

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.1, September 2012 – www.ijais.org

54

Mobile Join Algorithms based on Mobiles Agents for
Large Scale Distributed Query Optimization

Mohammad HUSSEIN
Dept. of business information system

Lebanese university, faculty of business
Tripoli, Lebanon

ABSTRACT

In the large scale distributed environment, the query

optimization presents new problems because of the data

unavailability, the estimations inaccuracies and environment

instability. In this paper, we address the sub-optimality of

executions plans caused by these problems. We propose to

extend the join algorithms based on mobile agents in order to

correct the sub-optimality. This extension allows the join to

change their execution site. Indeed, the mobile agent

executing a join adapts to changes in characteristics of the

execution environment (e.g. network bandwidth, available

memory) and responds to the estimations inaccuracies (e.g.

size of intermediate relations). The performance evaluation

shows that the proposed algorithms improve the response time

whatever the variation of estimations errors.

Keywords

Distributed data bases systems, Query optimization, mobile

agents, Data integration.

1. INTRODUCTION
In database management systems, the query processing

gathers all the necessaries steps to calculate the results of

queries. It consists of several successive phases [32]:

rewriting, optimization and execution. Optimization is the

producing process that will minimize the cost function of an

execution plan of a query. This function has an objective

either to minimize the total time [35], or to minimize the

response time [14]. The query optimizer based on a cost

model [17, 19, 20, 29, 39], generates an optimal execution

plan or close to optimal. The methods of classical

optimization produce firstly an optimal execution plan. Then,

the generated execution plans are sent to the execution engine

in order to be executed. This methods suppose that the values

of the parameters utilized during the generation of an optimal

execution plan (e.g. size of relations, selectivity of operators,

available resources), are always valid at runtime. But this

assumption is often unjustified. Indeed, values of the

parameters used during optimization can become invalid

during the execution because of several factors:

 Absence of statistics: the statistics describing the data

(e.g. size, cardinality, maximal and minimal values)
necessary to estimates the costs of the execution plans
can be non-existent.

 Estimation errors: the estimations of the sizes of the
temporary relations and the operator costs of an
execution plan can be erroneous because of the
absence or the imprecision of the statistics describing
the data.

 Instability of the execution environment: in a large
scale distributed environment, thousands of users can

submit their queries. The complexity of these queries
is different and gives data arrival rates of these
queries to the system is irregular. For that, the
characteristics of the execution sites (e.g. memory
available, load of CPU) and networks (band-width
and latency) vary from one moment to another.

Because of the factors mentioned previously, the execution

plans generated, during compilation, can be sub-optimal. To

correct this sub-optimality, several solutions were proposed.

The first solution consists to improve the quality of the

statistics describing the data relied on the previous executions.

This solution was used by [9, 11] to improve the estimations

quality of the selectivity factors, and by [36] to estimate the

correlation between the predicates. The second solution

proposed by Antoshenkov et al. [3] executes, in parallel,

several execution plans for the same query in order to choose

the best plan among them. After at certain time, the

executions of all plans are suspended except for only one

which continues its execution. A third solution proposed by

[27] concentrates on the multi-join distributed queries. The

optimizer generates an optimal or closes to optimal execution

plan after having deduced the costs of inter-sites data transfer

and the cardinalities of temporary relations. These parameters

are deduced by calibration. Hence, the operators of the query

are executed on a subset of tuples of the operands in order to

estimate the costs of inter-site data transfer and the

cardinalities of temporary relations. The fourth solution

consists in modifying the sub-optimal execution at runtime,

this solution is called dynamic optimization (named also

adaptive) [4, 5, 7, 8, 18, 23, 24, 26].

In this paper, we propose autonomous and mobile execution

of every relational operator of an execution plan by mobile

agents. The agent executing an operator is conscious of its

environment, able to react in an autonomous and

decentralized way with the evolution of the system state (e.g.

workload of sites, bandwidth) and with the estimation errors.

Furthermore, it can move from site to another to continue its

execution.

The remainder of paper is organized in the following way: in

the section 2 we describe state of the art of the main

optimization dynamic method. Section 3 proposes an

extension of join algorithms. This extension based on mobile

agents in order to allow the join to change their execution site.

The decision and change control of the execution site are

made in a decentralized and autonomous manner. Section 4

presents the experimentation environment and the results of

the experiments. Finally, we conclude and present the

perspectives.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.1, September 2012 – www.ijais.org

55

2. RELATED WORKS
Several dynamic optimization methods [1, 2, 6, 7, 21, 22, 34]

are proposed in the literature for correcting the sub-optimal

execution plans. These methods are classified in four types (i)

Replacement,(ii) Scheduling[15], (iii): Re-

optimization[1,2,12], and (iv) Uses of dynamic

operators[23,24]. Each dynamic optimization method is able

in adapting the execution plans in order to react to one or

several events: (i) Estimation errors [15],(ii) Memory

available[7,8,28,30], (iii): Delays in data arrival rates[1,2],

and (iv) Users Preferences. The modification level of the

executions plans can also be differ from a method to another.

Methods propose to modify the execution plans either

between executions of two operators, or after materialization

of the temporary relations. Others propose to modify the

execution plans during the execution of a physical operator. In

the remainder of the paper, we focus only on methods that t

modify the execution plans during the execution of a physical

operator.

Eddy [4] is a mechanism of query processing which changes

continuously the execution schedule of operators in order to

adapt to the changes of the execution environment. Eddy can

be considered as a router of tuples positioned between a

number of data sources and a set of operators. Each operator

participate in an Eddy must have one or two input queues to

receive the tuples sent by Eddy and an output queue to return

the results tuples to Eddy. The tuples received by an Eddy are

redirected towards the operators in different orders. Thus, the

scheduling of the operators is encapsulated by the dynamic

routing of tuples. The routing of tuples is carried out in the

following way: (i) select a tuple for the next processing. This

one can be a tuple coming from a basic relation or a

temporary relation, and (ii) choose an operator for the selected

tuple from the valid operators, redirect this tuple to the chosen

operator and to store the result in Eddy buffer. The operators

valid for a tuple are determined starting from the semantic

properties of the operators. The key point in Eddy is the

routing of tuples. Thus, the policy of the routing of tuples

must be effective and intelligent to minimize the response

time of queries.

Eddy was proposed initially for a single site environment,

where all operators and Eddy are carried out on the same site

while the operands can be distributed. At same time, Eddy can

be exploited in the processing of distributed queries. In this

objective, Zhou et al. [38] are based on the Eddy in order to

define architecture, named SWAP, for the processing of

distributed execution plans. In SWAP, an Eddy is placed on

each execution site. Thus, when a query is submitted to an

execution site, this site becomes the coordinator of the query.

It transforms this query into an execution plan and determines

for each operator the execution site. The localizations of

execution sites of the operators are unchangeable at runtime.

On the other hand, the execution of the operators is dynamic.

Indeed, instead of fixing a scheduling between the operators,

the tuples are routed dynamically (locally or between the

different execution sites) according to the selectivity of

operators, of the workload of execution sites and the

bandwidth.

In [24] the execution plan of a query is supervised, at runtime,

and it can be replaced by a new plan in the case where we

consider that the current plan is sub-optimal. The tuples

processed by each used plan represent a data partitioning

which is dynamically given. When an execution plan is

replaced, a new data partitioning is produced. Thus, the

number of partitioning of the operands is equal to the number

of used execution plans. Each used execution plan, during the

query execution, produces a part of the total result from the

associated data partitioning. The union of the tuples produced

by the various used execution plans provides only part of the

total result. Thus, to calculate the final result of the query, it

must also calculate the results of all the combinations of

various data partitioning. This method is similar to that of

Eddy [4]. But contrary to Eddy which uses a local decision

routing, this method is based on more total information to

generate the new plans.

In the conventional hash join a hash table is created from the

tuples of the operand having the smallest size, then this hash

table is probed with the tuples of the second operand in order

to produce the join results. This algorithm requires the

reception of all tuples of the first operand before beginning

the probe step. Thus, the time to produce the first tuple can be

high if the size of the operands is large, or when the data

arrival rate is irregular. Contrary to the conventional hash join

(with only one hash table), the double hash join (DHJ)

introduced by Ives [23] built a hash table for each operand.

When a tuple arrives, it is inserted firstly in the associated

hash table. Then, it is used to probe the other hash table. If the

probe stage allowing to produce tuples of results, then these

tuples is immediately delivered. DHJ was proposed in

TUKWILA project [23] to deal with the problems of

conventional hash join in the context of data integration: (i)

the time of production of the first tuple is minimized, (ii) the

optimizer does not need to know the sizes of the operands in

order to choose the operand used in the construction of the

only hash table, and (iii) it masks the slow arrival rate of

tuples from an operand by processing the tuples of the other

operand. However, DHJ requires maintaining the two hash

tables in memory. This can limit the use of DHJ with

operands having large sizes or with queries constituted of

several joins. To solve this problem, parts of the hash tables

residing in the memory are moved towards a secondary

storage space. When the memory becomes saturated, a

partition of the one of the two tables is chosen to move the

tuples of this partition towards the secondary storage space in

order to reduce the memory allocation. DHJ be executed in

two successive phases: Regular and Cleanup. In the regular

phase, the tuples which arrive are inserted in the associated

hash table and those are used to probe the portions of the other

hash table residing in memory. Moreover, this phase is

responsible for the moving of the parts of the hash tables

towards the secondary storage space. The cleanup phase starts

after the reception of the totality of the tuples of the two

operands. It ensures the total production of all results. This

stage is necessary because the regular phase produces only

part of the result. To avoid the duplicated production of the

results, algorithms of marking with stamp can be used.

The operator of double hash join improve the local processing

by adapting the use of resources CPU, I/O and memory with

the changes of the execution environment (e.g. estimation

errors, delays in data arrivals rates) and does not take in

account the resource network. However, in distributed

environment, the change of execution site can reduce the

quantity of data transferred on the network and consequently

can minimize the response time. In this objective, we propose,

based on the mobile agents [16], to extend the algorithms of

direct join and semi-join in order to allow them to change

their execution sites proactively. A mobile agent is an

autonomous software entity which can move (code, data, and

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.1, September 2012 – www.ijais.org

56

execution state) from a site to another in order to carrying out

a task.

3. MOBILE JOIN ALGORITHMS
In a distributed environment [6, 31, 33], an interesting aspect

in the query optimization is the selection of execution sites of

the operators. The unary operators (e.g. selection, projection)

are placed on the sites of their operands. However, for the

binary operators (e.g. join, union), the optimizer chooses a site

in order to execute these operators. Another interesting aspect

is the execution of joining two operands residing on different

sites. In literature, there are two approaches to execute the

joining of two operands residing on different sites: (i) the

direct join, and (ii) the join based semi-join [10].

In order to deal with the unexpected changes in large scale

distributed environment, we propose to use the mobile agent

[16, 25] for extension of join algorithms. This extension

allows the join to change their execution site. The decision

and change control of the execution site are made in a

decentralized and autonomous manner. It no longer the

optimizer chooses the join execution site, but the join itself

that chooses its execution site. Indeed, the mobile agent

executing a join adapts to changes in characteristics of the

execution environment (e.g. network bandwidth, available

memory) and responds to the estimations inaccuracies (e.g.

size of intermediate relations). In the following subsections,

we describe extensions of join algorithms which is called

mobile join for two reasons: (i) they are executed by mobile

agents, and (ii) they can change their execution site locations.

For a clear illustration of these algorithms behavior, we

consider a join between two relations R1 and R2 respectively

located at sites S1 and S2. We also assume that | R1 | <| R2 |

(where | R 1 | is the size of the relation R1) T and the result of

the join between R1 and R2 should be materialized to any site

3.1 Mobile sort-merge join algorithm
In this section, we describe the mobile sort-merge join

algorithm. Firstly, we present briefly the classical sort-merge

join algorithm. This algorithm is composed of two steps. The

first step sorts locally and in parallel the two relations on their

join attribute. The second step merges the two sorted relations

on a site chosen by the optimizer. After sorting of the two

relations, the profiles of these relations (e.g. number of tuples,

minimum and maximum values of attributes) can be known

precisely and therefore the result size and the selectivity factor

of the join can be revised. Thus, based on the revised profiles

of the relations after sorting, it is possible to make a decision

on the execution site of the join. For example, suppose that

the relation T must be materialized on S3 (Figure 1) and the

optimizer decided to place on S3 the mobile agent ASM in

order to merge the relations because the |R1| + |R2| <|R1| + |T|

and |R1| + |R2| <|R2| + |T| (i.e. |R1| <|T| and |R2| <|T|).

However, if after sorting of two relations, ASM estimate

that|R1| + |T| <|R2| + |T| and |R1| + |T| <|R1| + |R2| (i.e. |R1|

<|T| <|R2|), then ASM migrates to S2 to merge the two

relations. For this, we propose to extend the classical sort-

merge join algorithm by adding a decision phase after sorting

step. The extended algorithm will be called mobile sort-merge

join algorithm.

R1

S1

R2

S2

T

 A

SM

S3

R1

ASM
S1

R2

S2

T

S3

R1

S1

R2

ASM
S2

T

S3

T

T

R2

R2 R1

R1

ASM on S3 :

Sending relations

are R1 anf R2

ASM on S2 :

Sending relations

are R1 and T

ASM on S1 :

Sending relations

are R2 and T

Fig 1 : relations sending by function of join

execution site
A mobile sort-merge join algorithm is evaluated by three

agents (Figure 2): (i) two agents called Asort1 and Asort2 are

used for sorting the two relations, and (ii) the third agent

called ASM, is used to calculate the result of the join from the

two sorted relations. The behavior of a sorting agent is

illustrated in Figure 3. This agent starts by sorting relations

(Sort (R)) and simultaneously calculates the profile of R. Then

it sends the calculated profile of R to the agent ASM.

Afterwards, it waits until the agent ASM sends his location

site (the execution site of merge) in order to start the sending

the tuples of R (Send (R)).

ASM : Merge (R1, R2)

Asort2 : Trier (R2)

Asort1 : Sort(R1)

2 sending the

location site of

ASM to Asort1

and Asort2

1.a Sending

the profile

R1 after

sorting

3.b Sending

the tuples of

R2

1.b Sending

the profile

R2 after

sorting

3.b Sending

the tuples of

R2

Fig 2 : communications between agents of mobile

sort-merge join algorithm
The Figure 4 describes the behavior of an agent (ASM)

executing merge between two sorted relations. This agent

receives the revised profiles of the two sorted relations

produced by the sorting agents (Asort1 and Asort2). Then the

agent decides to continue its execution on the site chosen by

the optimizer at compilation step or migrates to another site.

This decision of ASM is autonomous and decentralized. For

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.1, September 2012 – www.ijais.org

57

this, it based on a decision function that determines the site

where it migrates to continue its execution. The parameters of

this decision function are:

 RelProf: it contains profiles recalculated of the
relations (R1 and R2) and the revised profile of the
result T.

 RelUnav: it describes the unavailability relations. For
example, the time required to produce the first tuple
or the production time of each tuple.

 (iii) EnvState: it contains information describing the
status of the execution environment (e.g. memory,
CPU load, bandwidth, etc.).

After migrating, ASM sends its decision to sorting agents.

These agents ASM send to the tuples of the two sorted relations

in order to produce the result tuples (Merge (Sorted_R1,

Sorted_R2, T)). Finally, the results tuple are sent to the client

(Send (T)) or are materialized to local disk (materialize (T)).

Sort (R) ;

 SendEstimation (R.Profil, ASM) ;

 ReceiveSite (ASM)

 Send(R, ASM);

Fig 3 : behavior of sorting agent

Site Decision (RelProf, RelUnav, EnvSate) ;

If (not local (Site) then migrate on Site ;

SendSite (Site, Asort1) ;

SendSite (Site, Asort2) ;

If (not local (Sorted_R1)) then Receive (Sorted_R1) ;

If (not local (Sorted_R2)) then Receive (Sorted_R2) ;

Merge (Sorted_R1, Sorted_R2, T));

If (not local (T)) then Send (T) else Materialize (T) ;

Fig 4 : behavior of merging agent

3.2 Mobile hash join algorithm
In the simple hash join algorithm, during the building of the

hash table, the characteristics of R1 (e.g. size, values

distribution of every attribute) can be calculated precisely. So,

from the precise statistics of R1, the statistics of R2 estimated

at the optimization, the statistics revised of T from R1 and R2,

the unavailability of R2 and the state of the system, it is

possible to make a decision on the localization of the probe

step and eventually move this step to another site. The

behavior of a mobile agent executing a simple hash join is

described in Figure 5.

If (not local (R1)) then Receive (R1) ;

Build (R1, HT) ;

Site décision RelProf, RelUnav, EnvSate) ;

If (not local (site)) then migrate on site ;

If (not local ((R2))) then Receive (R2) ;

Probe (HT, R2, T) ;

If (not local (T)) then send (T) Else materialize(T) ;

Fig 5 : behavior of mobile hash join agent

3.3 Mobile hash join based on semi-join

algorithm
The join operator based on semi-join is introduced to reduce

the volume of data transferred between sites. The join based

on the semi-join enhances response time by reducing the size

of relations exchanged between sites because the

communication cost is the dominant factor in the response

time. This enhancement is proportional to the selectivity join

factor. The classical join based semi-join is composed of three

steps:

 A projection on S1 of R1 on the attributes join (ΠR1).

 A semi-join on S2 between the projection result and
R2. Thus, tuples of ΠR1 are transferred from S1 to
S2. The result of this semi-join is noted RSJ.

 A join on S1 between R1 and RSJ. Here, the tuples of
RSJ are transferred from S2 to S1.

We propose to execute the join based semi-join using a

mobile agent, called ASHJ. The behavior of ASHJ is described

in Figure 6. After projection of R1, the agent ASHJ has better

knowledge about the profile of R1 and the size of RSJ can be

re-estimated. Thus, using these new parameters, the agent

ASHJ checks if the semi-join is always better than direct join.

The primitive SJ (ΠR1, RSJ, R2, T) allows the agent ASHJ to

determine if the semi-join must be replaced by a direct join.

For example, suppose that T must be materialized on S1 and

the optimizer estimates that |R1| + |T|> |R2| and |ΠR1| + |RSJ|

<|R2|. Thus, after the projection of R1, if the agent ASHJ

determines that|ΠR1| + |RSJ| <|R2|, it continues the execution

of semi-join. However, if the agent ASHJ determines that |ΠR1|

+ |RSJ|> |R2|, it replaces the semi-join by a direct join direct.

In case the agent ASHJ decides to continue the execution semi-

join, it migrates with ΠR1 on S2, and then calculates locally

(on S2) the tuples of RSJ by executing a classical hash join

between ΠR1 and R2. The temporal relation RSJ is again used

by ASHJ with R1 to execute a mobile hash join. In the case the

agent ASHJ decides to replace the semi-join by a direct join, it

compares the size of two relations to choose its initial

execution site. If it estimates that |R1| <|R2|, executes the

mobile hash join on S1, Else, it migrates on S2 to start its

execution.

Fig 6 : behavior of mobile hash join agent based on

semi-join

If (notlocal (R1)) then receive (R1) ;

ΠR1=Projection (R1) ;

If (ContinueSJ (ΠR1, RSJ, R2, T) then

 {

 Migrate on S2 ;

 HashJoin(ΠR1, R2, RSJ) ; // semi-join

 MobileHashJoin (RSJ, R1, T) ;

 }

Else If (|R1|<|R2|) then

 MobileHashJoin (R1, R2, T) ; // direct join

 else

 {

 Migrate on S2 ;

 MobileHashJoin (R2, R1, T) ; // direct join

 }

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.1, September 2012 – www.ijais.org

58

4. PERFORMANCE EVALUATION
The objective of our performance evaluation is to validate if

an agent chooses the site which allows him to minimize its

response time. For that, we compare: (i) the response time of

the agent execution of mobile join algorithm by allowing him

to choose its execution site; and (ii) the response times of the

agent execution of classical join algorithm on each site.

We realized our experiments in distributed environment. It is

constituted of two workstations S1 (HP) and S2 (SUN)

interconnected by Internet. The first is located in Lebanon at

Tripoli and it will be called Tripoli. The second is located in

Lebanon at Beirut and it will be called Beirut.

To handle our experiments, we installed on every workstation

a platform of mobile agents [16, 37] including the mobile

sort-merge join algorithm, the mobile hash join algorithm, and

the mobile hash join algorithm based on semi-join. In this one,

every mobile agent runs on a Virtual Machine Java (JDK

1.6.2).

The response times are measured by real executions. These

are carried out between sites interconnected via a network.

Our experiments are handled in multi-user environments,

where several users can start up applications. In these

environments, it is difficult to reproduce an experiment in

identical conditions. Indeed, the workload of an execution site

varies from moments to another (available memory, number

of running processes, etc.) and the amount of the data

transferred through the network also varies.

The base costs associated with the execution of these

algorithms are deduced by calibration. The migration cost of

an agent given in the table Tab.1 includes the serialization

cost, the transfer cost and the de-serialization cost. Of course,

when the agent migrates with its data, it must be added the

serialization cost, the transfer and the de-serialization of the

data which is proportional to its size.

Tab. 1: Environment parameters

To compare quantitatively the various algorithms, we

consider two relations R1 and R2 residents respectively on

Tripoli and Beirut, with number of tuples estimated at 20 000

and 40 000 respectively. Also let us consider a simple hash

join J: RES1 = R1∞R2. The join J is emitted on Tripoli, this

one will be executed by a mobile agent noted AJ. The optimal

execution plan of J is to receive R2 on Tripoli in order to join

with R2. The selectivity factor of J is 1.5/max (||R1||, ||R2||)

where ||Ri|| indicates the Ri number of tuples. In the rest of this

section, we describe the results of our experiments.

4.1 Expirementations results
In this section, we describe the results of the experiments

handled for the mobile sort-merge join algorithm and the

mobile hash join algorithm. Here, we verify the choice of an

agent according to the variation between the parameters

estimated at compile-time (the estimated number of tuples of

R1 noted ||R1es||, and the estimated selectivity factor of J

noted SFes) and that computed by agent at runtime (the

computed number of tuples of R1 noted ||R1comp||, and the

computed selectivity factor of J noted SFcomp).

In the next sub-sections, we evaluate the impact of an

estimation error of the R1 number of tuples and of the

selectivity factor on the mobile sort-merge join algorithm and

the mobile hash join algorithm.

4.1.1 Expirements of mobile sort-merge join

algorithm according to estimation errors of ||R1||

and SF
The curves of the Figure 7 and of the Figure 8 show the

measures of the response times of the join J (sort-merge join

algorithm execution on Tripoli noted "execution SMJ on

Tripoli", sort-merge join algorithm execution on Beirut noted

"execution on SMJ Beirut ", mobile sort-merge join algorithm

execution noted "execution MSMJ") by decreasing the

||R1comp|| compared with ||R1es|| (Figure 3) and SFcomp

compared with SFes (Figure 4). We observe that the behavior

of MSMJ in the Figure 7 and in the Figure 8 is similar.

 Fig 7: Sort-merge join performance by

decreasing ||R1||

Networks parameters

 Banwidth (KB/s) Time to send a page(ms)
Tripoli Beirut 106.3 749.52

Beirut Tripoli 112.64 723.18

 Mobile agent parameters

 Agent migration(ms)

Tripoli Beirut 29623
Beirut Tripoli 28967

Workstations parameters
 Time to write a page(ms) Time to read a page (ms)

Tripoli 0.79 0.65

Beirut 1.12 1.03

0

15

30

45

60

75

90

105

120

135

R
e

sp
o

n
se

 t
im

e
(s

)

Variation error on IIR1||

Execution MSMJ
execution SMJ on Tripoli
Execution SMJ on Beirut

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.1, September 2012 – www.ijais.org

59

 Fig 8: Sort-merge join performance by

decreasing SF

The Figure 7 and the Figure 8 show respectively that for a

variation of ||R1comp|| compared with ||R1es|| between 0%

and -20% and for a variation of SFcomp compared with SFes

between 0% and -30%, the agent executes the execution plan

generated during the compilation of J. On the other hand,

when the variation of ||R1comp|| compared with ||R1es|| is

higher than -20% (higher than -30% for a variation of SFcomp

compared with SFes), the agent decides to move on Beirut in

order to calculate the result of join. Thus, it modifies the

execution plan generated during the compilation.

Although, the variation between ||R1comp|| and ||R1es|| and that

between SFcomp and SFes have similar influences on the

behavior of the MSMJ whatever the estimations error. After

-30%, MSMJ improve the response time compared to

classical execution of SMJ on Tripoli or on Beirut.

4.1.2 Expirements of Mobile hash join algorithm

according to estimation errors of ||R1|| and SF
The curves of the Figure 9 and of the Figure 10 show the

measures of the response times of the join J (hash join

algorithm execution on Tripoli noted "execution HJ on

Tripoli", hash join algorithm execution on Beirut noted

"execution on HJ Beirut ", mobile hash join algorithm

execution noted "execution MHJ") by decreasing the

||R1comp|| compared with ||R1es|| (Figure 3) and SFcomp

compared with SFes (Figure 4). We observe that the behavior

of MHJ in the Figure 9 and in the Figure 10 is similar.

Fig 9:Hash join performance by decreasing ||R1||

.Fig 10: Hash join performance by decreasing SF

The Figure 9 and the Figure 10 show respectively that for a

variation of ||R1comp|| compared with ||R1es|| between 0%

and -20% and for a variation of SFcomp compared with SFes

between 0% and -30%, the agent executes the execution plan

generated during the compilation of J. On the other hand,

when the variation of ||R1comp|| compared with ||R1es|| is

higher than -20% (higher than -30% for a variation of SFcomp

compared with SFes), the agent decides to move on Beirut in

order to calculate the result of join. Thus, it modifies the

execution plan generated during the compilation.

Although, the variation between ||R1comp|| and ||R1es|| and that

between SFcomp and SFes have similar influences on the

behavior of the MHJ whatever the estimations error. After -

30%, MHJ improve the response time compared to classical

execution of HJ on Tripoli or on Beirut.

45

55

65

75

85

95

105

115

125

135

R
e

sp
o

n
se

 t
im

e
(s

)

Variation error on SF

Execution MHJ

execution HJ on Tripoli

Execution HJ on Beirut

0

15

30

45

60

75

90

105

120

135

R
e

sp
o

n
se

 t
im

e
(s

)

Variation error on IIR1||

Execution MHJ

execution HJ on Tripoli

Execution HJ on Beirut

45

55

65

75

85

95

105

115

125

135

R
e

sp
o

n
se

 t
im

e
(s

)

Variation error on SF

Execution MSMJ

execution SMJ on Tripoli

Execution SMJ on Beirut

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.1, September 2012 – www.ijais.org

60

4.1.3 Discussion
In this performance evaluation, we realized our experiments

according to estimation error. From the results of these

experiments, we can note the following observations: (i) the

mobile join algorithms improve the responses times whatever

the estimation error; (ii) the experiments handled in a

distributed environment, we notice that the workload of the

execution site does not influence on the response time. Here,

the costs of local processing (CPU, I/O) account for 5% of the

response time of the join. On the other hand, the transfer cost

of data between the two sites accounts for 95% of the

response time of the join. Hence, in this environment we do

not to see the variation of the response time of the join

(execution SMJ on Tripoli and execution SMJ on Tripoli),

because the influence of the scale of the axis (response time)

and of the weak weighting of costs (CPU, I/O) in the response

time, and (iii) We observe that the behavior of sort-merge

join algorithm and the hash join algorithm is similar because

the costs of the local processing are almost negligible in front

of the transfer cost of data.

5. CONCLUSIONS AND

PERSPECTIVES
In this paper, we proposed an extension of join algorithms

based on mobile agents to correct the sub-optimality of the

execution plans while decentralizing the control and the

modifications of the execution plans. They improve the cost

of local processing and the communication cost by

minimizing the volume of data transferred on the network.

The performance evaluation shows that the proposed

algorithms improve the response time whatever the variation

of ||R1comp|| compared with ||R1es|| or of SFcomp compared

with SFes.

The next objectives of research are focused mainly on : (i) the

definition of the methodes which determine the migration

space of the agents participating in execution of a query. In

this paper, the migration space of an agent is calculated,

according to operand localizations of the operator executed by

the agent, independently of the migration spaces of the other

agents participating in the execution of the same query. For

that, it is important to define methods whose take into account

the migration spaces of the other agents participating in the

execution of a query and the tree structure of execution plan

of the query; (ii) the extension of our performance evaluation.

Here, they plan to increase the number of the site of our

experimentation environments and to make more exhaustive

experiments in order to study the behaviors of the agents on

the level of the complex queries.

6. REFERENCES
[1] L. AMSALEG et al.; Scrambling query plans to cope

with unexpected delays, Proc. of the Fourth International

Conference on Parallel and Distributed Information

Systems, IEEE Computer Society, Miami, Florida, USA,

December 1996, pp. 208-219.

[2] L. AMSALEG, M. FRANKLIN, A. TOMASIC;

Dynamic query operator scheduling for wide-area remote

access, Distributed and Parallel Databases, vol. 6, no3,

Kluwer Academic Publishers, 1998, pp. 217-246.

[3] G. ANTOSHENKOV, M. ZIAUDDIN; Query

processing and optimization in Oracle Rdb, Journal of

VLDB, Springer Verlag Publishers, vol. 5, no4,

December1996, pp. 229 237.

[4] R. AVNUR, J.-M HELLERSTEIN; Eddies: continuously

adaptive query processing, Proc. of the ACM SIGMOD

International Conference on Management of Data, ACM

Press, Dallas, Texas, USA, May 2000, pp. 261-272.

[5] S. Babu, P. Bizarro, D. -J. DeWitt; Proactive Re-

optimization. Proc. of the ACM SIGMOD International

Conference on Management of Data, ACM Press,

Baltimore, Maryland, USA, June 2005, pp.107-118.

[6] Bose, S.K., Krishnamoorthy, S., Ranade, N.: Allocating

Resources to Parallel Query Plans in Data Grids. In:

Proc. of the 6th Intl. Conf. on Grid and Cooperative

Computing, pp. 210–220. IEEE CS, Los Alamitos (2007)

[7] L. BOUGANIM et al.; A dynamic query process-ing

architecture for data integration systems. Journal of IEEE

Data Engineering Bulletin, IEEE Computer Society, vol.

23, no2, June 2000, pp. 42-48.

[8] L. BOUGANIM et al.; Dynamic query scheduling in data

integration systems, Proc. of the 16th International

Conference on Data Engineering, IEEE Computer

Society, San Diego, California, USA, March 2000, pp.

425-434.

[9] N. BRUNO, S. CHAUDHURI; Efficient Creation of

Statistics over Query Expressions, Proc. of the 19th

International Conference on Data Engineering, IEEE

Computer Society, Bangalore, India, March 2003,

pp.201-212.

[10] D.-M. Chiu, Y.-C. Ho ; A Methodology for Interpreting

Tree Queries Into Optimal Semi-Join Expressions, Proc.

of the ACM SIGMOD International Conference on

Management of Data, ACM Press, Santa Monica,

California, USA, Mai 1980, pp. 169-178.

[11] C.-M. CHEN, N. ROUSSOPOULOS; Adaptive

Selectivity Estimation Using Query Feedback, Proc. of

the ACM SIGMOD International Conference on

Management of Data, ACM Press, Minneapolis,

Minnesota, USA, May 1994, pp. 161-172.

[12] C. COLLET, T.-T. VU ; QBF: A Query Broker

Framework for Adaptable Query Evaluation, Proc. of

6th International Conference on Flexible Query

Answering Systems, Springer Verlag Publishers, Lyon,

France, June 2004, pp. 362-375.

[13] A. DESHPANDE, J.-M. HELLERSTEIN; Lifting the

Burden of History from Adaptive Query Processing,

Proc. of the Thirtieth International Conference on Very

Large Data Bases, Morgan Kaufmann, Toronto, Canada,

August 2004, pp. 948-959.

[14] R.-S. EPSTEIN, M. STONEBRAKER, E. WONG ;

Distributed Query Processing in a Relational Data Base

System, Proc. of the ACM SIGMOD International

Conference on Management of Data, ACM Press,

Austin, Texas, June 1978, pp. 169-180.

[15] C. EVRENDILEK et al.; Multidatabase Query

Optimization, Journal of Distributed and Parallel

Databases, Kluwer Academic Publishers, vol 5, no1,

January 1997, pp. 77-113.

[16] A. FUGGETTA, G.-P. PICCO, G. VIGNA;

Understanding Code Mobility, IEEE Transactions on

Software Engineering, IEEE Computer Society, vol. 24,

no5, May 1998, pp. 342-361.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.1, September 2012 – www.ijais.org

61

[17] G. GARDARIN, F. SHA, Z.-H. TANG; Calibrating the

Query Optimizer Cost Model of IRO-DB, an Object-

Oriented Federated Database System, Proc. of 22th

International Conference on Very Large Data Bases,

Morgan Kaufmann, Mumbai (Bombay), India,

September 1996, pp. 378-389.

[18] A. GOUNARIS et al.; Adaptive Query Processing: A

Survey, Proc. of the 19th British National Conference on

Databases, Sheffield, UK, July 2002, pp. 11-25.

[19] A. HAMEURLAIN, P. BAZEX, F. MORVAN;

Traitement parallèle dans les bases de données

relationnelles, EDITIONS CÉPADUÈS, 1996.

[20] A. HAMEURLAIN, F. MORVAN; Parallel Query

Optimization Methods and Approaches: a Survey,

Journal of Computers Systems Science & Engineering,

CRL Publishing Ltd9 De Montfort Mews, vol. 19, no5,

September 2004, pp. 95-114.

[21] J.-M. HELLERSTEIN et al.; Adaptive query processing:

Technology in evolution, IEEE Data Engineering

Bulletin, IEEE Computer Society, vol. 23, no2, June

2000, pp. 7-18.

[22] Hu, N., Wang, Y., Zhao, L.: Dynamic Optimization of

Sub query Processing in Grid Da-tabase, Natural

omputation. In: Proc of the 3rd Intl Conf. on Natural

Computation, vol. 5, pp. 8–13. IEEE Computer Society

Press, Los Alamitos (2007).

[23] Z.-G. IVES et al.; An Adaptive Query Execution System

for Data Integration, Proc. of the ACM SIGMOD

International Conference on Management of Data, ACM

Press, Philadelphia, Pennsylvania, USA, June 1999, pp.

299-310.

[24] Z.-G. IVES, A.-Y. HALEVY, D.-S. WELD; Adapting to

Source Properties in Processing Data Integration Queries,

Proc. of the ACM SIGMOD International Conference on

Management of Data, ACM Press, Paris, France, June

2004, pp. 395-406.

[25] R. JONES, J. BROWN; Distributed Query Processing

Via Mobile Agents, find the 14 november 2002,

accessible via:

http://www.cs.umd.edu/~rjones/paper.html, 1997.

[26] N. KABRA, D.-J. DEWITT; Efficient Mid-Query Re-

Optimization of sub-optimal query execution plans, Proc.

of the ACM SIGMOD International Conference on

Management of Data, ACM Press, Seattle, Washington,

USA, June 1998, pp. 106-117.

[27] L. KHAN, D. MCLEOD, C. SHAHABI; An Adaptive

Probe-Based Technique to Optimize Join Queries in

Distributed Internet Databases, Journal of Database

Management Idea Group, vol. 12, no4, Octobre 2001, pp.

3-14.

[28] F. MORVAN, A. HAMEURLAIN; Dynamic Memory

Allocation Strategies For Parallel Query Execution, Proc.

of the ACM Symposium on Applied Computing, ACM

Press, Madrid, Spain, March 2002, pp. 897-901.

[29] H. NAACKE, G. GARDARIN, A. TOMASIC ;

Leveraging Mediator Cost Models with Heterogeneous

Data Sources, Proc. of the Fourteenth International

Conference on Data Engineering, IEEE Computer

Society, Orlando, Florida, USA, February 1998, pp. 351-

360.

[30] B. NAG, D.-J. DEWITT; Memory Allocation Strategies

for Complex Decision Support Queries, Proc. of the

ACM CIKM International Conference on Information

and Knowledge Management, ACM Press, Bethesda,

Maryland, USA, November 1998, pp. 116-123.

[31] M. OUZZANI, A. BOUGUETTAYA; Query Processing

and Optimization on the Web, Distributed and Parallel

Databases, Kluwer Academic Publishers, vol. 15, no3,

May 2004, pp. 187-218..

[32] M.-T. ÖZSU, PATRICK VALDURIEZ; Principles of

Distributed Database Systems, Second Edition, Prentice-

Hall, 1999.

[33] Paton, N.W., Chávez, J.B., Chen, M., Raman, V., Swart,

G., Narang, I., Yellin, D.M., Fernandes, A.A.A.:

Autonomic query parallelization using non-dedicated

computers: an evaluation of adaptivity options. VLDB

Journal 18(1), 119–140 (2009)

[34] V. RAMAN, A. DESHPANDE, J.-M. HELLERSTEIN;

Using State Modules for Adaptive Query Processing,

Proc. of the 19th International Conference on Data

Engineering, IEEE Computer Society, Bangalore, India,

March 2003, pp. 353-362.

[35] G.-M. SACCO, S.-B. YAO; Query Optimization in

Distributed Data Base Systems, Advances in Computers,

vol. 21, 1982, pp. 225-273.

[36] M. STILLGER et al.; LEO - DB2's LEarning Optimizer.

Proc.of 27th International Conference on Very Large

Data Bases, Morgan Kaufmann, Roma, Italy , September

2001, pp. 19-28.

[37] P. WOJCIECHOWSKI; Algorithms for location-

independent communication between mobile agents,

Technical Report DSC-2001/13, Ecole Polytechnique

Fédérale de Lausanne, Département Systèmes de

Communication, 2001.

[38] Y. ZHOU et al. ; An adaptable distributed query

processing architecture, Data & Knowledge Engineering,

vol. 53, no3, June 2005, pp. 283-309.

[39] Q. ZHU, S. MOTHERAMGARI, Y. SUN; Cost

Estimation for Queries Experiencing Multiple Contention

States in Dynamic Multidatabase Environments, Journal

of Knowledge and Information Systems, Springer Verlag

Publishers, vol. 5, no1, Februray 2003, pp. 26-49.

