.

9. ACKNOWLEDGEMENT

The authors would like to thanks Sohar University and

University of Queensland for the research support and

environment. Authors would like to thank faculty members

and students, especially Prof Lance Bode for his continuous

support for the research. We would also like to thank our

family members

 %

 o
f

To
ta

l E
ff

o
rt

De=48% of M

P∂

dt (time)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.7, December 2012 – www.ijais.org

41

10. REFRENCES

[1] Software Errors Cost U.S. Economy $59.5 Billion

Annually. NIST Assesses Technical Needs of Industry to

Improve Software-Testing, June 28, 2002.

[2] DK Saini “Testing polymorphism in object oriented

systems for improving software quality” ACM SIGSOFT

Software Engineering Notes 34 (2), 1-5, 2009.

[3] Sikka, V.,2003. Maximizing Outsourced Software

Quality and ROI: Selecting and managing an Outsourcer,

Systems Development Management, Boca Raton, FL:

CRC Press.

[4] Zarate, A. et al. 2003.A Portable Natural Language

Interface for Diverse Databases Using Ontologies.

Computational Linguistics and Intelligent Text

Processing, Lecture Notes in Computer Science, Vol.

2588, pp. 494–505, New York: Springer-Verlag, 2003.

[5] Rosario, S. and Robinson, H., 2000.Applying Models in

Your Testing Process, Information and Software

Technology, Vol. 42, No. 12, September 1, 2000.

[6] Aissi, S., 2002.Test Vector Generation: Current Status

and Future Trends. Software Quality Professional, Vol.

4, No. 2, March 2002.

[7] Dinesh Kumar Saini, Lingaraj A. Hadimani and Nirmal

Gupta, 2011.Software Testing Approach for Detection

and Correction of Design Defects in Object Oriented

Software. Journal of Computing, Volume 3, Issue 4,

April 2011, ISSN 2151-9617, pp. 44-50.

[8] Dinesh Kumar Saini and Bimal Kumar Mishra, 2007.

Design Patterns and their effect on Software Quality.

ACCST Research Journal, INDIA .Vol.5, No.1, January

2007, pp.356-365.

[9] Dinesh Kumar Saini and Nirmal Gupta, 2007. Fault

Detection Effectiveness in GUI Components of Java

Environment through Smoke Test. Journal of

Information Technology, ISSN 0973-2896 Vol.3, issue3,

7-17 September 2007.

[10] Dinesh Kumar Saini and Nirmal Gupta, 2008. Class

Level Test Case Generation in Object Oriented Software

Testing. International Journal of Information Technology

and Web Engineering, (IJITWE) Vol. 3, Issue 2, pp. 19-

26 pages, March 2008. USA.

[11] Dinesh Kumar Saini, 2009. Testing Polymorphism In

Object Oriented Systems For Improving Software

Quality. ACM SIGSOFT Vol. 34 Number 2 March 2009,

ISSN: 0163-5948, USA.

[12] Wail M.Omar, Dinesh K. Saini and Mustafa Hassan.

2010, Credibility Of Digital Content in a Healthcare

Collaborative Community. Software Tools and

Algorithms for Biological Systems in book series-

Advances in Experimental Medicine and Biology,

AEMB. Springer, Vol.696, Part 8, pp. 717-

24, DOI: 10.1007/978-1-4419-7046-6_73.

[13] Dinesh Kumar Saini, 2011.Sense the Future. Campus.

Vol. 1- Issue 11, pp.14-17,February 2011.

[14] Dinesh Kumar Saini and Moinuddin Ahmad, 2011.

Modeling of Object Oriented Software Testing Cost. The

2011 International Conference on Software Engineering

Research and Practice (SERP'11), World Congress in

computer Science and Engineering, July 18-21, 2011.

Las Vegas, USA. pp. 333-339.

[15] Dinesh Kumar Saini and Moinuddin Ahmad, 2011.

Enhanced Software Quality Economics for Defect

Detection Techniques Using Failure Prediction. The

2011 International Conference on Software Engineering

Research and Practice (SERP'11) World Congress in

computer Science and Engineering, July 18-21, 2011,

Las Vegas, USA, pp. 346-351.

[16] Dinesh Kumar Saini, Lingaraj A Hadimani, Poonam V

Vaidya and Sanad Al Maskari, 2011. Software Quality

Model Six Sigma Initiatives. The 2011 International

Conference of Computer Science and Engineering

(ICCSE-2011) World Congress in Engineering, July 6-

9th 2011, London UK, pp. 1226-1231.

[17] Lingaraj A. Hadimani, Dinesh Kumar Saini, Vaishali P

Khoche and Sanad Al Maskari, 2011. Comparison of

Software and Hardware Design Tools (CASE vs.

Simulators). The 2011 International Conference of

Manufacturing Engineering and Engineering

Management, (ICMEEM-2011), World Congress in

Engineering, July 6-9th, 2011. London, UK.

[18] Dinesh Kumar Saini, Sanad Al Maskari and Lingaraj

Hadimani ,2011. Mathematical Modeling of Software

Reusability. 3rd IEEE International Conference on

Machine Learning and Computing (ICMLC, 2011)

Singapore, February 26-28, 2011, IEEEXplore, 978-1-

4244-9253-4/11.

[19] R..E.fairle, “The influence of COCOMO on software

engineering education and training”,- The Journal of

Systems and Software. New York: Vol. 80, Issue. 8; pg.

1201,2007.

http://ieeexplore.ieee.org/

