

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.11, December 2012 – www.ijais.org

12

Parallelization of 3-D ADI Scheme on Telegraph Problem

using Domain Decomposition with PVM

Ewedafe Simon Uzezi
Faculty of Computing and IT Baze University

Abuja, Nigeria

Rio Hirowati Shariffudin

Institute of Mathematical Sciences
Faculty of Science

University of Malaya

ABSTRACT

A parallel implementation of 3-D Alternating Direction

Implicit (3-D ADI) method on 3-D Telegraph problem on a

distributed computing environment through Parallel Virtual

Machine (PVM) is reported. The numerical method is implicit

and is based on a splitting strategy which is applied alternately

at each half time step. The parallelization is implemented by

a Domain Decomposition (DD) strategy on a distributed

system with Single Program Multiple Data (SPMD) model on

a PVM platform. The parallelization strategy and performance

are discussed. Different strategies to improve the

computational efficiency are proposed.

General Terms

Parallel Computing, Numerical Computing, Mathematical

Computation.

Keywords

Telegraph, 3-D ADI, PVM, Domain Decomposition, and

Parallelization.

1. INTRODUCTION
Due to the ever-increasing clock frequency and the

aggressively shrinking feature sizes of the very large scale

integration technology, robust power distribution network is

crucial to ensure the quality of power delivery. This makes the

issues of parallel and distributed applications very important.

Parallel computing environments based on distributed

computing has become effective and economical platforms for

high performance computing by providing controlled access

to a much larger and richer computational resource [20].

Distributed systems can increase application performance by

significant amount and the incremental enhancement of a

network based concurrent computing environment is usually

straight forward because of the availability of high bandwidth

networks [2, 3]. Attempts have also been made towards

parallel solutions on distributed memory MIMD machines.

Large scale computational scientific and engineering problem,

such as time dependent and 3D flows of viscous elastic fluids,

required large computational resources with a performance

approaching some tens of giga (109) floating point

calculations per second, an alternative and cost effective

means of achieving a comparable performance is by way of

distributed computing, using a system of processors loosely

connected through a local area network [4]. Relevant data

need to be passed from processor to processor through a

message passing mechanism [12, 6, 19, 16]. The natural

programming style under a distributed system is therefore the

Multiple Instructions Multiple Data (MIMD) [22]. The basic

idea is to split a program into a few smaller tasks and to

allocate these tasks to several processors to be executed

simultaneously. Thus the total execution time can be reduced

to just a fraction of that of a uni-processor computer.

Generally, there are three issues relating to parallel

computing: (1) The first issue is how to break up the program

into smaller tasks, and how to properly sequence these tasks,

(2) The second is the communication between processors,

which is necessary because some intermediate results have

been exchanged among these processors and (3) The issue of

the synchronization of computations on different processors.

All these three problems strongly influence the performance

of the parallel computation.

Methods by which processors exchange information; parallel

computers can either be of shared memory or distributed

memory (message-passing) architectures. With the shared

memory architectures, there is a global share memory which

can be accessed by all processors. Processors communicate by

writing into and reading from the global memory. This mode

of communication is convenient in terms of program writing,

but memory access by different processors can generate

potential memory conflicts. With distributed memory

architectures, each processor has its local memory, and

processors communicate through an interconnection network.

Inefficient communication is the main problem for this type of

communication. To help with the program development under

a distributed computing environment, a number of software

tools have been developed: PVM, Theoretical Chemistry

Message Passing Tool Kit (TCMSG), Parasoft Express

(EXPRESS), Network Linda (LINDA), and Message Passing

Interface (MPI). PVM [13, 14] is chosen here since it has a

large user group with possibly the best support for

heterogeneous environment.

Parallel algorithms have been implemented for the finite

difference method [15], discrete eigen functions method in [1]

and [8] use the AGE method on 1-D Telegraph problem.

Boundary element method and the finite volume method using

DD have also been implemented. In addition, time and

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.11, December 2012 – www.ijais.org

13

functional decompositions have also been used in parallel

implementations.

 In this paper, we present a parallel program for the solution

of the 3-D Telegraphic problem using the 3-D ADI method.

We employed the DD strategy, and mapped it onto a

distributed computing environment with a synchronous

iteration and a message passing master – slave construction.

The program was executed in a distributed memory system

under PVM. The numerical method is based on the double

sweep methods of Peaceman and Rachford (DS-PR) [19]. We

computed some examples to test the parallel algorithm. The

effects of the various parameters on the performance of the

algorithm are discussed. The prime objective of our platform

is not to be specific to one problem; it should be able to solve

a wide variety of time-dependent partial differential equations

(PDE) for various applications [24, 25]. This paper is

organized as follows: Section 2 introduces the model for the

3-D Telegraphic problem and introduces the 3-D ADI

method. Section 3 introduces the parallel implementation.

Section 4 introduces the results and discussion. Finally, a

conclusion is included in section 5.

1.1 Previous Research Work
The ADI method for the partial differential equations (PDEs)

proposed by Peaceman and Rachford [16] has been widely

used for solving algebraic systems resulting from finite

difference method analysis of PDEs in several scientific and

engineering applications. On the parallel computing front,

Rathish Kumar, et. al., have proposed a parallel ADI solver

for linear array of processors. Chan and Saied have

implemented ADI scheme on hypercube. Later Lixing et. al.,

have parallelized the ADI solver on multiprocessors. The ADI

method in [18] has been used for solving heat equation in 2-D.

Other works on parallel implementation of 2-D Telegraph

problem on cluster systems have been done in [10, 11].

Hence, parallelization of the ADI method has been tried in

[22]. Several numerical approaches dealing with telegraphic

equation problems have been carried out in [1, 8] and [9]. In

[15] the unconditional stability of the alternating difference

schemes has similarity to our scheme and shows that the

unconditional stability application is useful to its speedup and

efficiency as studied. Our implementation compared to others

is a way of proofing stability and convergence in parallel

platform of a distributed system. We also note the various

constant improvement on speedup, efficiency performance

analysis in [25] using the overlapping domain decomposition

method.

2. TELEGRAPH EQUATION
the frequency and time domains. A number of iterative

methods are developed in the literature to solve the Telegraph

equation using iterative solution [18]. Some of these iterative

schemes are employed in various parallel platforms [2, 20].

The speed of convergence of iterative scheme is examined for

the synchronous communication approaches in parallel

environment. We consider the second order Telegraph

equation:

0
2

2

2

2

2

2

2

2


































z

v

y

v

x

v

t

v
a

t

v
 (2.1)

where a RC GL  , let zandyx  , be the grid

spacing in the x, y, z and t directions, where

mzyx /1 , m is a positive integer. Hence,

we can solve (2.1) by extending the 1-D simple implicit finite

difference method [8] of the Telegraph equation to the above

3-D Telegraph equation, (2.1) becomes:

0

)(

2

)(

2

)(

2

2)(

2

2

1

1,,

1

,,

1

1,,

2

1

,1,

1

,,

1

,1,

2

1

,,1

1

,,

1

,,1

1

,,

1

,,

2

1

,,,,

1

,,





















































































z

vvv

y

vvv

x

vvv

t

vv
a

t

vvv

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

n

kji

 (2.2)

although this simple implicit scheme is unconditionally stable,

we need to solve a heptadiagonal system of algebraic

equations at each time step. Therefore, the computational time

is extremely huge.

2.1 3-D ADI Method on the Telegraph

Problem
In this section, we derive the 3-D ADI method of the simple

implicit finite difference method by using a general ADI

procedure [18] extended to (2.1). The ADI method is a well-

known method for solving the partial differential equation

(PDE). The main feature of ADI is to sweep directions

alternatively. In contrast to the standard finite-difference

formulation with only one iteration to advance from the nth to

(n + 1)th time step, the formulation of the ADI method

requires multilevel intermediate steps to advance from the nth

to (n + 1)th time step. Equation (2.2) can be rewritten as:

02 1

,,1,,

1

,,

3

1









 



 n

kji

n

kjio

n

kji

m

m vCvCvAI (2.3)

where the operators of I, Ams, and the constants of Co, C1 are

define as:

 I
n

kji

n

kji vv ,,,,  (2.4)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.11, December 2012 – www.ijais.org

14

 n

kji

n

kji

n

kjix

n

kji vvvvA ,,1,,,,1,,1 2    (2.5)

 n

kji

n

kji

n

kjiy

n

kji vvvvA ,1,,,,1,,,2 2    (2.6)

 n

kji

n

kji

n

kjiz

n

kji vvvvA 1,,,,1,,,,3 2    (2.7)
















t

a

tt
Co

2)(

1

)(

1
22

 (2.8)




























t

a

tt

a

t
C

2)(

1

2)(

1
221 (2.9)

the constant of x , y and z are:
















t

a

tx

b
x

2)(

1

)(22
 (2.10)
















t

a

ty

b
y

2)(

1

)(22
 (2.11)
















t

a

ty

b
y

2)(

1

)(22
 (2.12)

Table 1. The 3-D ADI Algorithm

The 3-D ADI Algorithm

Input = kjivv n

kji

n

kji ,,, 1

,,,, 

Output = kjivn

kji ,,1

,, 

Begin

 Sub-Iteration 1:

kji

vCvCvAA

vvv

n

kji

n

kjio

n

kji

n

jix

n

kjix

n

kjix

,,

)2()(

)21(

1

,,1,,

(*)1

,,32

)1(1

,1

)1(1

,,

)1(1

,,1















 

 Sub-Iteration 2:

kjivAv

vvv

n

kji

n

kji

n

kjiy

n

kjiy

n

kjiy

,,.

)21(

(*)1

,,2

)1(1

,,

)2(1

,1,

)2(1

,,

)2(1

,1,













 

 Sub-Iteration 3:

kjivAv

vvv

n

kji

n

kji

n

kjiz

n

kjiz

n

kjiz

,,.

)21(

(*)1

,,3

)2(1

,,

)3(1

1,,

)3(1

,,

)3(1

1,,













 

End

and set

1

,,,,

(*)1

,, 2   n

kji

n

kji

n

kji vvv (2.13)

which is a prediction of
1

,,

n

kjiv by the extrapolation method.

Then splitting (2.3) by using an ADI procedure as in [18], we

get a set of recursion relations as follows:

)2(

)()(

1

,,1,,0

(*)1

,,32

)1(1

,,1









n

kji

n

kji

n

kji

n

kji

vCvC

vAAvAI
 (2.14)

(*)1

,,2

)1(1

,,

)2(1

,,2)(  n

kji

n

kji

n

kji vAvvAI (2.15)

(*)1

,,3

)2(1

,,

)3(1

,,3)(  n

kji

n

kji

n

kji vAvvAI (2.16)

where
)2(1

,,

)1(1

,, ,  n

kji

n

kji vv are the intermediate solutions and the

desired solution is
)3(1

,,

1

,,

  n

kji

n

kji vv . Finally, expanding A1, A2

and A3 on the left side of (2.14) and (2.16), we get the 3-D

ADI algorithm as in Table 1.

3. PARALLEL IMPLEMENTATION

3.1 The Parallel Platform
The implementation was on a distributed computing

environment (Armadillo Generation Cluster) consisting of 16

Intel Pentium at 1.73GHZ and 0.99GB RAM. Communication

is through a fast Ethernet of 100 MBits per seconds connected

through fast Ethernet running Linux. The cluster performance

has high memory bandwidth with a message passing

supported by PVM which is public-domain software from

Oak Ridge National Laboratory [13]. PVM is a software

system that enables a collection of heterogeneous computers

to be used as a coherent and flexible concurrent computational

resource. PVM consist of two parts: a daemon process that

any user can install on a machine, and a user library that

contains routines for initiating processes on other machines,

for communicating between processes, and for changing the

configuration of machines. PVM supports program executed

on each machine in a user-configurable pool, and present a

unified, general, and powerful computational environment for

concurrent applications. The program, written in Fortran, C,

or C++, are provided access to PVM through calling PVM

library routines for functions such as process initiation,

message transmission and reception, and synchronization via

barriers or rendezvous. PVM is ideally suited for concurrent

applications composed o many interrelated parts, and is very

useful for the study of large-scale parallel computation.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.11, December 2012 – www.ijais.org

15

3.2 Domain Decomposition
The parallelization of the computations is implemented by

means of grid partitioning technique [5]. The computing

domain is decomposed into many blocks with reasonable

geometries. Along the block interfaces, auxiliary control

volumes containing the corresponding boundary values of the

neighboring block are introduced, so that the grids of

neighboring blocks are overlapped at the boundary. When the

domain is split, each block is given an I-D number by a

“master” task, which assigns these sub-domains to “slave”

tasks running in individual processors. In order to couple the

sub-domains’ calculations, the boundary data of neighboring

blocks have to be interchanged after each iteration. The

calculations in the sub-domains use the old values at the sub-

domains’ boundaries as boundary conditions. This may affect

the convergence rate; however, because the algorithm is

implicit, the blocks strategy can preserve nearly same

accuracy as the sequential program.

3.3 Parallel Algorithm
The algorithm can be transformed to master-slave model by

sending out the computing tasks on each block to each

processor in the Armadillo Generation Cluster system. The

master task reads in the input data file, generates the grid data,

initializes the variables, and sends all the data and parameters

to the slaves. It then sends a block 3-D to each slave process,

which in turn computes the coefficients of the relevant

equations and solves for the solution of this block. This

solution is then sent back to the master task and this processor

wait for the next task. The master task receives the solution

results from the slaves sequentially in an asynchronous

manner, rearranges the data, calculates the global residuals of

each equation, and determines if convergence has been

reached. If the convergence has not been reached, the current

solution vector is sent to all slaves, and a new iteration is

started. Therefore, all the variables stored in the local memory

of slaves are updated at every iteration. The following pseudo

codes summarize the algorithm for the master and the slave

program:

Master Program

Read in the input data

Compute mesh data

Initialize the variables

Enroll master program in pvm

Startup a slave program on each processor in the pvm farm

Send mesh data to all slave programs

Loop over iteration

Set block numbers and it value

Set the block index to it (ip = it)

Do while (slaves working on ip < n blocks)

 if (ip < nblocks) then

 do (for each processor)

 if (processor is idle)

then

 ip = ip + 1

 Send a

message to the idle processor to

 Compute a

solution on block ip

 end if

 if (ip = nblocks) break

 end do

 end if

 wait here for a result from slave program

 get block solution and residual of

equation

 end do while

 Global residual calculation

 Convergence check

 if (solution converged) break out loop

 send the current solution to all slave programs

end loop

Terminate all slave programs

Leave pvm

Time calculation

Save data file

Terminate the program

Slave Program

Enroll slave program in pvm

Do (forever)

 Wait for a message from the master program

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.11, December 2012 – www.ijais.org

16

 Case:

 GET MESH DATA

 Get mesh data from the master

program

 Break

 DO DOMAIN DECOMPOSITION

 Break

 GET CURRENT SOLUTION

 Get the current solution vector

 Break

 DO CALCULATION

 Get the block id, ip

 Do calculation on block ip

 Solve for all variables equation

on block ip

 Return the solution over ip to

the master program

 Break

 FINISH UP

 Leave pvm

 Terminate the program

 End case

End do

3.4 Speedup and Efficiency
The performance metric most commonly used is the speedup

and efficiency which gives a measure of the improvement of

performance experienced by an application when executed on

a parallel system [21]. Speedup is the ratio of the serial time

to the parallel version run on N processors. Efficiency is the

ability to judge how effective the parallel algorithm is

expressed as the ratio of the speedup to N processors.The

concept of speedup has yet to find a widely accepted

definition. In traditional parallel systems it is widely define as:

n
nS

nE
nT

sT
nS

)(
)(,

)(
)(

)( (3.1)

where S(n) is the speedup factor for the parallel computation,

T(s) is the CPU time for the best serial algorithm, T(n) is the

CPU time for the parallel algorithm using N processors, E(n)

is the total efficiency for the parallel algorithm. However, this

simple definition has been focus on constant improvements. A

generalized speedup formula is the ratio of parallel to

sequential execution speed. A thorough study of speedup

models, together with their advantages and disadvantages, is

presented by Sahni [23], and observed that speedup is

normally defined as the execution time of the best sequential

algorithm also known as absolute speedup, therefore implying

that the sequential and parallel might be different. A different

approach known as relative speedup, considers the parallel

and sequential algorithm to be the same. While the absolute

speedup calculates the performance gain for a particular

problem using any algorithm, relative speedup focuses on the

performance gain for a specific algorithm that solves the

problem. The total efficiency is usually decomposed into the

following equations

),()()()(nEnEnEnE loadparnum (3.2)

where Enum, is the numerical efficiency, represents the loss of

efficiency relative to the serial computation due to the

variation of the convergence rate of the parallel computation.

Eload is the load balancing efficiency, which takes into account

the extent of the utilization of the processors, and Epar is the

parallel efficiency, which is define as the ratio of CPU time

taken on one processor to that on N processors. The parallel

efficiency and the corresponding speedup are commonly

written as follows:

n

nS
nE

nT
T

nS par
parpar

)(
)(,

)(
)1(

)( (3.3)

the parallel efficiency takes into account the loss of efficiency

due to data communication and data management owing to

domain decomposition. The CPU time for the parallel

computations with N processors can be written as follows:

)()()()(nTnTnTnT scsdm  (3.4)

where Tm(n) is the CPU time taken by the master program,

Tsd(n) is the average slave CPU time spent in data

communication in slaves, Tsc(n) is the average CPU time

expressed in computation in slaves. Generally,

,
)1(

)(

),1()(),1()(

n
T

nT

TnTTnT

sc
sc

sdsdmm





 (3.5)

therefore, the speedup can be written as:

)1(

)1()1(

/)1()1(

)1()1(

)(

)1(
)(

ser

scser

scser

scser
par

T

TT

nTT

TT

nT

T
nS









 (3.6)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.11, December 2012 – www.ijais.org

17

where),1()1()1(sdmser TTT  which is the part that

cannot be parallelized. This is called Amdahl’s law, showing

that there is a limiting value on the speedup for a given

problem. The corresponding efficiency is given by:

)1(

)1()1(

)1()1(

)1()1(

)(

)1(
)(

nTser

TscTser

TscnTser

TscTser

nnT

T
nEpar









 (3.7)

the parallel efficiency represents the effectiveness of the

parallel program running on N processors relative to a single

processor. However, it is the total efficiency that is of real

significance when comparing the performance of a parallel

program to the corresponding serial version. Let)1(No

sT

denotes the CPU time of the corresponding serial program to

reach a prescribed accuracy with No iterations, and

)(1 nT
LN

BB denotes the total CPU time of the parallel version

of the program with B blocks run on N processors, to reach

the same prescribed accuracy with Ni iterations, including any

idle time. The superscript L acknowledges degradation in

performance due to the load balancing problem. The total

efficiency in (3.2) can be decomposed as follows:

,
)(

)(

)(

)1(

)1(

)1(

)1(

)1(

)1(

)1(

)(.

)1(
)(

1

1

1

1

1

0

1

1

1

nT

nT

nT

T

T

T

T

T

T

T

nTn

T
nE

LN

BB

N

BB

N

BB

N

BB

N

BB

N

BB

N

BB

N

B

N

B

N

s

LN

BB

N

s

o

o

o

oo





















(3.8)

where)(1 nT
N

BB has the same meaning as)(1 nT
LN

BB except

the idle time is not included. Comparing (3.5) and (3.2), we

obtain:

,
)1(

)1(

)1(

)1(

)1(

)1(

)1(

)1(
)(

,
)(.

)1(
)(,

)(
)(

1

1

1

1

1

1

1

1

N

BB

N

BB

N

BB

N

B

N

B

N

s

N

BB

N

s

N

BB

N

BB
parLN

BB

N

BB
load

T

T

T

T

T

T

T

T
nEnum

nTn

T
nE

T

nT
nE

o

o

o

o

oo























 (3.9)

when B=1 and n = 1, Tm(1) + Tsd(1) << Tsc(1), then

0.1)1(/)1(1 
oo N

s

N

B TT

we note that ./)1(/)1(1
1 NNTT o

N

BB

N

BB
o  Therefore,

)1(

)1(
,)(1

1
o

o

N

BB

N

B
dd

o

ddnum
T

T
E

N

N
EnE



 (3.10)

we call (3.10) domain decomposition efficiency (DD), which

includes the increase of CPU time induced by grid overlap at

interfaces and the CPU time variation generated by DD

techniques. The second term 1/ NNo in the right hand side

of (3.10) represents the increase in the number of iterations

required by the parallel method to achieve a specified

accuracy compared to the serial method.

3.5 Load Balancing
With static load balancing, the computation time of parallel

subtasks should be relatively uniform across processors;

otherwise, some processors will be idle waiting for others to

finish their subtasks. Therefore, the domain decomposition

should be reasonably uniform. A better load balancing is

achieved with the pool of tasks strategy, which is often used

in master – slave programming [7]: the master task keeps

track of idle slaves in the distributed pool and sends out the

next task to the first available idle slave. With this strategy,

the processors are kept busy until there is no further task in

the pool. If the tasks vary in complexity, the most complex

tasks are sent out to the most powerful processor first. With

this strategy, the number of sub-domains should be relatively

large compared to the number of processors. Otherwise, the

slave solving the last sent block will force others to wait for

the completion of this task; this is especially true if this

processor happens to be the least powerful in the distributed

system. The block size should not be too small either, since

the overlap of nodes at the interfaces of the sub-domains

become significant. This results in a doubling of the

computations of some variables on the interfacial nodes,

leading to a reduced efficiency. Increasing the block number

also lengthens the execution time of the master program,

which leads to a reduced efficiency.

4. Results and Discussion

4.1 Benchmark Problem
In order to test the validation and the performance of the

distributed code for the 3-D Telegraph problem at various grid

sizes was computed. The solution domain was divided into

rectangular blocks. The numerical results are

indistinguishable to those obtained from a serial finite

difference code. Consider the Telegraph Equation of the form:

v
t

v

t

v

z

v

y

v

x

v

























2

2

22

2

2

2

 (4.1)

The boundary condition and initial condition posed are:

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.11, December 2012 – www.ijais.org

18

0

100)1,,(

0)0,,(

100),1,(

0),0,(

100),,1(

0),,0(






























t

yxv

yxv

zxv

zxv

zyv

zyv

 (4.2)

,),,(xyzezyxv  (4.3)

4.2 Parallel Efficiency
To obtain a high efficiency, the slave computational time

)1(scT should be significantly larger than the serial time

.serT In this present program, the CPU time for the master

task and the data communication is constant for a given grid

size and sub-domain. Therefore the task in the inner loop

should be made as large as possible to maximize the

efficiency. The speed-up and efficiency obtained for various

sizes, from 70x70x6 to 210x210x6, are for various numbers of

sub-domains, from B = 50 to 200 are listed in Tables 2 – 10.

In this tables we also listed the wall (elapsed) time for the

master task, ,WT (this is necessarily greater than the

maximum wall time returned by the slaves), the master CPU

time, ,MT the average slave computational time, ,SCT and

the average slave data communication time, ,SDT all in

seconds. The speed-up and efficiency versus the number of

processors are also shown in fig. 4 and Fig. 5, respectively,

with block number B as a parameter.The results above show

that the parallel efficiency increases with increasing grid size

for given block number, and decreases with the increasing

block number for given grid size. Given other parameters the

speed-up increases with the number of processors. At a large

number of processors, Amdahl’s law starts to operate,

imposing a limiting speed-up due to the constant serial time.

Note that the elapsed time is a strong function of the

background activities of the cluster. When the number of

processors is small, the wall time decreases with the number

of processors. As the number of processors become large,

however, the wall time increases with the number of

processors. The total CPU time is composed of three parts: the

CPU time for the master task, the average slave CPU time for

data communication and the average slave CPU time for

computation, .SCSDM TTTT  Data communication

at the end of every iteration is necessary in this strategy.

Indeed, the updated values of the solution variables on full

domain are multicast to all slaves after each iteration since a

slave can be assigned a different sub-domain under the pool-

of-task paradigm. The master task includes sending updated

data to slaves, assigning the task tid to slaves, waiting for

message from processors, and receiving the result from slaves.

For given grid size, the CPU time for send task tid to slaves

increase with block number, but the timing for other tasks

does not change significantly with block number. In Tables 2

– 10 we see that the master time ,MT is constant when the

number of processors increases, for a given grid size and

number of sub-domains. The master program is responsible

for (1) sending updated variables to slaves (T1), (2) assigning

task to slaves (T2), (3) waiting for the slaves to execute tasks

(T3), (4) receiving the results (T4).

Table 2: The wall time TW, the master time TM, the slave

data time TSD, the slave computational time TSC, the total

time T, the parallel speed-up Spar and the efficiency Epar for

a mesh of 70x70x6, with B = 50 blocks and Niter = 100.

N Tw Tm Tsd Tsc T Spar Epar

1 1334 46 4 571 621 1.000 1.000

2 658 45 3 339 387 1.605 0.803

3 356 45 3 254 302 2.056 0.685

4 273 45 3 195 243 2.556 0.639

5 259 45 3 173 221 2.810 0.562

6 243 45 3 156 204 3.044 0.507

7 227 45 3 138 186 3.339 0.477

8 215 45 3 120 168 3.696 0.462

12 195 45 3 67 115 5.400 0.450

16 230 45 3 54 102 6.088 0.381

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.11, December 2012 – www.ijais.org

19

Table 3: The wall time TW, the master time TM, the slave

data time TSD, the slave computational time TSC, the total

time T, the parallel speed-up Spar and the efficiency Epar for

a mesh of 120x120x6, with B = 50 blocks and Niter = 100.

N Tw Tm Tsd Tsc T Spar Epar

1 2934 143 16 2016 2175 1.000 1.000

2 1382 140 14 1141 1295 1.680 0.840

3 748 140 14 775 929 2.341 0.780

4 573 140 14 614 768 2.832 0.708

5 544 140 14 474 628 3.463 0.693

6 510 140 14 396 550 3.955 0.659

7 452 140 14 359 513 4.240 0.606

8 452 140 14 325 479 4.541 0.568

12 410 141 14 209 364 5.975 0.498

16 483 140 14 178 332 6.551 0.409

Table 4: The wall time TW, the master time TM, the slave

data time TSD, the slave computational time TSC, the total

time T, the parallel speed-up Spar and the efficiency Epar for

a mesh of 210x210x6, with B = 50 blocks and Niter = 100

N Tw Tm Tsd Tsc T Spar Epar

1 14963 400 62 9326 9788 1.000 1.000

2 7048 392 64 5072 5528 1.770 0.885

3 3815 392 62 3627 4081 2.400 0.800

4 2922 391 62 2903 3356 2.917 0.729

5 2774 392 62 2272 2726 3.591 0.718

6 2601 392 62 1921 2375 4.121 0.687

7 2305 392 62 1747 2201 4.447 0.635

8 2305 395 64 1597 2056 4.760 0.588

12 2091 394 62 1082 1538 6.364 0.530

16 24633 394 62 938 1394 7.022 0.439

Table 5: The wall time TW, the master time TM, the slave

data time TSD, the slave computational time TSC, the total

time T, the parallel speed-up Spar and the efficiency Epar for

a mesh of 70x70x6, with B = 100 blocks and Niter = 100.

Table 6: The wall time TW, the master time TM, the slave

data time TSD, the slave computational time TSC, the total

time T, the parallel speed-up Spar and the efficiency Epar for

a mesh of 120x120x6, with B = 100 blocks and Niter = 100.

N Tw Tm Tsd Tsc T Spar Epar

1 3672 213 16 2116 2345 1.000 1.000

2 1847 213 14 1178 1405 1.669 0.885

3 1247 212 14 889 1115 2.103 0.701

4 989 212 14 682 908 2.583 0.646

5 808 212 14 528 754 3.110 0.622

6 754 212 14 437 663 3.537 0.590

7 628 212 14 383 609 3.851 0.550

8 607 212 14 335 561 4.180 0.523

12 584 214 14 198 426 5.505 0.459

16 692 212 14 137 363 6.460 0.404

N Tw Tm Tsd Tsc T Spar Epar

1 1142 82 4 662 748 1.000 1.000

2 679 82 3 344 429 1.744 0.872

3 396 84 3 270 357 2.095 0.698

4 321 84 3 192 279 2.681 0.670

5 295 82 3 163 248 3.016 0.603

6 274 82 3 146 231 3.238 0.540

7 257 82 3 127 212 3.528 0.504

8 238 82 3 110 195 3.836 0.480

12 211 82 3 44 129 5.798 0.483

16 264 81 3 33 117 6.393 0.400

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.11, December 2012 – www.ijais.org

20

Table 7. The wall time TW, the master time TM, the slave

data time TSD, the slave computational time TSC, the total

time T, the parallel speed-up Spar and the efficiency Epar for

a mesh of 210x210x6, with B = 100 blocks and Niter = 100.

N Tw Tm Tsd Tsc T Spar Epar

1 11095 431 62 8760 9253 1.000 1.000

2 7342 429 64 4864 5354 1.728 0.864

3 3218 429 62 3398 3889 2.379 0.793

4 2198 429 62 2763 3254 2.843 0.711

5 2131 429 62 2123 2614 3.539 0.708

6 1985 429 62 1763 2254 4.105 0.684

7 1764 429 62 1614 2105 4.395 0.628

8 1711 430 64 1596 2090 4.427 0.553

12 1536 429 62 957 1448 6.389 0.532

16 25897 430 64 805 1299 7.123 0.445

Table 8. The wall time TW, the master time TM, the slave

data time TSD, the slave computational time TSC, the total

time T, the parallel speed-up Spar and the efficiency Epar for

a mesh of 70x70x6, with B = 200 blocks and Niter = 100.

Table 9. The wall time TW, the master time TM, the slave

data time TSD, the slave computational time TSC, the total

time T, the parallel speed-up Spar and the efficiency Epar for

a mesh of 120x120x6, with B = 200 blocks and Niter = 100.

N Tw Tm Tsd Tsc T Spar Epar

1 4752 278 16 2193 2487 1.000 1.000

2 1832 278 14 1204 1496 1.662 0.831

3 1238 278 14 895 1187 2.095 0.698

4 895 276 14 694 984 2.527 0.632

5 793 276 14 512 802 3.101 0.620

6 718 276 14 418 708 3.513 0.586

7 621 276 14 365 655 3.797 0.542

8 642 276 14 299 589 4.222 0.528

12 573 278 14 161 453 5.490 0.458

16 1158 278 14 95 387 6.426 0.402

Table 10: The wall time TW, the master time TM, the slave

data time TSD, the slave computational time TSC, the total

time T, the parallel speed-up Spar and the efficiency Epar for

a mesh of 210x210x6, with B = 200 blocks and Niter = 100.

N Tw Tm Tsd Tsc T Spar Epar

1 10543 524 62 8597 9183 1.000 1.000

2 5383 518 64 4779 5361 1.713 0.857

3 3042 518 62 3385 3965 2.316 0.772

4 1985 518 62 2807 3387 2.711 0.678

5 1874 518 62 2099 2679 3.428 0.686

6 1743 518 62 1664 2244 4.092 0.682

7 1684 518 62 1596 2176 4.220 0.603

8 1619 516 64 1514 2094 4.385 0.548

12 1495 518 62 881 1461 6.285 0.524

16 27432 516 64 726 1306 7.031 0.439

N Tw Tm Tsd Tsc T Spar Epar

1 1538 157 4 864 1025 1.000 1.000

2 763 157 3 429 589 1.740 0.870

3 596 158 3 356 517 1.983 0.661

4 485 154 3 238 395 2.595 0.649

5 411 154 3 187 344 2.980 0.596

6 384 154 3 172 329 3.116 0.519

7 316 154 3 150 307 3.339 0.477

8 432 152 3 124 279 3.674 0.459

12 783 158 3 25 186 5.511 0.459

16 834 157 3 7 167 6.138 0.384

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.11, December 2012 – www.ijais.org

21

a.

b.

c.

Fig. 1. Speed-up versus the number of processors. a mesh

70x70x6, b mesh 120x120x6, c mesh 210x210x6

a.

b.

c.

Fig. 2. Parallel efficiency versus the number of processors.

a mesh 70x70x6, b mesh 120x120x6, c mesh 210x210x6

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

B=25
100x100

B=50
100x100

B=100
100x100

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

B=25
200x200

B=50
200x200

B=100
200x200

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

B=25
400x400

B=50
400x400

B=100
400x400

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

B=25
100x100

B=50
100x100

100
100x100

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

B=25
200x200

B=50
200x200

B=100
200x200

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9

B=25
400x400

B=50
400x400

B=100
400x400

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.11, December 2012 – www.ijais.org

22

4.3 Numerical Efficiency

The numerical efficiency numE includes the Domain

Decomposition efficiency DDE and convergence rate

behavior 1/ NNo , as defined in Eq. (4.10). The DD

efficiency)1(/)1(1
oo N

BB

N

Bdd TTE  includes the increase

of floating point operations induced by grid overlap at

interfaces and the CPU time variation generated by DD

techniques. In Table 12, we listed the total CPU time

distribution over various grid sizes and block numbers

running with only one processor. Using this table, the DD

efficiency EDD can be calculated, and the result are shown in

Fig. 3. Note that the DD efficiency can be greater than one,

even with one processor. Fig. 3 also shows that the optimum

number of sub-domains, which maximizes the DD efficiency

EDD, increases with the grid size. The convergence rate

behavior No / N1, the ratio of the iteration number for the best

sequential CPU time on one processor and the iteration

number for the parallel CPU time on n processor, describes

the increase in the number of iterations required by the to the

serial method. This increase is caused mainly by the

deterioration in the rate of convergence with increasing

number of processors and sub-domains. Because the best

serial algorithm is not known generally, we take the existing

parallel program running on one processor to replace it. Now

the problem is that how the decomposition strategy affects the

convergence rate? The results are summarized in Table 13 and

Fig. 4, and Table 14 and Fig. 5. It can be seen that No / N1

decreases with increasing block number and increasing

number of processors for given grid size. The larger the grid

size, the higher the convergence rate. For a given block

number, a higher convergence rate is obtained with less

processors. This is because one processor may be responsible

for a few sub-domains at each iteration. If some of this sub-

domains share some common interfaces, the subsequent

blocks to be computed will use the new updated boundary

values, and therefore, an improved convergence rate results.

The convergence rate is reduced when the block number is

large. The reason for this is evident: the boundary conditions

propagate to the interior domain in the serial computation

after one iteration. But this is delayed in the parallel

computation. In addition, the values of variables at the

interfaces used in the current iteration are the previous values

obtained in the last iteration. Therefore, the parallel algorithm

is less “implicit” than the serial one. Despite these inherent

short comes. A high efficiency is obtained for large scale

problems.

Table 11: The slave computational time TSC, for 100

iterations as a function of various block numbers

NI x NJ B =

1

B =

8

B =

16

B =

24

B

=

50

B

=

10

0

B

=

20

0

70x70x

6

625 409 395 486 57

1

66

2

86

4

120x12

0x6

304

2

245

6

210

3

206

4

20

16

21

16

21

93

210x21

0x6

216

58

146

94

114

23

113

72

93

26

87

60

85

97

Table 12: The total computational time T for 100

iterations as a function of various block numbers

NI x

NJ

B =

1

B =

8

B =

16

B =

24

B =

50

B =

10

0

B =

20

0

100

x100

732 565 563 572 62

1

74

8

10

25

200x

200

310

7

265

4

236

1

228

9

21

75

23

45

24

87

400x

400

285

92

155

87

125

18

124

93

97

88

92

53

91

83

Fig. 3: The DD efficiency versus the number of sub-

domains for various meshes.

0

1

2

3

4

1 4 8 12 25 50 100

100x100

200x200

400x400

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.11, December 2012 – www.ijais.org

23

Table 13: The number of iteration to achieve a given

tolerance of 10-3 for a grid of 70x70x6

Table 14: The number of iteration to achieve a given

tolerance of 10-2 for a grid of 120x120x6

N B = 1 B = 16 B = 50 B =100

1 2398 2443 2597 2602

2 2398 2451 2628 2724

4 2398 2473 2681 2765

8 2398 2473 2708 2986

12 2398 2473 2701 3032

16 2398 2473 2715 3161

Fig.4: Convergence behavior with domain decomposition

for mesh 70x70x6

Fig. 5: Convergence behavior with domain decomposition

for mesh 120x120x6

4.4 Total Efficiency
We implemented the serial computations on one of the

processors, and calculated the total efficiencies. The total

efficiency E(n) for grid sizes 70x70x6 and 120x120x6 have

been showed respectively. From Eq. (4.8), we know that the

total efficiency depend on No / N1, parE and DD efficiency

EDD since the load balancing is not the real problem here. For

a given grid size and block number, the DD efficiency is

constant. Thus, the variation of E(n) with processor number n

is governed by parE and 1/ NNo . When the processor

number becomes large, E(n) decreases with n due to the effect

of both the convergence rate and the parallel efficiency.

5. CONCLUSIONS
This paper presented a study on the parallelization of 3-D ADI

scheme on 3-D Telegraph problem with PVM, on a

distributed memory system using SPMD model on a master-

slave platform. The system allows a parallel collection of

overlapping communication to avoid unnecessary

synchronization and to have the impact of parallel

convergence. In addition to the use of ease of our platform,

compared to other approaches show negligible overhead with

effective load scheduling over various mesh sizes, which

produce the expected inherent speedups. It was also

confirmed that flexible scheduling for the overlapping

communication are important, and this is easy on the master-

slave platform with SPMD model as seen from the Tables and

Figures. The convergence rate depends upon the block

numbers and the number of processors for a given grid. For a

given number of blocks, the convergence rate increases with

decreasing number of processors, and for a given number of

processors, it decreases with increasing block number.

Computational results obtained have clearly shown the

benefits of parallelization. The DD greatly influences the

performance of the 3-D ADI scheme on the parallel

computers. On the basis of the current parallelization strategy,

more sophisticated models can be attacked efficiently.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 12 16

B=1
200x200

B=8
200x200

B=25
200x200

B=50
200x200

0.8

0.85

0.9

0.95

1

1.05

1 2 4 8 12 16

B=1
100x100

B=8
100x100

B=25
100x100

N B = 1 B = 16 B = 50 B =100

1 2113 2269 2396 2422

2 2113 2327 2518 2564

4 2113 2384 2604 2682

8 2113 2412 2658 2704

12 2113 2412 2661 2712

16 2113 2418 2675 2728

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.11, December 2012 – www.ijais.org

24

6. REFERENCES

[1] Aloy R., Casaban M.C., Caudillomate L.A., Jodar L.,

2007. Computing the Variable Coefficient Telegraph

Equation using a Discrete Eigen Functions Method.

Computers and Mathematics with Applications 54, pp.

448 – 458.

[2] W. Barry, A. Michael, 2003. Parallel Programming

Techniques and Application using Networked

Workstation and Parallel Computers. Prentice Hall, New

Jersy

[3] A. Beverly, et al., 2005. The Algorithmic Structure

Design Space in Parallel Programming. Wesley

Professional

[4] R. Chypher, A. Ho, et al., 1993. Architectural

Requirements of Parallel Scientific Applications with

Explicit Communications. Computer Architecture, pp 2 –

13

[5] P.J Coelho, M.G Carvalho, 1993. Application of a

Domain Decomposition Technique to the Mathematical

Modeling of Utility Boiler. Journal of Numerical

Methods in Eng., 36 pp 3401 – 3419

[6] F. Durst, M. Perie, D. Chafer, E. Schreck, 1993.

Parallelization of Efficient Numerical Methods for Flows

in Complex Geometries. Flow Simulation with High

Performance Computing I, pp 79 – 92, Vieweg,

Braunschelweig

[7] J. H. Eduardo, M. A., H. Amaral (2007). Speedup and

Scalability Analysis of Master-Slave Applications on

Large Heterogeneous Clusters. Journal of Parallel and

Distributed Computing 67(11), pp 1155 - 1167

[8] D.J Evans, B. Hassan, 2003. Numerical Solution of the

Telegraph Equation by the AGE Method. Int’l Journal of

Computer Mathematics Vol. 80, number 10, pp 1289 –

1297

[9] D.J. Evans, M.S. Sahimi, The Alternating Group Explicit

Iterative Method for Parabolic Equations I: 2-

Dimensional Problems, Int’l. J. Compt. Math, Vol. 24,

(1988) pp. 311-341

[10] S. U. Ewedafe, H. S. Rio, 2011. Parallel Implementation

of 2-D Telegraph Equation on MPI/PVM Cluster. Int’l

Jour. of Parallel Programming, 39, Issue 2, 202 – 231

[11] S. U. Ewedafe, H. S. Rio, 2011. Armadillo Generation

Distributed Systems & Geranium Cadcam Cluster for

solving 2-D Telegraph Equation. Int’l Jour. of Computer

Mathematics, 88, Issue 3, 589 – 609

[12] Fan C., Jiannong C., Yudong S. 2003. High Abstractions

for Message Passing Parallel Programming. Parallel

Computing 29, 1589 – 1621.

[13] A. Geist A. Beguelin, J. Dongarra, 1994. Parallel Virtual

Machine (PVM). Cambridge, MIT Press

[14] G.A Geist, V.M Sunderami, 1992. Network Based

Concurrent Computing on the PVM System.

Concurrency Practice and Experience, pp 293 – 311

[15] Guang-Wei Y., Long-Jun S., Yu-Lin Z. 2001.

Unconditional Stability of Parallel Alternating Difference

Schemes for Semilinear parabolic Systems. Applied

Mathematics and Computation 117, pp 267 – 283

[16] K. Jaris, D.G. Alan, 2003. A High-Performance

Communication Service for Parallel Computing on

Distributed Systems. Parallel Computing 29, pp 851 –

878

[17] Mitchell, A.R., Fairweather, G. (1964). Improved forms

of the Alternating direction methods of Douglas,

Peaceman and Rachford for solving parabolic and elliptic

equations, Numer. Maths, 6, 285 – 292.

[18] D.W Peaceman, H.H Rachford, 1955. The Numerical

Solution of Parabolic and Elliptic Differential Equations.

Journal of Soc. Indust. Applied Math. 8 (1) pp 28 – 41

[19] Peizong L., Z. Kedem, 2002. Automatic Data and

Computation Decomposition on Distributed Memory

Parallel Computers. ACM Transactions on Programming

Languages and Systems, vol. 24, number 1, pp 1 – 50

[20] M.J Quinn, 2001. Parallel Programming in C. MC-Graw

Hill Higher education New York.

[21] R. Rajamony, A. L. Cox, 1997. Performance Debugging

Shared Memory Parallel Programs Using Run-Time

Dependence Analysis. Performance Review 25 (1), pp 75

– 87

[22] B. V Rathish Kumar, et al., 2001. A Parallel MIMD Cell

Partitioned ADI Solver for Parabolic Partial Differential

Equations on VPP 700. Parallel Computing 42, pp 324 –

340

[23] V. T Sahni, 1996. Performance Metrics: Keeping the

Focus in Routine. IEEE Parallel and Distributed

Technology, Spring pp 43 – 56.

[24] X.H Sun, J. Gustafson, 1991. Toward a Better Parallel

Performance Metric. Parallel Computing 17.

[25] M. Tian, D. Yang, 2007. Parallel Finite-Difference

Schemes for Heat Equation based upon Overlapping

Domain Decomposition. Applied Maths and

Computation, 186, pp 1276 – 1292

