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ABSTRACT 

A parallel implementation of 3-D Alternating Direction 

Implicit (3-D ADI) method on 3-D Telegraph problem on a 

distributed computing environment through Parallel Virtual 

Machine (PVM) is reported. The numerical method is implicit 

and is based on a splitting strategy which is applied alternately 

at each half time step.  The parallelization is implemented by 

a Domain Decomposition (DD) strategy on a distributed 

system with Single Program Multiple Data (SPMD) model on 

a PVM platform. The parallelization strategy and performance 

are discussed. Different strategies to improve the 

computational efficiency are proposed. 
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1. INTRODUCTION 
Due to the ever-increasing clock frequency and the 

aggressively shrinking feature sizes of the very large scale 

integration technology, robust power distribution network is 

crucial to ensure the quality of power delivery. This makes the 

issues of parallel and distributed applications very important. 

Parallel computing environments based on distributed 

computing has become effective and economical platforms for 

high performance computing by providing controlled access 

to a much larger and richer computational resource [20]. 

Distributed systems can increase application performance by 

significant amount and the incremental enhancement of a 

network based concurrent computing environment is usually 

straight forward because of the availability of high bandwidth 

networks [2, 3]. Attempts have also been made towards 

parallel solutions on distributed memory MIMD machines. 

Large scale computational scientific and engineering problem, 

such as time dependent and 3D flows of viscous elastic fluids, 

required large computational resources with a performance 

approaching some tens of giga (109) floating point 

calculations per second, an alternative and cost effective 

means of achieving a comparable performance is by way of 

distributed computing, using a system of processors loosely 

connected through a local area network [4]. Relevant data 

need to be passed from processor to processor through a 

message passing mechanism [12, 6, 19, 16]. The natural 

programming style under a distributed system is therefore the 

Multiple Instructions Multiple Data (MIMD) [22]. The basic 

idea is to split a program into a few smaller tasks and to 

allocate these tasks to several processors to be executed 

simultaneously. Thus the total execution time can be reduced 

to just a fraction of that of a uni-processor computer. 

Generally, there are three issues relating to parallel 

computing: (1) The first issue is how to break up the program 

into smaller tasks, and how to properly sequence these tasks, 

(2) The second is the communication between processors, 

which is necessary because some intermediate results have 

been exchanged among these processors and (3) The issue of 

the synchronization of computations on different processors. 

All these three problems strongly influence the performance 

of the parallel computation.   

Methods by which processors exchange information; parallel 

computers can either be of shared memory or distributed 

memory (message-passing) architectures. With the shared 

memory architectures, there is a global share memory which 

can be accessed by all processors. Processors communicate by 

writing into and reading from the global memory. This mode 

of communication is convenient in terms of program writing, 

but memory access by different processors can generate 

potential memory conflicts. With distributed memory 

architectures, each processor has its local memory, and 

processors communicate through an interconnection network. 

Inefficient communication is the main problem for this type of 

communication. To help with the program development under 

a distributed computing environment, a number of software 

tools have been developed: PVM, Theoretical Chemistry 

Message Passing Tool Kit (TCMSG), Parasoft Express 

(EXPRESS), Network Linda (LINDA), and Message Passing 

Interface (MPI). PVM [13, 14] is chosen here since it has a 

large user group with possibly the best support for 

heterogeneous environment.   

Parallel algorithms have been implemented for the finite 

difference method [15], discrete eigen functions method in [1] 

and [8] use the AGE method on 1-D Telegraph problem. 

Boundary element method and the finite volume method using 

DD have also been implemented. In addition, time and 
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functional decompositions have also been used in parallel 

implementations.  

    In this paper, we present a parallel program for the solution 

of the 3-D Telegraphic problem using the 3-D ADI method. 

We employed the DD strategy, and mapped it onto a 

distributed computing environment with a synchronous 

iteration and a message passing master – slave construction.  

The program was executed in a distributed memory system 

under PVM. The numerical method is based on the double 

sweep methods of Peaceman and Rachford (DS-PR) [19]. We 

computed some examples to test the parallel algorithm. The 

effects of the various parameters on the performance of the 

algorithm are discussed. The prime objective of our platform 

is not to be specific to one problem; it should be able to solve 

a wide variety of time-dependent partial differential equations 

(PDE) for various applications [24, 25]. This paper is 

organized as follows: Section 2 introduces the model for the 

3-D Telegraphic problem and introduces the 3-D ADI 

method. Section 3 introduces the parallel implementation. 

Section 4 introduces the results and discussion. Finally, a 

conclusion is included in section 5.  

1.1 Previous Research Work 
The ADI method for the partial differential equations (PDEs) 

proposed by Peaceman and Rachford [16] has been widely 

used for solving algebraic systems resulting from finite 

difference method analysis of PDEs in several scientific and 

engineering applications. On the parallel computing front, 

Rathish Kumar, et. al., have proposed a parallel ADI solver 

for linear array of processors. Chan and Saied have 

implemented ADI scheme on hypercube. Later Lixing et. al., 

have parallelized the ADI solver on multiprocessors. The ADI 

method in [18] has been used for solving heat equation in 2-D. 

Other works on parallel implementation of 2-D Telegraph 

problem on cluster systems have been done in [10, 11].  

Hence, parallelization of the ADI method has been tried in 

[22]. Several numerical approaches dealing with telegraphic 

equation problems have been carried out in [1, 8] and [9]. In 

[15] the unconditional stability of the alternating difference 

schemes has similarity to our scheme and shows that the 

unconditional stability application is useful to its speedup and 

efficiency as studied. Our implementation compared to others 

is a way of proofing stability and convergence in parallel 

platform of a distributed system. We also note the various 

constant improvement on speedup, efficiency performance 

analysis in [25] using the overlapping domain decomposition 

method. 

2. TELEGRAPH EQUATION  
the frequency and time domains. A number of iterative 

methods are developed in the literature to solve the Telegraph 

equation using iterative solution [18]. Some of these iterative 

schemes are employed in various parallel platforms [2, 20]. 

The speed of convergence of iterative scheme is examined for 

the synchronous communication approaches in parallel 

environment. We consider the second order Telegraph 

equation:                      
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where a RC GL  , let zandyx  , be the grid 

spacing in the x, y, z and t directions, where 

mzyx /1 , m is a positive integer. Hence, 

we can solve (2.1) by extending the 1-D simple implicit finite 

difference method [8] of the Telegraph equation to the above 

3-D Telegraph equation, (2.1) becomes: 
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although this simple implicit scheme is unconditionally stable, 

we need to solve a heptadiagonal system of algebraic 

equations at each time step. Therefore, the computational time 

is extremely huge.  

2.1 3-D ADI Method on the Telegraph 

Problem  
In this section, we derive the 3-D ADI method of the simple 

implicit finite difference method by using a general ADI 

procedure [18] extended to (2.1). The ADI method is a well-

known method for solving the partial differential equation 

(PDE). The main feature of ADI is to sweep directions 

alternatively. In contrast to the standard finite-difference 

formulation with only one iteration to advance from the nth to 

(n + 1)th time step, the formulation of the ADI method 

requires multilevel intermediate steps to advance from the nth 

to (n + 1)th time step. Equation (2.2) can be rewritten as: 
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where the operators of I, Ams, and the constants of Co, C1 are 

define as: 
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the constant of x , y and z are: 
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Table 1. The 3-D ADI Algorithm 
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which is a prediction of 
1

,,

n

kjiv by the extrapolation method. 

Then splitting (2.3) by using an ADI procedure as in [18], we 

get a set of recursion relations as follows:             

)2(

)()(

1

,,1,,0

(*)1

,,32

)1(1

,,1









n

kji

n

kji

n

kji

n

kji

vCvC

vAAvAI
            (2.14) 

(*)1

,,2

)1(1

,,

)2(1

,,2 )(   n

kji

n

kji

n

kji vAvvAI                    (2.15)    

(*)1

,,3

)2(1

,,

)3(1

,,3 )(   n

kji

n

kji

n

kji vAvvAI                    (2.16) 

where 
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kji vv  are the intermediate solutions and the 

desired solution is
)3(1
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1
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  n

kji

n

kji vv . Finally, expanding A1, A2 

and A3 on the left side of (2.14) and (2.16), we get the 3-D 

ADI algorithm as in Table 1.  

3. PARALLEL IMPLEMENTATION  

3.1 The Parallel Platform 
The implementation was on a distributed computing 

environment (Armadillo Generation Cluster) consisting of 16 

Intel Pentium at 1.73GHZ and 0.99GB RAM. Communication 

is through a fast Ethernet of 100 MBits per seconds connected 

through fast Ethernet running Linux. The cluster performance 

has high memory bandwidth with a message passing 

supported by PVM which is public-domain software from 

Oak Ridge National Laboratory [13]. PVM is a software 

system that enables a collection of heterogeneous computers 

to be used as a coherent and flexible concurrent computational 

resource. PVM consist of two parts: a daemon process that 

any user can install on a machine, and a user library that 

contains routines for initiating processes on other machines, 

for communicating between processes, and for changing the 

configuration of machines. PVM supports program executed 

on each machine in a user-configurable pool, and present a 

unified, general, and powerful computational environment for 

concurrent applications. The program, written in Fortran, C, 

or C++, are provided access to PVM through calling PVM 

library routines for functions such as process initiation, 

message transmission and reception, and synchronization via 

barriers or rendezvous. PVM is ideally suited for concurrent 

applications composed o many interrelated parts, and is very 

useful for the study of large-scale parallel computation.    
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3.2  Domain Decomposition 
The parallelization of the computations is implemented by 

means of grid partitioning technique [5]. The computing 

domain is decomposed into many blocks with reasonable 

geometries. Along the block interfaces, auxiliary control 

volumes containing the corresponding boundary values of the 

neighboring block are introduced, so that the grids of 

neighboring blocks are overlapped at the boundary. When the 

domain is split, each block is given an I-D number by a 

“master” task, which assigns these sub-domains to “slave” 

tasks running in individual processors. In order to couple the 

sub-domains’ calculations, the boundary data of neighboring 

blocks have to be interchanged after each iteration. The 

calculations in the sub-domains use the old values at the sub-

domains’ boundaries as boundary conditions. This may affect 

the convergence rate; however, because the algorithm is 

implicit, the blocks strategy can preserve nearly same 

accuracy as the sequential program. 

3.3 Parallel Algorithm 
The algorithm can be transformed to master-slave model by 

sending out the computing tasks on each block to each 

processor in the Armadillo Generation Cluster system. The 

master task reads in the input data file, generates the grid data, 

initializes the variables, and sends all the data and parameters 

to the slaves. It then sends a block 3-D to each slave process, 

which in turn computes the coefficients of the relevant 

equations and solves for the solution of this block. This 

solution is then sent back to the master task and this processor 

wait for the next task. The master task receives the solution 

results from the slaves sequentially in an asynchronous 

manner, rearranges the data, calculates the global residuals of 

each equation, and determines if convergence has been 

reached. If the convergence has not been reached, the current 

solution vector is sent to all slaves, and a new iteration is 

started. Therefore, all the variables stored in the local memory 

of slaves are updated at every iteration. The following pseudo 

codes summarize the algorithm for the master and the slave 

program: 

Master Program 

Read in the input data 

Compute mesh data 

Initialize the variables 

Enroll master program in pvm 

Startup a slave program on each processor in the pvm farm 

Send mesh data to all slave programs 

Loop over iteration 

Set block numbers and it value 

Set the block index to it (ip = it) 

Do while (slaves working on ip < n blocks) 

  if (ip < nblocks) then 

   do (for each processor) 

    if (processor is idle) 

then 

     ip = ip + 1 

        Send a 

message to the idle processor to 

     Compute a 

solution on block ip 

    end if 

    if (ip = nblocks) break 

   end do 

  end if 

  wait here for a result from slave program 

  get block solution and residual of 

equation 

 end do while 

 Global residual calculation 

 Convergence check 

 if (solution converged) break out loop 

 send the current solution to all slave programs 

end loop 

Terminate all slave programs 

Leave pvm 

Time calculation 

Save data file 

Terminate the program 

Slave Program 

Enroll slave program in pvm 

Do (forever) 

 Wait for a message from the master program 
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 Case: 

  GET MESH DATA 

   Get mesh data from the master 

program 

   Break 

  DO DOMAIN DECOMPOSITION 

   Break 

  GET CURRENT SOLUTION 

  Get the current solution vector 

   Break 

  DO CALCULATION 

   Get the block id, ip 

   Do calculation on block ip 

   Solve for all variables equation 

on block ip 

   Return the solution over ip to 

the master program 

   Break 

  FINISH UP 

  Leave pvm 

  Terminate the program 

 End case 

End do 

3.4 Speedup and Efficiency 
The performance metric most commonly used is the speedup 

and efficiency which gives a measure of the improvement of 

performance experienced by an application when executed on 

a parallel system [21]. Speedup is the ratio of the serial time 

to the parallel version run on N processors. Efficiency is the 

ability to judge how effective the parallel algorithm is 

expressed as the ratio of the speedup to N processors.The 

concept of speedup has yet to find a widely accepted 

definition. In traditional parallel systems it is widely define as: 

n
nS

nE
nT

sT
nS

)(
)(,

)(
)(

)(              (3.1) 

where S(n) is the speedup factor for the parallel computation, 

T(s) is the CPU time for the best serial algorithm, T(n) is the 

CPU time for the parallel algorithm using N processors, E(n) 

is the total efficiency for the parallel algorithm. However, this 

simple definition has been focus on constant improvements. A 

generalized speedup formula is the ratio of parallel to 

sequential execution speed. A thorough study of speedup 

models, together with their advantages and disadvantages, is 

presented by Sahni [23], and observed that speedup is 

normally defined as the execution time of the best sequential 

algorithm also known as absolute speedup, therefore implying 

that the sequential and parallel might be different. A different 

approach known as relative speedup, considers the parallel 

and sequential algorithm to be the same. While the absolute 

speedup calculates the performance gain for a particular 

problem using any algorithm, relative speedup focuses on the 

performance gain for a specific algorithm that solves the 

problem. The total efficiency is usually decomposed into the 

following equations 

),()()()( nEnEnEnE loadparnum                         (3.2)  

where Enum, is the numerical efficiency, represents the loss of 

efficiency relative to the serial computation due to the 

variation of the convergence rate of the parallel computation. 

Eload is the load balancing efficiency, which takes into account 

the extent of the utilization of the processors, and Epar is the 

parallel efficiency, which is define as the ratio of CPU time 

taken on one processor to that on N processors. The parallel 

efficiency and the corresponding speedup are commonly 

written as follows: 
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the parallel efficiency takes into account the loss of efficiency 

due to data communication and data management owing to 

domain decomposition. The CPU time for the parallel 

computations with N processors can be written as follows: 

)()()()( nTnTnTnT scsdm                             (3.4) 

where Tm(n) is the CPU time taken by the master program, 

Tsd(n) is the average slave CPU time spent in data 

communication in slaves, Tsc(n) is the average CPU time 

expressed in computation in slaves. Generally, 
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therefore, the speedup can be written as: 

)1(

)1()1(

/)1()1(

)1()1(

)(

)1(
)(

ser

scser

scser

scser
par

T

TT

nTT

TT

nT

T
nS









                 (3.6) 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 4– No.11, December 2012 – www.ijais.org 

 

17 

where ),1()1()1( sdmser TTT  which is the part that 

cannot be parallelized. This is called Amdahl’s law, showing 

that there is a limiting value on the speedup for a given 

problem. The corresponding efficiency is given by:          
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the parallel efficiency represents the effectiveness of the 

parallel program running on N processors relative to a single 

processor. However, it is the total efficiency that is of real 

significance when comparing the performance of a parallel 

program to the corresponding serial version. Let )1(No

sT

denotes the CPU time of the corresponding serial program to 

reach a prescribed accuracy with No iterations, and 

)(1 nT
LN

BB denotes the total CPU time of the parallel version 

of the program with B blocks run on N processors, to reach 

the same prescribed accuracy with Ni iterations, including any 

idle time. The superscript L acknowledges degradation in 

performance due to the load balancing problem. The total 

efficiency in (3.2) can be decomposed as follows:             
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where )(1 nT
N

BB has the same meaning as )(1 nT
LN

BB except 

the idle time is not included. Comparing (3.5) and (3.2), we 

obtain:               
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when B=1 and n = 1, Tm(1) + Tsd(1) << Tsc(1), then 
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we call (3.10) domain decomposition efficiency (DD), which 

includes the increase of CPU time induced by grid overlap at 

interfaces and the CPU time variation generated by DD 

techniques. The second term 1/ NNo  in the right hand side 

of (3.10) represents the increase in the number of iterations 

required by the parallel method to achieve a specified 

accuracy compared to the serial method. 

3.5 Load Balancing 
With static load balancing, the computation time of parallel 

subtasks should be relatively uniform across processors; 

otherwise, some processors will be idle waiting for others to 

finish their subtasks. Therefore, the domain decomposition 

should be reasonably uniform. A better load balancing is 

achieved with the pool of tasks strategy, which is often used 

in master – slave programming [7]: the master task keeps 

track of idle slaves in the distributed pool and sends out the 

next task to the first available idle slave. With this strategy, 

the processors are kept busy until there is no further task in 

the pool. If the tasks vary in complexity, the most complex 

tasks are sent out to the most powerful processor first. With 

this strategy, the number of sub-domains should be relatively 

large compared to the number of processors. Otherwise, the 

slave solving the last sent block will force others to wait for 

the completion of this task; this is especially true if this 

processor happens to be the least powerful in the distributed 

system. The block size should not be too small either, since 

the overlap of nodes at the interfaces of the sub-domains 

become significant. This results in a doubling of the 

computations of some variables on the interfacial nodes, 

leading to a reduced efficiency. Increasing the block number 

also lengthens the execution time of the master program, 

which leads to a reduced efficiency. 

4. Results and Discussion 

4.1 Benchmark Problem 
In order to test the validation and the performance of the 

distributed code for the 3-D Telegraph problem at various grid 

sizes was computed. The solution domain was divided into 

rectangular blocks. The numerical results are 

indistinguishable to those obtained from a serial finite 

difference code. Consider the Telegraph Equation of the form:                                   
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The boundary condition and initial condition posed are: 
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,),,( xyzezyxv                                                           (4.3) 

4.2 Parallel Efficiency 
To obtain a high efficiency, the slave computational time 

)1(scT should be significantly larger than the serial time 

.serT  In this present program, the CPU time for the master 

task and the data communication is constant for a given grid 

size and sub-domain. Therefore the task in the inner loop 

should be made as large as possible to maximize the 

efficiency. The speed-up and efficiency obtained for various 

sizes, from 70x70x6 to 210x210x6, are for various numbers of 

sub-domains, from B = 50 to 200 are listed in Tables 2 – 10. 

In this tables we also listed the wall (elapsed) time for the 

master task, ,WT  (this is necessarily greater than the 

maximum wall time returned by the slaves), the master CPU 

time, ,MT  the average slave computational time, ,SCT  and 

the average slave data communication time, ,SDT all in 

seconds. The speed-up and efficiency versus the number of 

processors are also shown in fig. 4 and Fig. 5, respectively, 

with block number B as a parameter.The results above show 

that the parallel efficiency increases with increasing grid size 

for given block number, and decreases with the increasing 

block number for given grid size. Given other parameters the 

speed-up increases with the number of processors. At a large 

number of processors, Amdahl’s law starts to operate, 

imposing a limiting speed-up due to the constant serial time. 

Note that the elapsed time is a strong function of the 

background activities of the cluster. When the number of 

processors is small, the wall time decreases with the number 

of processors. As the number of processors become large, 

however, the wall time increases with the number of 

processors. The total CPU time is composed of three parts: the 

CPU time for the master task, the average slave CPU time for 

data communication and the average slave CPU time for 

computation, .SCSDM TTTT   Data communication 

at the end of every iteration is necessary in this strategy. 

Indeed, the updated values of the solution variables on full 

domain are multicast to all slaves after each iteration since a 

slave can be assigned a different sub-domain under the pool-

of-task paradigm. The master task includes sending updated 

data to slaves, assigning the task tid to slaves, waiting for 

message from processors, and receiving the result from slaves. 

For given grid size, the CPU time for send task tid to slaves 

increase with block number, but the timing for other tasks 

does not change significantly with block number. In Tables 2 

– 10 we see that the master time ,MT is constant when the 

number of processors increases, for a given grid size and 

number of sub-domains. The master program is responsible 

for (1) sending updated variables to slaves (T1), (2) assigning 

task to slaves (T2), (3) waiting for the slaves to execute tasks 

(T3), (4) receiving the results (T4).  

Table 2: The wall time TW, the master time TM, the slave 

data time TSD, the slave computational time TSC, the total 

time T, the parallel speed-up Spar and the efficiency Epar for 

a mesh of 70x70x6, with B = 50 blocks and Niter = 100. 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

N Tw Tm Tsd Tsc T Spar Epar 

 

1 1334 46 4 571 621 1.000 1.000 

2 658 45 3 339 387 1.605 0.803 

3 356 45 3 254 302 2.056 0.685 

4 273 45 3 195 243 2.556 0.639 

5 259 45 3 173 221 2.810 0.562 

6 243 45 3 156 204 3.044 0.507 

7 227 45 3 138 186 3.339 0.477 

8 215 45 3 120 168 3.696 0.462 

12 195 45 3 67 115 5.400 0.450 

16 230 45 3 54 102 6.088 0.381 
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Table 3: The wall time TW, the master time TM, the slave 

data time TSD, the slave computational time TSC, the total 

time T, the parallel speed-up Spar and the efficiency Epar for 

a mesh of 120x120x6, with B = 50 blocks and Niter = 100. 

N Tw Tm Tsd Tsc T Spar Epar 

 

1 2934 143 16 2016 2175 1.000 1.000 

2 1382 140 14 1141 1295 1.680 0.840 

3 748 140 14 775 929 2.341 0.780 

4 573 140 14 614 768 2.832 0.708 

5 544 140 14 474 628 3.463 0.693 

6 510 140 14 396 550 3.955 0.659 

7 452 140 14 359 513 4.240 0.606 

8 452 140 14 325 479 4.541 0.568 

12 410 141 14 209 364 5.975 0.498 

16 483 140 14 178 332 6.551 0.409 

 

Table 4: The wall time TW, the master time TM, the slave 

data time TSD, the slave computational time TSC, the total 

time T, the parallel speed-up Spar and the efficiency Epar for 

a mesh of 210x210x6, with B = 50 blocks and Niter = 100 

N Tw Tm Tsd Tsc T Spar Epar 

 

1 14963 400 62 9326 9788 1.000 1.000 

2 7048 392 64 5072 5528 1.770 0.885 

3 3815 392 62 3627 4081 2.400 0.800 

4 2922 391 62 2903 3356 2.917 0.729 

5 2774 392 62 2272 2726 3.591 0.718 

6 2601 392 62 1921 2375 4.121 0.687 

7 2305 392 62 1747 2201 4.447 0.635 

8 2305 395 64 1597 2056 4.760 0.588 

12 2091 394 62 1082 1538 6.364 0.530 

16 24633 394 62 938 1394 7.022 0.439 

 

Table 5: The wall time TW, the master time TM, the slave 

data time TSD, the slave computational time TSC, the total 

time T, the parallel speed-up Spar and the efficiency Epar for 

a mesh of 70x70x6, with B = 100 blocks and Niter = 100. 

 

Table 6: The wall time TW, the master time TM, the slave 

data time TSD, the slave computational time TSC, the total 

time T, the parallel speed-up Spar and the efficiency Epar for 

a mesh of 120x120x6, with B = 100 blocks and Niter = 100. 

N Tw Tm Tsd Tsc T Spar Epar 

 

1 3672 213 16 2116 2345 1.000 1.000 

2 1847 213 14 1178 1405 1.669 0.885 

3 1247 212 14 889 1115 2.103 0.701 

4 989 212 14 682 908 2.583 0.646 

5 808 212 14 528 754 3.110 0.622 

6 754 212 14 437 663 3.537 0.590 

7 628 212 14 383 609 3.851 0.550 

8 607 212 14 335 561 4.180 0.523 

12 584 214 14 198 426 5.505 0.459 

16 692 212 14 137 363 6.460 0.404 

 

N Tw Tm Tsd Tsc T Spar Epar 

 

1 1142 82 4 662 748 1.000 1.000 

2 679 82 3 344 429 1.744 0.872 

3 396 84 3 270 357 2.095 0.698 

4 321 84 3 192 279 2.681 0.670 

5 295 82 3 163 248 3.016 0.603 

6 274 82 3 146 231 3.238 0.540 

7 257 82 3 127 212 3.528 0.504 

8 238 82 3 110 195 3.836 0.480 

12 211 82 3 44 129 5.798 0.483 

16 264 81 3 33 117 6.393 0.400 
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Table 7. The wall time TW, the master time TM, the slave 

data time TSD, the slave computational time TSC, the total 

time T, the parallel speed-up Spar and the efficiency Epar for 

a mesh of 210x210x6, with B = 100 blocks and Niter = 100. 

N Tw Tm Tsd Tsc T Spar Epar 

 

1 11095 431 62 8760 9253 1.000 1.000 

2 7342 429 64 4864 5354 1.728 0.864 

3 3218 429 62 3398 3889 2.379 0.793 

4 2198 429 62 2763 3254 2.843 0.711 

5 2131 429 62 2123 2614 3.539 0.708 

6 1985 429 62 1763 2254 4.105 0.684 

7 1764 429 62 1614 2105 4.395 0.628 

8 1711 430 64 1596 2090 4.427 0.553 

12 1536 429 62 957 1448 6.389 0.532 

16 25897 430 64 805 1299 7.123 0.445 

 

Table 8. The wall time TW, the master time TM, the slave 

data time TSD, the slave computational time TSC, the total 

time T, the parallel speed-up Spar and the efficiency Epar for 

a mesh of 70x70x6, with B = 200 blocks and Niter = 100. 

 

Table 9. The wall time TW, the master time TM, the slave 

data time TSD, the slave computational time TSC, the total 

time T, the parallel speed-up Spar and the efficiency Epar for 

a mesh of 120x120x6, with B = 200 blocks and Niter = 100. 

N Tw Tm Tsd Tsc T Spar Epar 

        

1 4752 278 16 2193 2487 1.000 1.000 

2 1832 278 14 1204 1496 1.662 0.831 

3 1238 278 14 895 1187 2.095 0.698 

4 895 276 14 694 984 2.527 0.632 

5 793 276 14 512 802 3.101 0.620 

6 718 276 14 418 708 3.513 0.586 

7 621 276 14 365 655 3.797 0.542 

8 642 276 14 299 589 4.222 0.528 

12 573 278 14 161 453 5.490 0.458 

16 1158 278 14 95 387 6.426 0.402 

Table 10: The wall time TW, the master time TM, the slave 

data time TSD, the slave computational time TSC, the total 

time T, the parallel speed-up Spar and the efficiency Epar for 

a mesh of 210x210x6, with B = 200 blocks and Niter = 100. 

N Tw Tm Tsd Tsc T Spar Epar 

 

1 10543 524 62 8597 9183 1.000 1.000 

2 5383 518 64 4779 5361 1.713 0.857 

3 3042 518 62 3385 3965 2.316 0.772 

4 1985 518 62 2807 3387 2.711 0.678 

5 1874 518 62 2099 2679 3.428 0.686 

6 1743 518 62 1664 2244 4.092 0.682 

7 1684 518 62 1596 2176 4.220 0.603 

8 1619 516 64 1514 2094 4.385 0.548 

12 1495 518 62 881 1461 6.285 0.524 

16 27432 516 64 726 1306 7.031 0.439 

 

N Tw Tm Tsd Tsc T Spar Epar 

 

1 1538 157 4 864 1025 1.000 1.000 

2 763 157 3 429 589 1.740 0.870 

3 596 158 3 356 517 1.983 0.661 

4 485 154 3 238 395 2.595 0.649 

5 411 154 3 187 344 2.980 0.596 

6 384 154 3 172 329 3.116 0.519 

7 316 154 3 150 307 3.339 0.477 

8 432 152 3 124 279 3.674 0.459 

12 783 158 3 25 186 5.511 0.459 

16 834 157 3 7 167 6.138 0.384 
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a. 

 

b. 

 

c. 

Fig. 1. Speed-up versus the number of processors. a mesh 

70x70x6, b mesh 120x120x6, c mesh 210x210x6 

 

 

 

a. 

 

b. 

 

c. 

Fig. 2. Parallel efficiency versus the number of processors. 

a mesh 70x70x6, b mesh 120x120x6, c mesh 210x210x6 
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4.3 Numerical Efficiency 

The numerical efficiency numE  includes the Domain 

Decomposition efficiency DDE  and convergence rate 

behavior 1/ NNo , as defined in Eq. (4.10). The DD 

efficiency )1(/)1(1
oo N

BB

N

Bdd TTE   includes the increase 

of floating point operations induced by grid overlap at 

interfaces and the CPU time variation generated by DD 

techniques. In Table 12, we listed the total CPU time 

distribution over various grid sizes and block numbers 

running with only one processor. Using this table, the DD 

efficiency EDD can be calculated, and the result are shown in 

Fig. 3. Note that the DD efficiency can be greater than one, 

even with one processor. Fig. 3 also shows that the optimum 

number of sub-domains, which maximizes the DD efficiency 

EDD, increases with the grid size. The convergence rate 

behavior No / N1, the ratio of the iteration number for the best 

sequential CPU time on one processor and the iteration 

number for the parallel CPU time on n processor, describes 

the increase in the number of iterations required by the to the 

serial method. This increase is caused mainly by the 

deterioration in the rate of convergence with increasing 

number of processors and sub-domains. Because the best 

serial algorithm is not known generally, we take the existing 

parallel program running on one processor to replace it. Now 

the problem is that how the decomposition strategy affects the 

convergence rate? The results are summarized in Table 13 and 

Fig. 4, and Table 14 and Fig. 5. It can be seen that No / N1 

decreases with increasing block number and increasing 

number of processors for given grid size. The larger the grid 

size, the higher the convergence rate. For a given block 

number, a higher convergence rate is obtained with less 

processors. This is because one processor may be responsible 

for a few sub-domains at each iteration. If some of this sub-

domains share some common interfaces, the subsequent 

blocks to be computed will use the new updated boundary 

values, and therefore, an improved convergence rate results. 

The convergence rate is reduced when the block number is 

large. The reason for this is evident: the boundary conditions 

propagate to the interior domain in the serial computation 

after one iteration. But this is delayed in the parallel 

computation. In addition, the values of variables at the 

interfaces used in the current iteration are the previous values 

obtained in the last iteration. Therefore, the parallel algorithm 

is less “implicit” than the serial one. Despite these inherent 

short comes. A high efficiency is obtained for large scale 

problems.       

 

 

 

 

Table 11: The slave computational time TSC, for 100 

iterations as a function of various block numbers 
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Table 12: The total computational time T for 100 

iterations as a function of various block numbers 
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Fig. 3: The DD efficiency versus the number of sub-

domains for various meshes. 
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Table 13: The number of iteration to achieve a given 

tolerance of 10-3 for a grid of 70x70x6 

 

 

 

 

 

 

 

Table 14: The number of iteration to achieve a given 

tolerance of 10-2 for a grid of 120x120x6 

N B = 1 B = 16 B = 50 B =100  

 

1 2398 2443 2597 2602 

2 2398 2451 2628 2724 

4 2398 2473 2681 2765 

8 2398 2473 2708 2986 

12 2398 2473 2701 3032 

16 2398 2473 2715 3161 

     

 

Fig.4: Convergence behavior with domain decomposition 

for mesh 70x70x6 

 

 

 

Fig. 5: Convergence behavior with domain decomposition 

for mesh 120x120x6 

4.4 Total Efficiency 
We implemented the serial computations on one of the 

processors, and calculated the total efficiencies. The total 

efficiency E(n) for grid sizes 70x70x6 and 120x120x6  have 

been showed respectively. From Eq. (4.8), we know that the 

total efficiency depend on No / N1,  parE  and DD efficiency 

EDD since the load balancing is not the real problem here. For 

a given grid size and block number, the DD efficiency is 

constant. Thus, the variation of E(n) with processor number n 

is governed by parE and 1/ NNo . When the processor 

number becomes large, E(n) decreases with n due to the effect 

of both the convergence rate and the parallel efficiency. 

5. CONCLUSIONS 
This paper presented a study on the parallelization of 3-D ADI 

scheme on 3-D Telegraph problem with PVM, on a 

distributed memory system using SPMD model on a master-

slave platform. The system allows a parallel collection of 

overlapping communication to avoid unnecessary 

synchronization and to have the impact of parallel 

convergence. In addition to the use of ease of our platform, 

compared to other approaches show negligible overhead with 

effective load scheduling over various mesh sizes, which 

produce the expected inherent speedups. It was also 

confirmed that flexible scheduling for the overlapping 

communication are important, and this is easy on the master-

slave platform with SPMD model as seen from the Tables and 

Figures. The convergence rate depends upon the block 

numbers and the number of processors for a given grid. For a 

given number of blocks, the convergence rate increases with 

decreasing number of processors, and for a given number of 

processors, it decreases with increasing block number. 

Computational results obtained have clearly shown the 

benefits of parallelization. The DD greatly influences the 

performance of the 3-D ADI scheme on the parallel 

computers. On the basis of the current parallelization strategy, 

more sophisticated models can be attacked efficiently.  
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