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ABSTRACT 

In the large scale distributed environment, the query 

optimization presents new problems because of the data 

unavailability, the estimations inaccuracies and environment 

instability. In this paper, we address the sub-optimality of 

executions plans caused by these problems. We propose to 

extend the join algorithms based on mobile agents in order to 

correct the sub-optimality. This extension allows the join to 

change their execution site. Indeed, the mobile agent 

executing a join adapts to changes in characteristics of the 

execution environment (e.g. network bandwidth, available 

memory) and responds to the estimations inaccuracies (e.g. 

size of intermediate relations). The performance evaluation 

shows that the proposed algorithms improve the response time 

whatever the variation of estimations errors. 

Keywords 
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1. INTRODUCTION 
In database management systems, the query processing 

gathers all the necessaries steps to calculate the results of 

queries. It consists of several successive phases [32]: 

rewriting, optimization and execution. Optimization is the 

producing process that will minimize the cost function of an 

execution plan of a query. This function has an objective 

either to minimize the total time [35], or to minimize the 

response time [14]. The query optimizer based on a cost 

model [17, 19, 20, 29, 39], generates an optimal execution 

plan or close to optimal. The methods of classical 

optimization produce firstly an optimal execution plan. Then, 

the generated execution plans are sent to the execution engine 

in order to be executed. This methods suppose that the values 

of the parameters utilized during the generation of an optimal 

execution plan (e.g. size of relations, selectivity of operators, 

available resources), are always valid at runtime. But this 

assumption is often unjustified. Indeed, values of the 

parameters used during optimization can become invalid 

during the execution because of several factors:  

 
 Absence of statistics: the statistics describing the data 

(e.g. size, cardinality, maximal and minimal values) 
necessary to estimates the costs of the execution plans 
can be non-existent.  

 Estimation errors: the estimations of the sizes of the 
temporary relations and the operator costs of an 
execution plan can be erroneous because of the 
absence or the imprecision of the statistics describing 
the data.  

 Instability of the execution environment: in a large 
scale distributed environment, thousands of users can 

submit their queries. The complexity of these queries 
is different and gives data arrival rates of these 
queries to the system is irregular. For that, the 
characteristics of the execution sites (e.g. memory 
available, load of CPU) and networks (band-width 
and latency) vary from one moment to another.  

Because of the factors mentioned previously, the execution 

plans generated, during compilation, can be sub-optimal. To 

correct this sub-optimality, several solutions were proposed. 

The first solution consists to improve the quality of the 

statistics describing the data relied on the previous executions. 

This solution was used by [9, 11] to improve the estimations 

quality of the selectivity factors, and by [36] to estimate the 

correlation between the predicates. The second solution 

proposed by Antoshenkov et al. [3] executes, in parallel, 

several execution plans for the same query in order to choose 

the best plan among them. After at certain time, the 

executions of all plans are suspended except for only one 

which continues its execution. A third solution proposed by 

[27] concentrates on the multi-join distributed queries. The 

optimizer generates an optimal or closes to optimal execution 

plan after having deduced the costs of inter-sites data transfer 

and the cardinalities of temporary relations. These parameters 

are deduced by calibration. Hence, the operators of the query 

are executed on a subset of tuples of the operands in order to 

estimate the costs of inter-site data transfer and the 

cardinalities of temporary relations. The fourth solution 

consists in modifying the sub-optimal execution at runtime, 

this solution is called dynamic optimization (named also 

adaptive) [4, 5, 7, 8, 18, 23, 24, 26].  

 
In this paper, we propose autonomous and mobile execution 

of every relational operator of an execution plan by mobile 

agents. The agent executing an operator is conscious of its 

environment, able to react in an autonomous and 

decentralized way with the evolution of the system state (e.g. 

workload of sites, bandwidth) and with the estimation errors. 

Furthermore, it can move from site to another to continue its 

execution. 

The remainder of paper is organized in the following way: in 

the section 2 we describe state of the art of the main 

optimization dynamic method. Section 3 proposes an 

extension of join algorithms. This extension based on mobile 

agents in order to allow the join to change their execution site. 

The decision and change control of the execution site are 

made in a decentralized and autonomous manner. Section 4 

presents the experimentation environment and the results of 

the experiments. Finally, we conclude and present the 

perspectives. 
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2. RELATED WORKS 
Several dynamic optimization methods [1, 2, 6, 7, 21, 22, 34] 

are proposed in the literature for correcting the sub-optimal 

execution plans. These methods are classified in four types (i) 

Replacement,(ii) Scheduling[15], (iii): Re-

optimization[1,2,12], and (iv) Uses of dynamic 

operators[23,24]. Each dynamic optimization method is able 

in adapting the execution plans in order to react to one or 

several events: (i) Estimation errors [15],(ii) Memory 

available[7,8,28,30], (iii): Delays in data arrival rates[1,2], 

and (iv) Users Preferences. The modification level of the 

executions plans can also be differ from a method to another. 

Methods propose to modify the execution plans either 

between executions of two operators, or after materialization 

of the temporary relations. Others propose to modify the 

execution plans during the execution of a physical operator. In 

the remainder of the paper, we focus only on methods that t 

modify the execution plans during the execution of a physical 

operator.  

Eddy [4] is a mechanism of query processing which changes 

continuously the execution schedule of operators in order to 

adapt to the changes of the execution environment. Eddy can 

be considered as a router of tuples positioned between a 

number of data sources and a set of operators. Each operator 

participate in an Eddy must have one or two input queues to 

receive the tuples sent by Eddy and an output queue to return 

the results tuples to Eddy. The tuples received by an Eddy are 

redirected towards the operators in different orders. Thus, the 

scheduling of the operators is encapsulated by the dynamic 

routing of tuples. The routing of tuples is carried out in the 

following way: (i) select a tuple for the next processing. This 

one can be a tuple coming from a basic relation or a 

temporary relation, and (ii) choose an operator for the selected 

tuple from the valid operators, redirect this tuple to the chosen 

operator and to store the result in Eddy buffer. The operators 

valid for a tuple are determined starting from the semantic 

properties of the operators. The key point in Eddy is the 

routing of tuples. Thus, the policy of the routing of tuples 

must be effective and intelligent to minimize the response 

time of queries.  

Eddy was proposed initially for a single site environment, 

where all operators and Eddy are carried out on the same site 

while the operands can be distributed. At same time, Eddy can 

be exploited in the processing of distributed queries. In this 

objective, Zhou et al. [38] are based on the Eddy in order to 

define architecture, named SWAP, for the processing of 

distributed execution plans. In SWAP, an Eddy is placed on 

each execution site. Thus, when a query is submitted to an 

execution site, this site becomes the coordinator of the query. 

It transforms this query into an execution plan and determines 

for each operator the execution site. The localizations of 

execution sites of the operators are unchangeable at runtime. 

On the other hand, the execution of the operators is dynamic. 

Indeed, instead of fixing a scheduling between the operators, 

the tuples are routed dynamically (locally or between the 

different execution sites) according to the selectivity of 

operators, of the workload of execution sites and the 

bandwidth.  

In [24] the execution plan of a query is supervised, at runtime, 

and it can be replaced by a new plan in the case where we 

consider that the current plan is sub-optimal. The tuples 

processed by each used plan represent a data partitioning 

which is dynamically given. When an execution plan is 

replaced, a new data partitioning is produced. Thus, the 

number of partitioning of the operands is equal to the number 

of used execution plans. Each used execution plan, during the 

query execution, produces a part of the total result from the 

associated data partitioning. The union of the tuples produced 

by the various used execution plans provides only part of the 

total result. Thus, to calculate the final result of the query, it 

must also calculate the results of all the combinations of 

various data partitioning. This method is similar to that of 

Eddy [4]. But contrary to Eddy which uses a local decision 

routing, this method is based on more total information to 

generate the new plans.  

In the conventional hash join a hash table is created from the 

tuples of the operand having the smallest size, then this hash 

table is probed with the tuples of the second operand in order 

to produce the join results. This algorithm requires the 

reception of all tuples of the first operand before beginning 

the probe step. Thus, the time to produce the first tuple can be 

high if the size of the operands is large, or when the data 

arrival rate is irregular. Contrary to the conventional hash join 

(with only one hash table), the double hash join (DHJ) 

introduced by Ives [23] built a hash table for each operand. 

When a tuple arrives, it is inserted firstly in the associated 

hash table. Then, it is used to probe the other hash table. If the 

probe stage allowing to produce tuples of results, then these 

tuples is immediately delivered. DHJ was proposed in 

TUKWILA project [23] to deal with the problems of 

conventional hash join in the context of data integration: (i) 

the time of production of the first tuple is minimized, (ii) the 

optimizer does not need to know the sizes of the operands in 

order to choose the operand used in the construction of the 

only hash table, and (iii) it masks the slow arrival rate of 

tuples from an operand by processing the tuples of the other 

operand.  However, DHJ requires maintaining the two hash 

tables in memory. This can limit the use of DHJ with 

operands having large sizes or with queries constituted of 

several joins. To solve this problem, parts of the hash tables 

residing in the memory are moved towards a secondary 

storage space. When the memory becomes saturated, a 

partition of the one of the two tables is chosen to move the 

tuples of this partition towards the secondary storage space in 

order to reduce the memory allocation. DHJ be executed in 

two successive phases: Regular and Cleanup. In the regular 

phase, the tuples which arrive are inserted in the associated 

hash table and those are used to probe the portions of the other 

hash table residing in memory. Moreover, this phase is 

responsible for the moving of the parts of the hash tables 

towards the secondary storage space. The cleanup phase starts 

after the reception of the totality of the tuples of the two 

operands. It ensures the total production of all results. This 

stage is necessary because the regular phase produces only 

part of the result. To avoid the duplicated production of the 

results, algorithms of marking with stamp can be used.  

The operator of double hash join improve the local processing 

by adapting the use of resources CPU, I/O and memory with 

the changes of the execution environment (e.g. estimation 

errors, delays in data arrivals rates) and does not take in 

account the resource network. However, in distributed 

environment, the change of execution site can reduce the 

quantity of data transferred on the network and consequently 

can minimize the response time. In this objective, we propose, 

based on the mobile agents [16], to extend the algorithms of 

direct join and semi-join in order to allow them to change 

their execution sites proactively. A mobile agent is an 

autonomous software entity which can move (code, data, and 
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execution state) from a site to another in order to carrying out 

a task. 

3. MOBILE JOIN ALGORITHMS 
In a distributed environment [6, 31, 33], an interesting aspect 

in the query optimization is the selection of execution sites of 

the operators. The unary operators (e.g. selection, projection) 

are placed on the sites of their operands. However, for the 

binary operators (e.g. join, union), the optimizer chooses a site 

in order to execute these operators. Another interesting aspect 

is the execution of joining two operands residing on different 

sites. In literature, there are two approaches to execute the 

joining of two operands residing on different sites: (i) the 

direct join, and (ii) the join based semi-join [10]. 

In order to deal with the unexpected changes in large scale 

distributed environment, we propose to use the mobile agent 

[16, 25] for extension of join algorithms. This extension 

allows the join to change their execution site. The decision 

and change control of the execution site are made in a 

decentralized and autonomous manner. It no longer the 

optimizer chooses the join execution site, but the join itself 

that chooses its execution site. Indeed, the mobile agent 

executing a join adapts to changes in characteristics of the 

execution environment (e.g. network bandwidth, available 

memory) and responds to the estimations inaccuracies (e.g. 

size of intermediate relations). In the following subsections, 

we describe extensions of join algorithms which is called 

mobile join for two reasons: (i) they are executed by mobile 

agents, and (ii) they can change their execution site locations. 

For a clear illustration of these algorithms behavior, we 

consider a join between two relations R1 and R2 respectively 

located at sites S1 and S2. We also assume that | R1 | <| R2 | 

(where | R 1 | is the size of the relation R1) T and the result of 

the join between R1 and R2 should be materialized to any site 

3.1 Mobile sort-merge join algorithm 
In this section, we describe the mobile sort-merge join 

algorithm. Firstly, we present briefly the classical sort-merge 

join algorithm. This algorithm is composed of two steps. The 

first step sorts locally and in parallel the two relations on their 

join attribute. The second step merges the two sorted relations 

on a site chosen by the optimizer. After sorting of the two 

relations, the profiles of these relations (e.g. number of tuples, 

minimum and maximum values of attributes) can be known 

precisely and therefore the result size and the selectivity factor 

of the join can be revised. Thus, based on the revised profiles 

of the relations after sorting, it is possible to make a decision 

on the execution site of the join. For example, suppose that 

the relation T must be materialized on S3 (Figure 1) and the 

optimizer decided to place on S3 the mobile agent ASM in 

order to merge the relations because the |R1| + |R2| <|R1| + |T| 

and |R1| + |R2| <|R2| + |T| (i.e. |R1| <|T| and |R2| <|T|). 

However, if after sorting of two relations, ASM estimate 

that|R1| + |T| <|R2| + |T| and |R1| + |T| <|R1| + |R2| (i.e. |R1| 

<|T| <|R2|), then ASM migrates to S2 to merge the two 

relations. For this, we propose to extend the classical sort-

merge join algorithm by adding a decision phase after sorting 

step. The extended algorithm will be called mobile sort-merge 

join algorithm. 
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Sending relations 

are R2 and T 

 
Fig 1 : relations sending by function of join 

execution site 
A mobile sort-merge join algorithm is evaluated by three 

agents (Figure 2): (i) two agents called Asort1 and Asort2 are 

used for sorting the two relations, and (ii) the third agent 

called ASM, is used to calculate the result of the join from the 

two sorted relations. The behavior of a sorting agent is 

illustrated in Figure 3. This agent starts by sorting relations 

(Sort (R)) and simultaneously calculates the profile of R. Then 

it sends the calculated profile of R to the agent ASM. 

Afterwards, it waits until the agent ASM sends his location 

site (the execution site of merge) in order to start the sending 

the tuples of R (Send (R)). 

 

ASM : Merge (R1, R2) 

Asort2 : Trier (R2) 

 
Asort1 : Sort(R1) 

2 sending the 

location site of 

ASM to Asort1 

and Asort2 

1.a Sending  

the profile  

R1 after 

sorting 

 

3.b Sending 

the tuples of  

R2 

 

1.b Sending  

the profile  

R2 after 

sorting 

 

3.b Sending 

the tuples of  

R2 

 

Fig 2 : communications between agents of mobile 

sort-merge join algorithm 
The Figure 4 describes the behavior of an agent (ASM) 

executing merge between two sorted relations. This agent 

receives the revised profiles of the two sorted relations 

produced by the sorting agents (Asort1 and Asort2). Then the 

agent decides to continue its execution on the site chosen by 

the optimizer at compilation step or migrates to another site. 

This decision of ASM is autonomous and decentralized. For 
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this, it based on a decision function that determines the site 

where it migrates to continue its execution. The parameters of 

this decision function are: 

 RelProf: it contains profiles recalculated of the 
relations (R1 and R2) and the revised profile of the 
result T. 

 RelUnav: it describes the unavailability relations. For 
example, the time required to produce the first tuple 
or the production time of each tuple. 

 (iii) EnvState: it contains information describing the 
status of the execution environment (e.g. memory, 
CPU load, bandwidth, etc.). 

After migrating, ASM sends its decision to sorting agents. 

These agents ASM send to the tuples of the two sorted relations 

in order to produce the result tuples (Merge (Sorted_R1, 

Sorted_R2, T)). Finally, the results tuple are sent to the client 

(Send (T)) or are materialized to local disk (materialize (T)). 

 

Sort (R) ; 

 SendEstimation (R.Profil, ASM) ; 

 ReceiveSite (ASM) 

 Send(R, ASM); 

 
Fig 3 : behavior of sorting agent 

 

Site  Decision (RelProf, RelUnav, EnvSate) ; 

If (not local (Site) then migrate on Site ; 

SendSite (Site, Asort1) ; 

SendSite (Site, Asort2) ; 

If (not local (Sorted_R1)) then Receive (Sorted_R1) ; 

If (not local (Sorted_R2)) then Receive (Sorted_R2) ; 

Merge (Sorted_R1, Sorted_R2, T)); 

If (not local (T)) then Send (T) else Materialize (T) ; 

 
Fig 4 : behavior of merging agent 

3.2 Mobile hash join algorithm 
In the simple hash join algorithm, during the building of the 

hash table, the characteristics of R1 (e.g. size, values 

distribution of every attribute) can be calculated precisely. So, 

from the precise statistics of R1, the statistics of R2 estimated 

at the optimization, the statistics revised of T from R1 and R2, 

the unavailability of R2 and the state of the system, it is 

possible to make a decision on the localization of the probe 

step and eventually move this step to another site. The 

behavior of a mobile agent executing a simple hash join is 

described in Figure 5. 

If (not local (R1) ) then Receive (R1) ; 

Build  (R1, HT) ; 

Site  décision RelProf, RelUnav, EnvSate) ; 

If  (not local (site))    then migrate on site ; 

If (not local ((R2)) ) then Receive (R2) ; 

Probe ( HT, R2, T) ; 

If (not local (T))  then send (T)    Else materialize(T) ; 

Fig 5 : behavior of mobile hash join agent 
 

3.3 Mobile hash join based on semi-join 

algorithm 
The join operator based on semi-join is introduced to reduce 

the volume of data transferred between sites. The join based 

on the semi-join enhances response time by reducing the size 

of relations exchanged between sites because the 

communication cost is the dominant factor in the response 

time. This enhancement is proportional to the selectivity join 

factor. The classical join based semi-join is composed of three 

steps: 

 A projection on S1 of R1 on the attributes join (ΠR1). 

 A semi-join on S2 between the projection result and 
R2. Thus, tuples of ΠR1 are transferred from S1 to 
S2. The result of this semi-join is noted RSJ. 

 A join on S1 between R1 and RSJ. Here, the tuples of 
RSJ are transferred from S2 to S1. 

We propose to execute the join based semi-join using a 

mobile agent, called ASHJ. The behavior of ASHJ is described 

in Figure 6. After projection of R1, the agent ASHJ has better 

knowledge about the profile of R1 and the size of RSJ can be 

re-estimated. Thus, using these new parameters, the agent 

ASHJ checks if the semi-join is always better than direct join. 

The primitive SJ (ΠR1, RSJ, R2, T) allows the agent ASHJ to 

determine if the semi-join must be replaced by a direct join. 

For example, suppose that T must be materialized on S1 and 

the optimizer estimates that |R1| + |T|> |R2| and |ΠR1| + |RSJ| 

<|R2|. Thus, after the projection of R1, if the agent ASHJ 

determines that|ΠR1| + |RSJ| <|R2|, it continues the execution 

of semi-join. However, if the agent ASHJ determines that |ΠR1| 

+ |RSJ|> |R2|, it replaces the semi-join by a direct join direct. 

In case the agent ASHJ decides to continue the execution semi-

join, it migrates with ΠR1 on S2, and then calculates locally 

(on S2) the tuples of RSJ by executing a classical hash join 

between ΠR1 and R2. The temporal relation RSJ is again used 

by ASHJ with R1 to execute a mobile hash join. In the case the 

agent ASHJ decides to replace the semi-join by a direct join, it 

compares the size of two relations to choose its initial 

execution site. If it estimates that |R1| <|R2|, executes the 

mobile hash join on S1, Else, it migrates on S2 to start its 

execution. 

Fig 6 : behavior of mobile hash join agent based on 

semi-join 

 

If (notlocal (R1)) then receive (R1) ; 

ΠR1=Projection (R1) ; 

If (ContinueSJ (ΠR1, RSJ, R2, T) then 

      { 

       Migrate on S2 ; 

       HashJoin(ΠR1, R2, RSJ) ; // semi-join 

       MobileHashJoin (RSJ, R1, T) ; 

       } 

Else If (|R1|<|R2|)  then 

       MobileHashJoin (R1, R2, T) ; // direct join 

       else  

       { 

       Migrate on S2 ; 

       MobileHashJoin (R2, R1, T) ; // direct join 

       } 
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4. PERFORMANCE EVALUATION 
The objective of our performance evaluation is to validate if 

an agent chooses the site which allows him to minimize its 

response time. For that, we compare:  (i) the response time of 

the agent execution of mobile join algorithm by allowing him 

to choose its execution site; and (ii) the response times of the 

agent execution of classical join algorithm on each site.  

We realized our experiments in distributed environment. It is 

constituted of two workstations S1 (HP) and S2 (SUN) 

interconnected by Internet. The first is located in Lebanon at 

Tripoli and it will be called Tripoli.  The second is located in 

Lebanon at Beirut and it will be called Beirut. 

To handle our experiments, we installed on every workstation 

a platform of mobile agents [16, 37] including the mobile 

sort-merge join algorithm, the mobile hash join algorithm, and 

the mobile hash join algorithm based on semi-join. In this one, 

every mobile agent runs on a Virtual Machine Java (JDK 

1.6.2).  

The response times are measured by real executions. These 

are carried out between sites interconnected via a network. 

Our experiments are handled in multi-user environments, 

where several users can start up applications. In these 

environments, it is difficult to reproduce an experiment in 

identical conditions. Indeed, the workload of an execution site 

varies from moments to another (available memory, number 

of running processes, etc.) and the amount of the data 

transferred through the network also varies.  

The base costs associated with the execution of these 

algorithms are deduced by calibration. The migration cost of 

an agent given in the table Tab.1 includes the serialization 

cost, the transfer cost and the de-serialization cost.  Of course, 

when the agent migrates with its data, it must be added the 

serialization cost, the transfer and the de-serialization of the 

data  which is proportional to its size. 

Tab. 1: Environment parameters 

 

To compare quantitatively the various algorithms, we  

consider two relations R1 and R2 residents respectively on 

Tripoli and Beirut, with number of tuples estimated at 20 000 

and 40 000 respectively. Also let us consider a simple hash 

join J: RES1 = R1∞R2. The join J is emitted on Tripoli, this 

one will be executed by a mobile agent noted AJ. The optimal 

execution plan of J is to receive R2 on Tripoli in order to join 

with R2. The selectivity factor of J is 1.5/max (||R1||, ||R2||) 

where ||Ri|| indicates the Ri number of tuples. In the rest of this 

section, we describe the results of our experiments. 

4.1 Expirementations results 
In this section, we describe the results of the experiments 

handled for the mobile sort-merge join algorithm and the 

mobile hash join algorithm. Here, we verify the choice of an 

agent according to the variation between the parameters 

estimated at compile-time (the estimated number of tuples of 

R1 noted ||R1es||, and the estimated selectivity factor of J 

noted SFes) and that computed by agent at runtime (the 

computed number of tuples of R1 noted ||R1comp||, and the 

computed selectivity factor of J noted SFcomp). 

In the next sub-sections, we evaluate the impact of an 

estimation error of the R1 number of tuples and of the 

selectivity factor on the mobile sort-merge join algorithm and 

the mobile hash join algorithm.  

4.1.1 Expirements of mobile sort-merge join 

algorithm according to estimation errors of ||R1|| 

and SF 
The curves of the Figure 7 and of the Figure 8 show the 

measures of the response times of the join J (sort-merge join 

algorithm execution on Tripoli noted "execution SMJ on 

Tripoli", sort-merge join algorithm execution on Beirut noted 

"execution on SMJ Beirut ", mobile sort-merge join algorithm 

execution noted "execution MSMJ") by decreasing the 

||R1comp|| compared with ||R1es|| (Figure 3) and SFcomp 

compared with SFes (Figure 4). We observe that the behavior 

of  MSMJ in the Figure 7 and in the Figure 8 is similar.  

 

             Fig 7: Sort-merge join performance by 

decreasing ||R1|| 
 

 

 

 

 

 

 

 

 

 

 

 

 

Networks parameters 

 Banwidth (KB/s) Time to send a page(ms) 
Tripoli  Beirut 106.3 749.52 

Beirut  Tripoli 112.64 723.18 

 
     Mobile agent parameters 

              Agent migration(ms) 

Tripoli  Beirut            29623 
Beirut  Tripoli            28967 

 

Workstations parameters 
 Time to write  a page(ms)    Time to read a page (ms) 

Tripoli 0.79  0.65 

Beirut 1.12  1.03 
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             Fig 8: Sort-merge join performance by 

decreasing SF 
 

The Figure 7 and the Figure 8 show respectively that for a 

variation of ||R1comp|| compared with ||R1es|| between 0% 

and -20% and for a variation of SFcomp compared with SFes 

between 0% and -30%, the agent executes the execution plan 

generated during the compilation of J. On the other hand, 

when the variation of ||R1comp|| compared with ||R1es|| is 

higher than -20% (higher than -30% for a variation of SFcomp 

compared with SFes), the agent decides to move on Beirut in 

order to calculate the result of join. Thus, it modifies the 

execution plan generated during the compilation. 

Although, the variation between ||R1comp|| and ||R1es|| and that 

between SFcomp and SFes have similar influences on the 

behavior of the MSMJ whatever the estimations error.     After 

-30%, MSMJ improve the response time compared to 

classical execution of SMJ on Tripoli or on Beirut. 

4.1.2 Expirements of Mobile hash join algorithm 

according to estimation errors of ||R1|| and SF 
The curves of the Figure 9 and of the Figure 10 show the 

measures of the response times of the join J (hash join 

algorithm execution on Tripoli noted "execution HJ on 

Tripoli", hash join algorithm execution on Beirut noted 

"execution on HJ Beirut ", mobile hash join algorithm 

execution noted "execution MHJ") by decreasing the 

||R1comp|| compared with ||R1es|| (Figure 3) and SFcomp 

compared with SFes (Figure 4). We observe that the behavior 

of MHJ in the Figure 9 and in the Figure 10 is similar. 

 

 

 

 

 

 

 

 

 

 

 

Fig 9:Hash join performance by decreasing ||R1|| 
 

.Fig 10: Hash join performance by decreasing SF 
 

The Figure 9 and the Figure 10 show respectively that for a 

variation of ||R1comp|| compared with ||R1es|| between 0% 

and -20% and for a variation of SFcomp compared with SFes 

between 0% and -30%, the agent executes the execution plan 

generated during the compilation of J. On the other hand, 

when the variation of ||R1comp|| compared with ||R1es|| is 

higher than -20% (higher than -30% for a variation of SFcomp 

compared with SFes), the agent decides to move on Beirut in 

order to calculate the result of join. Thus, it modifies the 

execution plan generated during the compilation. 

Although, the variation between ||R1comp|| and ||R1es|| and that 

between SFcomp and SFes have similar influences on the 

behavior of the MHJ whatever the estimations error.     After -

30%, MHJ improve the response time compared to classical 

execution of HJ on Tripoli or on Beirut. 
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4.1.3 Discussion 
In this performance evaluation, we realized our experiments 

according to estimation error. From the results of these 

experiments, we can note the following observations:  (i) the 

mobile join algorithms improve the responses times whatever 

the estimation error; (ii) the experiments handled in a 

distributed environment, we notice that the workload of the 

execution site does not influence on the response time. Here, 

the costs of local processing (CPU, I/O) account for 5% of the 

response time of the join. On the other hand, the transfer cost 

of data between the two sites accounts for 95% of the 

response time of the join. Hence, in this environment we do 

not to see the variation of the response time of the join 

(execution SMJ on Tripoli and execution SMJ on Tripoli), 

because the influence of the scale of the axis (response time) 

and of the weak weighting of costs (CPU, I/O) in the response 

time, and (iii) We observe that the behavior of  sort-merge 

join algorithm and the hash join algorithm is similar because 

the costs of the local processing are almost negligible in front 

of the transfer cost of data. 

5. CONCLUSIONS AND 

PERSPECTIVES 
In this paper, we proposed an extension of join algorithms 

based on mobile agents to correct the sub-optimality of the 

execution plans while decentralizing the control and the 

modifications of the execution plans. They improve the cost 

of local processing and the communication cost by 

minimizing the volume of data transferred on the network.  

The performance evaluation shows that the proposed 

algorithms improve the response time whatever the variation 

of ||R1comp|| compared with ||R1es|| or of SFcomp compared 

with SFes. 

The next objectives of research are focused mainly on : (i) the 

definition of the methodes which determine the migration 

space of the agents participating in execution of a query. In 

this paper, the migration space of an agent is calculated, 

according to operand localizations of the operator executed by 

the agent, independently of the migration spaces of the other 

agents participating in the execution of the same query. For 

that, it is important to define methods whose take into account 

the migration spaces of the other agents participating in the 

execution of a query and the tree structure of execution plan 

of the query; (ii) the extension of our performance evaluation. 

Here, they plan to increase the number of the site of our 

experimentation environments and to make more exhaustive 

experiments in order to study the behaviors of the agents on 

the level of the complex queries. 
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