

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.6, December 2012 – www.ijais.org

40

Optimizing the Intelligent Generic Query Mode and its

Interface for Relational Database Applications

Ali El-Matarawy
Faculty of Computers and

Information, Cairo University

ABSTRACT

This research presents an optimization for generic query mode

for any database application. It is an enhancement for a

previously research "Improving the Query Mode and its

Interface for Relational Database Applications". The research

improved its intelligence more than expected. In the previous

research the algorithm was intelligent in the sense that it

answers most of the possible queries or questions that may

arise in the user’s mind without the need or support of the

application developer but there was a restriction for that

which is the user can't query about any computed field. This

research added this feature to the algorithm regardless the

depth of the computed field. The meaning of the depth of the

computed field is how many times of the computed field in an

equation needs to be transformed so that it contains no

computed fields. It has been implemented using PowerBuilder

(release 11.5) as a front end tool and Adaptive Server

Anywhere (one of Sybase products) as a database engine. This

research describes the design of the optimized intelligent

generic query mode and its interface.

Keywords

Query mode, entry mode, relational database applications,

optimizing query mode, generic query mode, intelligent query

mode, database field, computed field.

1. INTRODUCTION
A query is a question or task a user asks of a database [1].

Query mode is the mode in which the user can ask the

database some questions to get answers for them while data

entry mode is the mode in which the user creates or edits

records [2] in the underlying tables in the database. The basic

steps involved in performing a query are [3]:

Entering query criteria
The information defining the query is entered into the Query

datawindow (form).

Performing the query
The query is performed and all records in the database which

match the information defining the query and which the user

is privileged to view are retrieved.

Displaying the retrieved records
The matching records are displayed and can now be stored,

copied, edited, re-ordered, reported on and deleted.

According to the history of developing database applications

and its query mode, those query modes can be classified into

three types.

The first query mode was so simple and very poor either in its

efficiency in replying to many queries that the user may need

at sometimes, or in its interface, its idea was based on

displaying a menu (called query menu) to the user contains

the available or allowed criteria to retrieve data. The main two

disadvantages for using this type is first you can't get an

answer for any question is not included in the query menu,

and if you want that you should call the application developer

and asking him to develop the new query you want, second is

for its interface, it always needs from the user to read the

query menu and sometimes it is too long to know the location

of required query in the query menu, this will be sometimes so

difficult.

The second query mode is too much better than the first one.

Its interface depends on the data entry menu itself. When the

user enters this query mode, the application clears all of

previous data and asks the user to write criteria for only some

or all of the displayed fields, and after that the user asks the

application to execute the query with only the criteria fields he

filled, and then the matched records will be displayed to him.

The main advantages of this technique are first, you can ask

the application for any query you want related to the displayed

fields, second it is easier in use since it omitted the long query

menu, third it allowed answering many queries to the user that

may he needs, so it decreases the calling back to the

developer.

The disadvantages for this query mode are first, the user can't

constitute a query containing fields outside the entry menu

and are found in other tables with a direct or indirect relation

to the updated table in the entry menu, second, its interface

needs from the user to know some SQL syntax such as logic

relational words, logic operators, some symbols such as "*" or

"%" to express some characters he doesn't know in the criteria

field, third there is a great ambiguous of using many criteria

fields in the mind of the user because all of the criteria fields

is ANDED together or ORED together and in most of

applications he should first specify the type of the logic

relation among all fields and can't specify an OR relation for

some fields and an AND relation for other fields.

The third query mode is a combined mode between the first

one and the second one, this is because the second query

mode is applied only to the entry menu you are using and the

user would like to get some data is related to the updated table

in the entry menu but at the same time is in a relation with

other tables that has some fields the user may be would like to

specify a criteria values for them, the third query mode is the

most common used in any relational database application.

This new query mode has been submitted in [3] and it is

called "Intelligent Generic Query Mode" (IGQM).

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.6, December 2012 – www.ijais.org

41

The rest of this paper is organized as following: After defining

and comparing between database field and computed field in

section 2, some related work is introduced in section 3. In

sections 4 the new approach for optimizing the intelligent and

generic query mode is explained. In section 6 the interface

that the new approach has used is presented. Section 7

introduces the conclusion and future work. Section 8 and

section 9 are the acknowledgements and references for this

research.

2. DATABASE FIELDS VERSUS

COMPUTED FIELDS
Database fields (attribute) is a property or description of an

entity [4], its definition are saved in the database table and its

corresponding data are located also in the database as rows or

records of a table while a computed field is a field which

derives its data from calculation of other fields (database

fields, computed fields or both). The data are not entered into

a computed field by the user and it is not located in any table

of the database, its definition is located in the definition of the

datawindow (form) fields and its corresponding data is located

in memory during the running of the database application.

3. RELATED WORK
As mentioned in [5] there are different approaches to query

formulation, focusing on the usability of these approaches for

non-IT people.

Query-by-form is an old practice; users can fill in and submit

a form, where all fields in this form are seen as query

variables. This way of data access is simple; however, it is

neither flexible nor expressive. For each query, a form needs

to be developed, and any change to the query implies

changing the form.

Query-by-example allows users to formulate their queries as

filling a table [6]. The names of the queried relations and

fields are selected first; then users can enter their keywords.

Although this approach is claimed to be easy to learn by non-

IT people, however, it was not used by such people. In our

opinion, this is because users are still required to understand

the relational structure, which is difficult for non-IT people.

Conceptual query languages are an alternative approach to

query formulation. As many databases are modeled

conceptually using EER or ORM diagrams, one can also

query these databases starting from those diagrams. Users can

select some concepts from a given conceptual diagram, and

their selection is automatically translated into SQL queries.

This scenario was implemented by several EER-based [7, 8]

and ORM-based [9, 10] approaches. ConQuer [11] is another

ORM-based language, but it has some nice features indeed.

Instead of starting from a conceptual diagram that may not

exist, it starts from the logical schema and converts it into lists

of concepts and relations. Users can then drag-drop from these

lists to formulate their queries. What users drag-drop become

a tree of facts, and this tree is seen as a query. Although this

drag-drop scenario is not simple, 90 however structuring a

query as a tree-pattern looks intuitive indeed.

The new query mode submitted in [3] titled IGQM (Intelligent

Generic Query Mode) which has omitted all the disadvantages

of the previous query modes mentioned in section 1. Notice

that one can combine the IGQM query mode with the first

one. Using this query mode the user can make a query with

some fields that are not found in the current entry screen and

are found in other table(s). This feature enables the

application to approximately answer all questions of the user

by 100%, hence the user can ask the application for some

questions in his mind without asking the developer of the

application to hardcode them in the application, this safe time

and empower users and improve the quality and efficiency of

service provided by applications that use the intelligent

generic query mode. Some questions will not be answered at

once but this is seemed to be logical and will be explained

later in this research. Also, its interface is more flexible than

the second one, since it does not depend on SQL language. It

can be in the native language of the user.

Simply the new technique enabled to the user the features of

defining his own question in his natural language by selecting

database fields which are displayed in the screen either those

fields in the master form or in any sub-form and define

corresponding criteria to those fields with logic operators and

logic relation.

The new technique has been implemented by adding some

tables for saving information about the database application

and an algorithm to construct the SQL dynamically of the user

defined query.

4. OPTIMIZING IGQM
In IGQM, as mentioned in section 3, the user can define his

own query by selecting database fields only not a computed

fields, what the research has added to the IGQM is giving the

ability to the user to define his own query from database fields

located in a table with its corresponding data and computed

fields located in a datawindow (form) with its corresponding

data located in memory.

Simply it can be said that the new technique made the

computed field as like a database field without changing of its

location definition or its corresponding data location. This has

been done by saving information about all computed fields in

a separate table of the database application, the main

information are its name and its equation so its name can be

replaced by its equation in the definition of the user query. A

major problem now arises which is that the computed field

may depends on other computed fields for any unknown

depth of this dependency, to build or construct a correct SQL

the equation of the computed field should include only

database fields, so a routine has been written for replacing any

computed field in the equation of the selected computed field

by the user by its equation and constitute a new equation for

the selected computed field by the user, this routine loops

until the equation doesn't contain any computed field.

It is notable to mention that using the optimized IGQM in a

database application raises the number of queries that the user

may generate from function of billions to function of trillions

queries. One screen of this application consists of 4 sub-

forms, each sub form base on a table consists of 8 database

fields i.e. total no of fields in the four sub-forms equal to 32,

hence the user if he used the IGQM can get approximately the

combinatorial of 32C1 + 32C2 +…+ 32C16, this summation will

give billions of queries that the user may generate. In this

database application, each sub-form has 52 computed fields,

i.e. the total fields in the four sub-forms equal to 240, hence

the user if he used the optimized IGQM, he can get

approximately the combinatorial of 240C1 + 240C2 +…+ 240C240,

this summation will give trillions of queries that the user may

generate.

A brief comparison between the new technique and "Query by

Form" query mode is presented in the following table (1).

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.6, December 2012 – www.ijais.org

42

Table (1): Comparison between the new query mode and

"Query by Form" query mode

Seq. OIGQM Data Entry Query Mode

1 The user can define

his criteria to any

fields in the main

screen fields or its

sub-forms fields. This

increase the number

of possible queries.

The user can define his

criteria to only the fields

of the screen he switched

it to query mode, this

decrease the number of

possible queries.

2 No need to use SQL

symbols or characters

such as "*", "?,…,etc.

The user should know

some SQL wild used

character such as "*",

"?",,…,etc.

3 The user uses his

natural language in

defining logic

operators

The user should use logic

operators such as

">","<",…,etc.

4 The user can use any

field either in the

main form or in sub-

form.

The user can use only the

fields in the screen in

which he switched to its

query mode

5 No ambiguity when

the user wants to use

either "AND" or

"OR" logic relation

when defining fields

criteria

There is an ambiguous

use when the user wants

to use either "AND" or

"OR" logic relation when

defining fields criteria

5. INTERFACE OF OIGQM
In the following sections a description of the interface of the

optimized intelligent generic query mode, section 5.1

describes briefly the data entry mode which is the same for

the IGQM. The data entry mode is implemented to reflect the

relation types among tables in the database which enables the

user the innovation in creating his own query, section 5.2

describes the interface of the intelligent generic query mode

which also it is the same as the IGQM interface.

5.1 The Data Entry Mode
Before explaining the optimized intelligent generic query

mode, a brief explanation about the data entry mode should be

introduced. It is designed to reflect the relations among tables

in the database, so it used master-detail interface [12, 13] or

main-subform forms like mentioned in MS-ACCESS. This

interface has been designed up to 4 levels of master-detail (i.e.

in other words up to 4 tables will be entered in one screen.

The screen consists of 4 parts, each part is for one table of the

four tables and each part is in a relation one to many to the

part below it directly, Fig. (1) shows one screen which can be

used for entering data in 3 tables, the upper part shows the

table entry level – 1 and the middle part shows the table entry

level – 2, the bottom part shows the data entry level – 3), the

number of levels can be extended but in this case the usability

of application will be lost since the user will have to enter

many tables data in one screen. Also notice that the optimized

intelligent generic query mode can be applied in any data

entry interface either in a screen contains a table or in a screen

contains any number of tables, this interface enables the user

to understand the relation between different tables data and

consequently he can generate more power queries he needs.

In Fig.(1) the three screens are in tabular form, this style of

the form allows many records to be displayed to the screen at

Fig. (1) Data Entry Interface

a time but notice that this is only an example, the user can

alter it to a normal form in which only one record can be

displayed at a time.

5.2 OIGQM Interface
This interface is so simple and is found in many of

applications, some is related to database and the other is not.

Instead of clearing the fields in the data entry menu it hides it

and displays another menu. Each row of the menu constitutes

a user question. Each row consists of 4 fields. The first field is

the field title either for a database field or a computed field. A

user can select a field title from a combo box as shown in

Fig.(2).

Fig. (2): Field Title Selection

The combo box contains all fields titles (either titles for

database fields or computed fields) of the current level of the

table that the user of the application is using; also it contains

all fields titles (either titles for database fields or computed

fields) in the table data entry levels below it. To make this

clear to the user of the application, each table level fields is

represented by different color, the black color is for the first

table level fields titles, the blue color is for the second table

level fields titles, the red color is for the third table level fields

titles and the green color is for the fourth table level fields

titles.

The second field is a combo box containing all logic

operators, they are displayed in the native language of the

application and not in SQL syntax, and this is shown in

Fig.(3). As you can see in this figure the user select the logic

operator in the native application language which is such as

English in this figure but notice that this is can be in any

natural language, it depends on the development issues. This

avoid the user of knowing some SQL symbols such as ">",

"<","<>", … , etc.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 4– No.6, December 2012 – www.ijais.org

43

Fig. (3): Logic Operator Selection

Consequently the user don't need to know some information

about some SQL syntax, he can understand it directly because

it is written in his native language, so he can understand them.

The intelligent generic query mode is responsible to convert

those fields contents to the correct SQL syntax, the third field

is the field value the user wants to specify for the field title he

select before. The fourth field is used to specify the logic

relation "AND" or "OR" with the subsequent rows of the

current row as shown in Fig. (4), also this field is displayed in

the native language of the application and not in SQL syntax,

so again it is so simple for understanding.

Fig. (4): Logic Relation Selection

6. CONCLUSIONS & FUTURE WORK
The Optimized intelligent generic query mode increases the

efficiency of answering more and more questions that comes

from the user in an easy and simple interface, this efficiency

has been increased mainly due to increasing the number of

queries that the user may generate by adding all computed

fields in the database application as well as the database fields

to be available to the user when he defines his own queries,

finally the more computed fields in the database applications,

the more efficiency the user gains. Our future work is to

generate intelligent generic statistical query (IGSQ) for any

database field or computed field in the database application,

also a combine of the IGSQ with the optimized IGNQM to

increase the number of statistical report the user can gain.

7. ACKNOWLEDGMENTS
Thanks to Dr. Reem Bahgat for her constant support and for

Dr. Mohamad El-Sharkawy for his comments.

8. REFERENCES
[1] Albert K.W. Yeung, G. Brent Hall, Spatial Database

Systems, Design, Implementation and Project

Management, Published by Springer

[2] Turban E., & Aronson J., (1998), Decision Support

Systems and Intelligent Systems, 5th Ed’n, Prentice Hall,

New Jersey, ISBN 0-13-740937-0

[3] Ali El-Matarwy, Improving the Query Mode and its

Interface for Relational Database Applications, First

National Symposium on Information Technology,

journal 2005, King Saud University faculty of Computer

Science Information System.

[4] Database Management Systems, Solutions manual, Third

Edition, Raghu Ramakrishnan, University of Wisconsin,

Madison, WI, USA, Johannes Gehrke, Cornell

University, Ithaca, NY, USA and Jeff Derstadt, Scott

Selikoff, and Lin Zhu, Cornell University, Ithaca, NY,

USA.

[5] Mustafa J., Marios D. Dikaiakos, MashQL: A Query-by-

Diagram Topping SPARQL Towards Semantic Data

Mashups, University of Cyprus mjarrar.

[6] Zloof, M.: Query-by-Example: A Data Base Language.

IBM Systems Journal, 16(4). 1977.

[7] Czejdo, B., Elmasri, R., Rusinkiewicz, M., and Embley,

D.:An algebraic language for graphical query

formulation using an EER model. In Proceedings of the

ACM Conference on Computer Science. 1987.

[8] Parent, C., and Spaccapietra, S.: About Complex

Entities, Complex Objects and Object-Oriented Data

Models. In Proceedings of the IFIP 8.1 conference. 1989.

[9] De Troyer, O., Meersman, R., and Verlinden, P.: RIDL

on the CRIS Case: A Workbench for NIAM. In

Proceedings of the IFIP.8.1 Conference. 1988.

[10] Hofstede, A., Proper, H., and van der Weide, T.:

Computer Supported Query Formulation in an Evolving

Context. In Proceedings of the ADC. 1995.

[11] Bloesch, A. and Halpin, T.: Conceptual Queries

usingConQuer–II. In Proceedings of the ER. LNCS,

Springer. 1997.

[12] Schwabe D., Rossi G. and Barbosa D.J. Systematic

Hypermedia Application Design with OOHDM. Proc.

ACM Conference on Hypertext. pp.166. 1996.

[13] Paolini P. and Fraternali P. A Model-Driven

Development of Web Applications: the Autoweb System

. ACM Transactions on Office Information Systems,

2000, Vol. 18, Number 4.

