

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.7, December 2012 – www.ijais.org

15

Performance Overhead on Relational Join in Hadoop

using Hive/Pig/Streaming - A Comparative Analysis

Prabin R. Sahoo
Tata Consultancy Services

Yantra Park, Thane
Maharashtra, India

ABSTRACT

Hadoop Distributed File System (HDFS) is quite popular in

the big data world. It not only provides a framework for

storing data in a distributed environment, but also has set of

tools to retrieve and process these data using map-reduce

concept. This paper discusses the result of evaluation of major

tools such as Hive, Pigand hadoop streaming for solving

problems from a relational prospective and comparing their

performances. Though big data cannot be compared to the

strength of relational database in solving relational problems,

but as big data is about data so the relational nature of data

access cannot be eliminated altogether. Fortunately, there are

ways to deal with this which has been discussed in this paper

from a performance prospective. This may help the big data

community in understanding the performance challenges so

that further optimization can be done and the application

developers’ community can learn how strategically the

relational operations need to be used.

General Terms

Hive, Pig, Hadoop, HDFS, Map-Reduce, streaming.

1. INTRODUCTION

Big data plays a key role in processing data with varied

structures. This is unlike the way the relational mapping

happens in traditional databases, where data structure is

predefined. However, though big data has its own merits and

demerits, and its strength lies in working on handling huge

volume of data but it is worthwhile to understand how big

data solves problems with varieties of data.

Essentially big data works on a distributed environment where

the data storage is spread across several computing nodes

running in clusters. This is due to the fact that huge volume of

files containing data can be stored in the node in a distributed

manner. Since big data involves files, so big data is about

processing files in a distributed environment. For example, if

there is a file which contains the web access logs from across

the globe, it is possible to determine which region has

maximum access to a given web site.

Though big data covers a wide range of underlying data

storage and map-reduce framework but the focus in this

paperis on Hadoop map-reduce framework [1], storage as

HDFS and tools such asPig, Hive and Hadoop streaming. A

relational problemhas been discussed along with the

experiments to demonstrate various approaches to solve it

using the above available framework and tools.

1.1 Hadoop Distributed File System

Hadoop Distributed File System [7, 10]comprises of name

node, data nodes, and secondary name node. The name node

contains the metadata information about all the files,

directories, permissions, storage details and which data nodes

contain those. For example, a file can be copied from local

directory /home/user/web/server.log to a HDFS directory as

follows.

bin/hadoop dfs –copyFromLocal /home/user/web/server.log

hdfs://localhost:9000/weblogDir

This command copies is the server.log file in HDFS into a

given directory weblogDir.

If the weblogDir does not exist, then this need to be created

first,otherwise it is overwritten with the file ‘server.log’. The

directory can be created using the following command from

the hadoop home directory.

bin/hadoop dfs –mkdir hdfs://localhost:9000/weblogDir

When the directory is created the name node keeps the

metadata such as directory path in HDFS, its permissions, and

when a file is copied to this directory, the name node provides

other information such as the data nodes where the file needs

to be stored and their replications in the neighborhood nodes.

1.2 Map-Reduce

Map-Reduce [11]is the computation framework which works

on the distributed data. It comprises of a job tracker and

several task tracker. The job tracker runs as a centralized

process, whereas task tracker run in each data node. The job

tracker creates tasks and assigns these to task tracker for

computation. The task tracker runs the assigned tasks locally.

Once the map task is completed the output is collected in the

reduce operation. This operation is known as map-reduce

operation.

1.3 Relational Operations

 Relational operations are set of operators that act on a domain

of relations. In this paper the experiment is being done to

demonstrate relational join operation joining two files on a

common key.

2. LITERATURE REVIEW

Relational solutions with join operator in big data have been

discussed earlier in a number of papers such as skew

algorithm [2]. However, other relational join cases such as

Hive [8],Pig [9] and Hadoop streaming needs to be discussed

as well as these are popular tools of hadoop. Therefore it is

important to have clarities on available solutions which can be

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.7, December 2012 – www.ijais.org

16

easily maintainable, usable. In this paper the interest is more

on the findings of available frameworks and their performance

overheads to solve relational problems. In this connection,

few papers were searched for finding such comparisons.

However, the comparison of performance with Hive, Pig,

streaming along with its simplicities was not found. Since

Hive and Pig are easily available, for the developers’

community it is important to see how Hive and Pig perform

along with relational join. In [3] the Facebook Data

Infrastructure team has published the relational concept in

Hive. They have demonstrated how to create relational tables

in Hive and how map-reduce works on it along with the

Query compilation and optimization. Their paper is interesting

for understanding the design concept of Hive using hadoop

and it gives sufficient directions to apply this on the problem

domain discussed in this paper. In [4] the author has

mentioned about hadoop configuration parameters such as

setting of parallel mapper tasks, parallel reducer tasks which

can help optimizing the processing time. In [5] the author has

mentioned about Hadoop framework at beginners level which

helps in understanding the building blocks of hadoop

architecture. In [6] authors have mentioned about the

architecture of Hadoop Distributed File System. This is

important as HDFS is the underlying storage framework for

Hive, Pig and Hadoop streaming for retrieving the data for

relational join operation.

3. CASE STUDY

The case study has been under taken for the purpose of

demonstrating how to solve relation problems. The data used

in the experiment is fabricated. Therefore, the inference out of

data analysis does not represent real consequence. But it gives

a close impression how various data analysis can be done

using Pig, Hive, Hadoop streaming and the performance

metrics of each framework provides guidance to choose the

appropriate framework.

3.1 Scenario

A fund management company has various schemes on which

the investors have invested on schemes. The investor needs to

register on its site before he invests in any scheme. During the

registration process the investor needs to enter his details

such as name, address, interest, profession, age etc. Once the

registration process is completed the investor can invest into

one or more schemes. During the investment phase, the

scheme-id, investment amount is captured for the investor.

Input:

There are 2 log files which captures these logs.

A) Personal details

B) Investment details.

These two logs files are copied to HDFS.

Output:

Find out the average investment per income group. Other

information such as to find out the age group that invests

more on a given scheme and so on.

The file looks as follows:

Personal Detail log contains

Name, Memberid, age, address, profession, income group,

interest

XYZ, 1234,25,5 Dela Road, engineer, 10000-20000, trading

Investment log contains

memberid, transactionid, schemeid, amount,date,unit price

1234, 8675, 101, 10000, 20120922,500

Solution:

1. In order to find the average investment per income

group

a. join the two log files (as only registration

does not guarantee that the investor has

invested)

b. group by income group

The complex part in this solution is the joining of two files.

So the focus is limited to the join functionality.

Table 1. Experimental setup

Files Personal.log, investment.log

Number of data nodes 3

Number of cores 24

CPU configuration of

each DataNode,

NameNode

2.79 GHz, AMD Opteron

8439 SE

Memory of each data

node/namenode

8 GB

Number of records in

personal.log

76,800,000

Number of records in

investor.log

76,800,000

meberid distribution random

schemeid distribution random

HDFS chunk size 64MB

HDFS version 0.1.3

Hive version/Pig 0.9.0/0.10.0

3.2 Hadoop streaming approach

In hadoop approach hadoop streaming has been used to join

the two files, and after that a java program has been developed

using map-reduce interface to compute the average on the

investment per income group. In a key-value context, the key

in this experiment is the income group and the value is the

investment amount. The stream input and parameters are

given as follows.

-input hdfs://localhost:9000/myinput/personal.log \

-input hdfs://localhost:9000/myinput/investment.log \

 -output output20 \

-jobconf stream.map.output.field.separator=, \

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.7, December 2012 – www.ijais.org

17

-jobconf stream.num.map.output.key.fields=1 \

-jobconf mapreduce.map.output.key.field.separator=, \

-jobconf mapreduce.partition.keypartitioner.options=-k1 \

-jobconf mapreduce.job.reduces=8 \

-mapper map.pl \

-reducer reduce.pl \

-file map.pl \

-file reduce.pl \

-practitioner

org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner

3.2.1 Mapper: map.pl

The mapper script is simple. Since the join has to be on the

common key, the memberid has been chosen from both the

files. Since the memberid is available on the second field of

the personal log file the mapper is doing a swap on the

memberid when it finds the records from the personal log.

The pseudo code is as follows.

while(<STDIN>){

chomp;

my@temp = split",",$_;

if(scalar(@temp) == 6){

Record from investment log, just print it
 print"$_\n";

}else{

Record from personal.log swap the firstand 2nd field.
 my$temp = $temp[0];

 $temp[0] = $temp[1];

 $temp[1] = $temp;

 my$str = join(",",@temp);

 print"$str\n";

 } }

3.2.2 Reducer: reduce.pl

The following logic joins the records in the given key. Since

the input involves two files, the logic takes care of the records

in which order those appear. The pseudo code is as follows.

my$prevKey;

my $prevRow1;

my $prevLength;

while(<STDIN>){

chomp;

if(/^(\d+)\s+(.*)/){

 my $key = $1;

 my $value = $2;

 if(! defined $prevKey || ! defined $prevRow) {

 ## First time these need to be initialized
 $prevKey = $key;

 $prevRow = "$key, value";

my @temp1 = split ",", $prevRow;

 $prevLength = $#temp1+1;

 next;

 }else{

 if($prevKey == $key){

 my @temp = split ",",$value;

do not join multiple records of same memberid

fromsame file.

next if $#temp+1 == $prevLength;

 if(($#temp+1)> 6){

Record is from personal.log, so need to keep the fields

before the second record from investment log
 print "$key,$value,$prevRow\n";

 }else{

 print "$prevRow,$key,$value\n";

 }

 next;

 }

 }

 $prevKey = $key;

 $prevRow = "$key,$value";

my @temp1 = split ",",$prevRow;

 $prevLength = $#temp1+1;

 }

}

The join is completed; records from two files have been

joined. The average investment per income group has been

found using the map and reduce library. The pseudo code

snippet is as follows.

 public void map (LongWritable key, Text value,

OutputCollector<Text, DoubleWritable> output, Reporter

reporter) throws IOException {

 String line = value.toString();

 String [] temp = line.split(",");

 double x = Double.parseDouble(temp[4]);

 mytext.set(temp[6]);

 one.set(x);

 output.collect(mytext, one);

 }

 public void reduce(Text key, Iterator<DoubleWritable>

values, OutputCollector<Text, DoubleWritable> output,

Reporter reporter) throws IOException {

 double sum = 0.0;

 int count = 0;

 while (values.hasNext()) {

 sum += (double) values.next().get();

 count++;

 }

 double avg = sum/count;

 output.collect(key, new DoubleWritable(avg));

 }

3.2.3 Pig approach

In Pig approach [9], we can load the file as per the following

pseudo code. This is purely for explanation purpose.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.7, December 2012 – www.ijais.org

18

A = LOAD ‘/personal.log’ USING PigStorage(‘,’) AS

(name:chararry,memberid:long,….,…,….,……………………

incomegroup:chaarray,…);

B = LOAD ‘/investor.log’ USING PigStorage(‘,’) AS

(memberid:long,….,…,investment:double,…);

C = JOIN A BY $1, B BY $0;

D =GROUP C BY incomegroup;

E = FOREACH DGENERATEuser, AVG (C.investment);

F = ORDER E BY $0;

store F INTO '/tmp/income';

With this approach each time a new query is required, first the

join will happen and after that the processing. So to avoid

that it is better to have only join through Pig once and later on

it Hadoop’s map and reduce java interface can be used or even

Python or PERL in the hadoop streaming. In the experiment

the following Pig statements are used.

A = LOAD ‘/personal.log’ USING PigStorage(‘,’) AS

(name:chararry,memberid:long,….,…,….,

incomegroup:chaarray,…);

B = LOAD ‘/investor.log’ USING PigStorage(‘,’) AS

(memberid:long,….,…,investment:double,…);

C = JOIN A BY $1, B BY $0;

STORE C USING PigStorage(‘,’) INTO

‘outputDir/personal.investor.log’

This needs to be run just once. This would create a single file

joined on the memberid.

3.2.4 Hive approach

Hive [8] helps programmers/data scientists to write queries in

a simple way. In the example, a Hive query can be written as

below. The query is based on the inner join.

Hive> CREATE TABLE PERSONALDETAILS (NAME

STRING, MEMBER BIGINT,…,……,STRING

INCOMEGROUP…..) ROW FORMAT DELIMITED

FIELDS TERMINATED BY ‘,’;

Hive> LOAD DATA INPATH ‘/PERSONAL.LOG’

OVERWRITE INTO TABLE PERSONALDETAILS;

Hive> CREATE TABLE INVESTORDEATILS (MEMBER

BIGINT, TRANSACTIONID BIGINT,…, AMOUNT

DOUBLE…..) ROW FORMAT DELIMITED FIELDS

TERMINATED BY ‘,’;

Hive> LOAD DATA INPATH ‘/INVESTMENT.LOG’

OVERWRITE INTO TABLE PERSONALDETAILS;

Using the Hive JDBC and java program the following query

can be executed.

String sql = "SELECT PERSONALDETAILS.incomegroup,

AVG(INVESTORDEATILS.amount)) FROM

PERSONALDETAILS JOIN INVETSTORDETAILS ON

(PERSONALDETAILS.member=INVESTORDETAILS.me

mberid) GROUP BY PERSONALDETAILS.incomegroup;";

ResultSet res = stmt.executeQuery(sql);

while (res.next()) { // extract and write it to a file }

4. RESULTS

Fig. 1 Time taken to join 2 files on a given key with

records 76,800,000 records in each file. Records in each

file are in random order.

The execution times are listed in Fig 1. Hadoop streaming is

taking 19.5 minutes, Pig is taking 16.8 minutes to join. Hive is

taking 7.5 minutes to complete the query. Fig 2 shows

memory utilizations by Hive which is comparatively low than

utilization by hadoop streaming and Pig.The detailed memory

usages by each are given in fig 3, fig 4 and fig 5.

Fig. 2 Overall average memory utilizations using Hive,

Pig, Hadoop Streaming for join of 2 files on a given key

with records 76,800,000 records in each file. Records in

each file are in random order

Fig. 3 Memory utilization in all of the nodes using Hadoop

Streaming for join of 2 files on a given key with records

76,800,000 records in each file. Records in each file are in

random order

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.7, December 2012 – www.ijais.org

19

Fig. 4 Memory utilization in all of the nodes using

Hivequery for join of 2 files on a given key and processing

with records 76,800,000 records in each file. Records in

each file are in random order

Fig. 5 Memory utilization in all of the nodes using Pig for

join of 2 files on a given key with records 76,800,000

records in each file. Records in each file are in random

order

Fig. 6 CPU utilization in all of the nodes using streaming

for join of 2 files on a given key with records 76,800,000

records in each file. Records in each file are in random

order

Fig. 7 CPU utilization in all of the nodes usingHive for

join of 2 files on a given keywith records 76,800,000

records in each file. Records in each file are in random

order

Fig. 8 CPU utilization in all of the nodes using Pig for

join of 2 files on a given key with records 76,800,000

records in each file. Records in each file are in random

order

5. CONCLUSION AND FUTURE WORK

Fig 1 shows relational JOIN is expensive using HADOOP

framework such as Pig and streaming. Hivequery shows better

result than streaming and Pig.Hive has taken just 7.5 minutes

to join and process 76,800,000 records whereas streaming and

Pig has taken 19.5 minutes and 16.8 minutes respectively for

relational join. Pig and streaming shows high memory

utilizations, compared to Hive as shown in fig 2. This

indicates that during relational join, streaming and Pig needs

high memory. The CPU utilizations in streaming and Pig

show high utilizations as well. However, Pig involves simple

steps compared to the streaming and Hive approach. Pig and

streaming approach will be beneficial compared to Hive if the

join is one time.In such case once the join is completed,

subsequent queries can be fired on the combined files.

Hiveapproach is beneficial compared to Pig and streaming if

the one time join produces large number of fields in a record.

In such case at a time fewer set of fields can be selected using

Hive. Between Pig and streaming, streaming can provide

more flexibility from programming prospective as PERL and

PYTHON are widely used languages and provides rich

regular expressions. Future work can be done on improvising

Pig and streaming join algorithms and also other optimization

techniques such as RCFile, partitioning, bucket can be

evaluated for Hive.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.7, December 2012 – www.ijais.org

20

6. REFERENCES

[1] Lucene Hadoop, “Hadoop Map-Reduce Tutorial”,

http://hadoop.apache.org/docs/r0.15.2/mapred_tutorial.ht

ml, retrieved online November 2012

[2] Viglas,S.D,Niazi,S, “SAND Join — A skew handling

join algorithm for Google's Map/Reduce framework”,

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnu

mber=6151466&contentType=Conference+Publications

&queryText%3Djoin+in+hadoop, Dec 2011

[3] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng

Shao, Prasad Chakka, Ning Zhang, Suresh Antony, Hao

Liu, and Raghotham Murthy, “Hive – A Petabyte Scale

Data Warehouse Using Hadoop”,

infolab.stanford.edu/~ragho/Hive-icde2010.pdf,ICDE

2010

[4] Christer A. Hansen, “Optimizing Hadoop for the

cluster”, Institue for Computer Science, University of

Troms0, Norway,

http://oss.csie.fju.edu.tw/~tzu98/Optimizing%20Hadoop

%20for%20the%20cluster.pdf, Retrieved online October

2012

[5] Nils Braden, “The Hadoop Framework”,

http://homepages.thm.de/~hg51/Veranstaltungen/Master

Seminar1011/NielsBraden.pdf, Retrieved September

2012

[6] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,

Robert Chansler, The Hadoop Distributed File System,

http://storageconference.org/2010/Papers/MSST/Shvachk

o.pdf, retrieved online October, 2012

[7] Apache Hadoop,”Hadoop 0.20 documentation”,

http://hadoop.apache.org/docs/r0.17.1/mapred_tutorial.ht

ml, August 2008, retrieved online August 2012

[8] Atlassian Confluence, “Hive Tutorial”,

https://cwiki.apache.org/Hive/tutorial.html, Feb 2011

[9] Apache Hadoop, “Pig 0.7.0 Documentation”,

http://Pig.apache.org/docs/r0.7.0/tutorial.html, retrieved

online August, 2012

[10] HDFS Architecture Guide,

http://hadoop.apache.org/docs/hdfs/current/hdfs_design.h

tml, retrieved online October, 2012

[11] Map/Reduce Tutorial,

http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.ht

ml, retrieved online October, 2012

