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ABSTRACT 
 

We present a system which gives prior idea about the 

defective module. The task is accomplished using Adaptive 

Resonance Neural Network (ARNN), a special case of 

unsupervised learning. A vigilance parameter (θ) in ARNN 

defines the stopping criterion and hence helps in manipulating 

the accuracy of the trained network. To demonstrate the 

usefulness of ARNN, we used dataset from promisedata.org. 

This dataset contains 121 modules out of which 112 are not 

defected and 9 are defected. In this dataset modules are 

termed as defected on the basis of three measures that are 

LOC, HALSTEAD, MCCABE measures that have been 

normalized in the range of 0-1.We see that at θ=0.1858 the 

network has maximum Recall (i.e. true negative rate) is 100% 

and average Precision=54%.In case of ART n/w shortfalls are 

seen for Accuracy as this is a subjective measure.  

 

Keyword: Resonance, Clustering, Unsupervised learning, 

Confusion metrics. 

 

1. INTRODUCTION 
Today software is used in almost every walk of life. The 

software development companies cannot risk their business by 

shipping poor quality software as it results in customer 

dissatisfaction. Risk to business can be minimized by 

predicting the quality of the software in the early stages of the 

software development lifecycle (SDLC). This would not only 

keep the clients satisfied but also reduce the cost of correction 

of defects. It has been reported in that the cost of detect 

correction is significantly high if the corrections are made 

after testing. An additional benefit of early prediction of 

software quality is better resource planning and test planning. 

Therefore the key is to identify defect prone modules at an 

early SDLC stage. The importance of early software quality 

prediction is evident from a number of studies conducted in 

the regard. 

It is beneficial to obtain early estimates of system reliability or 

fault-proneness to help inform decisions on testing, code 

inspections, design rework, as well as financial costs 

associated with a delayed release, etc. In industry, estimates of 

system reliability (or pre-release defect density) are often 

available too late to affordably guide corrective actions to the 

quality of the software. Several studies have been performed 

to build models that predict system reliability and fault-

proneness. Quality is considered a key issue in any software 

development project. However, many projects face a tradeoff 

between cost and quality, as the time and effort for applying 

software quality assurance measures is usually limited due to 

economic constraints. In practice, quality managers and 

testers are in a daily struggle with critical bugs and shrinking 

budgets.  

 

Hence, they are eagerly looking for ways to make quality 

assurance and testing more effective and efficient. Defect 

prediction promises to indicate defect-prone modules in an 

upcoming version of software system and thus allows 

focusing the effort on those modules. The net result should be 

systems that are of higher quality, containing fewer faults, and 

projects that stay more closely on schedule than would 

otherwise be possible. 

 

With real-time systems becoming more complex and 

unpredictable, partly due to increasingly sophisticated 

requirements, traditional software development techniques 

might face difficulties in satisfying these requirements. 

Further real-time software systems may need to dynamically 

adapt themselves based on the runtime mission-specific 

requirements and operating conditions. This involves dynamic 

code synthesis that generates modules to provide the 

functionality required to perform the desired operations in 

real-time. Telecontrol/telepresence, robotics, and mission 

planning systems are some of the examples that fall in this 

category. However, the necessitates the need to develop a 

real-time assessment technique that classifies these 

dynamically generated systems as being faulty/fault-free. 

Some of the benefits of dynamic dependability assessment 

include providing feedback to the operator to modify the 

mission objectives if the dependability is low, the possibility 

of masking defects at run-time, and the possibility of pro-

active dependability management. One approach in achieving 

this is to use software defect prediction techniques that can 

assess the dependability of these systems using defect metrics 

that can be dynamically measured. 

A variety of software defect prediction techniques have been 

proposed, but none has proven to be consistently accurate. 

These techniques include statistical methods, machine 

learning methods, parametric models and machine learning 

methods, parametric models, and mixed algorithms. 

Obviously, there is need to find the best prediction techniques 

for a given prediction technique for a given prediction 

problem in context, and perhaps, conclude that this problem is 

largely unsolvable. 

 

2. WHAT IS A NEURAL NETWORK? 
Artificial neural networks are computing systems whose 

central theme is borrowed from the analogy of biological 

neural networks. Artificial neural networks are also referred to 

as “neural nets”, “artificial neural systems”, “parallel 

distributed processing systems” and “connectionist systems”. 

For computing systems to be called by these pretty names, it 

is necessary for the system to have a labeled directed graph 

structure where nodes perform some simple computations. 

From elementary graph theory we recall that a “directed 

graph” consists of a set of “nodes” (vertices) and a set of 

“connections” (edges/links/arcs) connecting pairs of nodes. A 
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graph is a “labeled graph” if each connection is associated 

with a label to identify some property of the connection. In a 

neural network, each node performs some simple 

computations, each connection conveys a signal from one 

node to another, labeled by a number called the “connection 

strength” or “weight” indicating the extent to which a signal is 

amplified or diminished by a connection. The roots of all 

work on neural networks are in century-old neuro-biological 

studies. The following century-old statement by William 

James (1890) is particularly insightful, and ids reflected in the 

subsequent work of many researchers. The amount of activity 

at any given point in the brain cortex is the sum of the 

tendencies of all other points to discharge into it, such 

tendencies being proportionate 

1. To the number of times the excitement of other 

points may have accompanied that of the points in 

questions; 

2. To the intensities of such excitements; and 

3. To the absence of any rival point functionality 

disconnected with the first point, into which the 

dischargers may diverted. 

Most neural network learning rules have their roots in 

statistical correlation analysis and in gradient descent search 

procedures. Hebb‟s (1949) learning rule incrementally 

modifies connection weights by examining whether two 

connected nodes are simultaneously ON or OFF. Such a rule 

is widely used, with some modifications. 

 

3. UNSUPERVISED LEARNING 
Our neural network is based on unsupervised learning. A 

three-month-old child receives the same visual stimuli as a 

newborn infant, but can make much more sense of them, and 

can recognize various patterns and features of visual input 

data. These abilities are not acquired from an external teacher, 

and illustrate that a significant amount of learning is 

accomplished by biological processes that proceed 

“unsupervised” (teacher-less). Motivated by these biological 

facts, the artificial neural networks attempt to discover special 

features and patterns from available data without using 

external help. 

Some problems require an algorithm to cluster or to partition a 

given data set into disjoint subsets (“clusters”), such that 

patterns in the same cluster are as alike as possible, and 

patterns in different clusters are as dissimilar as possible. The 

application of a clustering procedure results in a partition 

(function) that assigns each data point to a unique cluster. A 

partition may be evaluated by measuring the average squared 

distance between each input pattern and the centroid of the 

cluster in which it is placed. 

 

4. ADAPTIVE RESONANCE THEORY 
Adaptive resonance theory (ART) models are a neural 

network that performs clustering, and can allow the number of 

clusters to vary with the size of the problem. The major 

diffe3rences between ART and other clustering methods is 

that ART allows the user to control the degree of similarity 

between members of the same cluster by means of a user-

defined constant called the vigilance parameter. It uses a 

MAXNET. A “maxnet” is a recurrent one-layer network that 

conducts a competition to determine which node has the 

highest initial input value. Apart from neural plausibility and 

the desire to perform every task using neural networks, it can 

be argued that the maxnet allows for greater parallelism in 

execution than the algebraic solution. 

 

4.1 Proposed work 
We presented a system to detect that whether a module is 

defected or not defected. Neural networks are used to perform 

this task. Most fault prediction techniques rely on historical 

data. Experiments suggest that a module currently under 

development is fault-prone if it has the same or similar 

properties, measured by software metrics, as a faulty module 

that has been developed or released earlier in the same 

environment. Therefore, historical information helps us to 

predict fault-proneness. Many modeling techniques have been 

proposed for and applied to software quality prediction. In 

neural networks historical data which is obtained by 

regression analysis or by any other means are fed to network 

and the network gets trained accordingly. That data is called 

training data. When we input operational data then network 

respond accordingly the trained data. So we used Adaptive 

Resonance Neural Networks (ARNN) which clusters already 

known modules which are faulty and fault-free. As it works 

under unsupervised learning so there is no distinction between 

training data and operational data. 

We used data from promise data repository titled as „software 

defect prediction‟ which contains static attributes of some 

module codes. On the basis of these static attributes modules 

are termed as defected of defect-free. This module level static 

code attributes are collected using Prest metrics and analysis 

tool. The ARNN classifies the modules which are defected in 

one cluster and defect-free in another cluster.  

 

5. RELATED WORK 
Fault proneness is defined as the probability of the presence of 

faults in the software. Research on fault-proneness has 

focused on two areas:-the definition of metrics to capture 

software complexity and testing thoroughness and the 

identification of and experimentation with models that relate 

software metrics to fault-proneness. Fault-proneness can be 

estimated based on directly-measurable software attributes if 

associations can be established between these attributes and 

the system fault-proneness. Faults appear when a program 

does not perform according to user‟s specification during 

testing and operations stages. A number of techniques have 

been used for the analysis of software defect prediction. For 

example, optimized set reduction (OSR) techniques and 

logistic regression techniques are used for modeling risk and 

fault data. OSR attempts to determine which subset of 

observation from historical data provides the best 
characterization of the programs being assessed. 

Munson et al. used discriminant analysis for classifying 

programs as fault-prone within a large medical-imaging 

software system. In their analysis, they also employed the 

data-splitting technique, where subset of programs are 

selected at random and used to train or build a model. The 

remaining programs are used to quantify the error in 

estimation of the number of faults. 

 

5.1 Goal of defect prediction 
There  are mainly two types of fault prediction goals that have 

been studied in literature. In the first type we predict whether 

or not a code entity such as a module will contain any faults. 

In this case every module is categorized as  either faulty or not 

and ther is no differentiation between less faulty modules and 

more faulty modules. Arisholm , Briand and Khoshgoftaar‟s 

research falls into this category. The second type of research 

aims to identify the code entities most likely to contain largest 

number of faults and sort them into decreasing order of 

number of predicted faults. Denaro and Pezze and Succi et al 
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group have worked on this prediction research. Our research 

is focused on first type of goal. 

 

 5.2 Metrics for fault prediction 
Many measures for fault prediction have been proposed in 

literature. They mainly capture the quality of Object-Oriented 

(OO) code and design for detecting fault proneness of 

modules. Mie Mie and Tong Seng [3] used the object oriented 

metrics for fault prediction to obtain assurance about software 

quality. 

We can use software size and complexity metrics for 

predicting the number of defects in the system [9] or we can 

infer number of defects from testing information. It has also 

been observed that code change history is closely related to 

the number of faults that appear in modules of code [10]. 

Many of the metrics used for software defect prediction are 

highly correlated with lines of code, so when changes in code 

occurs the number of defects in module may change. 

The study on the relationships between existing object-

oriented coupling, cohesion and, inheritance measures and the 

probability of fault detection in system during testing has been 

performed by Briand et al.(2000). Their analysis has shown 

that many coupling and inheritance measures are strongly 

related to the probability of fault detection in a module. Their 

analysis has shown that by using some of the coupling and 

inheritance measures, very accurate models could be derived 

to predict in which classes most of the faults actually lie. 

Lots of factor affects software defect prediction, resulting in 

inconsistencies among learning methods. Hence, there is a 

need to develop methods that could remove some of the 

randomness (complexity/uncertainties) in the data leading us 

to a more definitive explanation of the error analysis. One of 

the steps is to capture the dependency among attributes using 

probabilistic models, rather than just using the “size” and 

“complexity” metrics. Bayesian belief networks (BBN) is one 

of the approach along this direction. Ourdataset  used  lines of 

code, Halsted and McCabe measures to find defects in the 

modules. 

 

6.DESIGN, INPUT/OUTPUT AND 

ALGORITHMS 

This includes the dataset information, neural network used 

and graphical user interface. 

 

6.1 Dataset 
The dataset used is a PROMISE Software Engineering 

Repository data set made publicly available in order to 

encourage repeatable, refutable, verifiable, and/or improvable 

predictive models of software engineering. The AR1  data is 

obtained from a Turkish white-goods manufacturer and it is 

denoted by  Software research laboratory (softlab), Bogazici 

university, Istanbul, Turkey. It is a Prest Metrics Extraction 

and Analysis Tool, available at http://softlab.boun.edu.tr. It is 

embedded software in a white-goods product implemented in 

C. The dataset originally has 121 instances each with 30 

parameters, having 9 are defective and 112 are defect-free. 

Each instance represents a software class (or module). A 

classification parameter is used as output to indicate if the 

software class is defect prone (D) or not-defect prone (ND). 

The rest of 29 static code parameters are software metrics. 

These complexity and size metrics include well known Line 

of Code (LOC) measures, Halstead and McCabe measures 

calculated for that module and are divided into three groups. 

Group A has 5 parameters, Group B has 12 parameters and 

Group C has 12 parameters. The software metrics used in our 

dataset are described as below. 

 

6.1.1 Lines of Code (LOC) measures 
The basis of the measure LOC is that program length can be 

used as a predictor of program characteristics such as effort 

and ease of maintenance. The LOC measure is used to 

measure size of the software. LOC is used as DSI (Delivered 

source Instructions) and KDSI (Thousands of Delivered 

source Instructions). Only source lines that are delivered as 

part of the product are included-test drivers and other support 

software is excluded. The different LOC measure include total 

LOC, blank LOC, comment LOC, code and comment LOC, 
executable LOC. 

6.1.2 Halstead measures 

The Halstead metrics are sensitive to program size and help in 

calculating the programming effort in months. The different 

Halstead metrics include length, volume, vocabulary, effort, 

error, time, level, difficulty, unique operands, unique 

operators, total operands and total operator. Halstead´s 

metrics is based on interpreting the source code as a sequence 

of tokens and classifying each token to be an operator or an 

operand.  

6.1.3 McCabe measures 
McCabe metrics measures code (control flow) complexity and 

help in identifying vulnerable code. The different McCabe 

metrics include branch count, decision count, call pairs, 

condition count, multiple condition count, cyclomatic 

complexity, cyclomatic density, decision density, design 

complexity, design density, normalized cyclomatic 

complexity and formal parameters.  

 

6.1.4Preprocessing of dataset:- 
The data in the dataset has been normalized in the range [0,1] 

using the formula given below: 

,

,

,

i j

i j

i j

a
a

a




for all 0≤i≤121 ; 0≤j≤29 

 

7. NEURAL NETWORK 
Adaptive resonance theory (ART) models are neural networks 

that perform clustering, and allow the number of clusters to 

vary the size of the problem. The major difference between 

ART and other clustering methods is that ART allows the user 

to control the degree of similarity between members of same 

cluster by means of a user-defined constant called the 

vigilance parameter. ART networks have been used for many 

pattern recognition tasks, such as automatic target recognition 

and seismic signal processing. 

 

7.1 Structure of the ARNN 
This work uses ART2 architecture of ARNN neural network. 

The neural network is implemented with 29 input nodes and 

two output nodes as shown in figure 1. The network is trained 

with training data extracted from PROMISE dataset. The 

network improves the recall(true positive rate) in predicting 

weather a module is defected or not. 
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ART2 accepts continuous valued vectors. ART2 has highly 

complex input processing units. The input processing units if 

ART2 of normalization and noise suppression, along with the 

comparison of weights needed for reset mechanism. ART2 

has two types of continuous valued inputs. One is called noisy 

binary posses combination signal and the other truly 

continuous. The first one can operate with the fast learning 

type data. The second type of data is more suitable with the 

slow learning mode. The architecture of ART2 is show in 

figure 1. Other parameters used are shown in table1. 

 

 
Fig 1: Adaptive resonance neural network 

Table1. Parameters used during training 

S.no. Parameter Value 

1. Training algorithm ART2 

2. Training mode slow learning 

3. Input layer units 29 

4. Cluster (output) units 02 

5. Number of records used in Training 121 

 

8. EVALUATION AND DISCUSSION 
 

This section presents the methodology used in conducting 

experiments and discusses the results obtained when we 

applied our proposed neural network to software defect 

dataset. The analysis undertaken in this study and the dataset 

used in this work are from PROMISE dataset repository, a 

publicly available dataset which consists of 93 NASA 

projects. 

The GUI for the software defect predictor is shown in figure 2. 

 

 

 

 

 

Fig2. GUI of the software defect predictor 

 

 

Typically the performance of a binary prediction model is 

summarized by the so called confusion matrix, which consists 

of the following four counts:- 

1. Number of defective modules predicted as defective (true 

positive i.e. tp)  

2. Number of non-defective modules predicted as defective 

(false positive i.e. fp) 

 

3. Number of non-defective modules predicted as non-

defective (true negative i.e. tn) 

4. Number of defective modules predicted as non-defective 

(false negative i.e. fn) 

One may desire tp and tn to have larger values and fp, fn to be 

smaller but we can measure it using certain parameters 

defined as follows:- 

1. PRECISION:The precision measures the chance of 

correctly predicting faulty modules among the modules 
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classified as fault-prone. Either a smaller number of 

correctly predicted faulty modules or a large number of 

erroneously tagged fault-free modules would result in a 

low precision. 

                              Precision=                                 (1) 

 

2.  RECALL (true positive rate):- It is often known as true 

positive rate. 

                            Recall=                                       (2) 

3. ACCURACY:- The accuracy measures the chances of 

correctly predicting the fault proneness of individual 

modules. It ignores the data distribution and cost 

information. Therefore ,it can be misleading criterion as 

faulty modules are likely to represent a minority of the 

modules in the dataset. 

                        Accuracy=                   (3) 

 

 4. TRUE NEGATIVE RATE:- 

                         True negative rate=                       (4)

 

We have compared the model with other related purposed 

models and the experiments show that the recall of our model 

is much better than other models. The comparision results are 

shown in Table2. 

Table 2: Comparison of Results 

Models  Precision  Recall  Accuracy  tn rate 

ARNN  0.54 1 0.1479 0.076 

FIS  0.4783 0.9167 0.7292 0.6667 

CT  0.4762 0.83333 0.7292 0.6944 

LR  0.6154 0.6667 0.8125 0.8611 

NN  0.6000 0.5000 0.7917 0.8889 

 

 

We can see that the Recall of the ARNN model for defect 

prediction is 100% which is best out of any defect predicting 

model that has been recently developed. As we can see in 

table the best recall is of FIS model which is 91.67%. The 

ARNN model ensures that the defected modules will de 

detected as defected. When we test software for detecting 

defected modules we want that all the defected modules 

should be detected as defective but if recall is low then it may 

happen that a defective module fall in defect-free module 

category which will later can produce incorrect results while 

implementing the software. But in case of ARNN model, this 

problem will not occur. But due to low accuracy it may 

happen that some of the defect-free modules fall in defected 

module cluster but it create no problem when we implement 

the software as during testing this problem will be solved. 

This study needs to be extended for the validation using more 

datasets. 

 

8. CONCLUSION 
Software defect prediction continues to attract significant 

attention as it holds the promise for improving the 

effectiveness and offering guidance to software verification 

and validation activities. Over the past five years, several 

datasets describing module metrics and their fault content 

became publicly available. As the result, numerous 

methodologies for software quality prediction have been 

proposed in search of “the best” modeling technique. The 

suggestion to experiment with different modeling techniques 

followed by the selection of the most appropriate one has 

become common. Performance comparison between different 

classification algorithms for detecting fault-prone software 

modules has been one of the least studied areas in the 

empirical software engineering literature.  We have applied 

Adaptive Resonance Neural Network for the purpose of 

defect-prediction in software programs. The network is 

special case of unsupervised learning so it gets trained as we 

present new patterns. It recognizes the defect prone modules 

very effectively. The results produced by this ARNN may 

vary for different datasets. It helps to reduce the efforts and 

cost of developing software as it gives prior knowledge of 

modules containing defects. 
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