

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.1, September 2012 – www.ijais.org

29

Software Defect Prediction using Adaptive Neural
Networks

Seema Singh
Lecturer in IT Department

Lovely Professional University
H. no. 290, Village – Dhina

P.O. Jalandhar cantt Punjab

Mandeep Singh
Lecturer in Management department

Lovely Professional University
H. no. 16, Police Station MullanpurDakha

Ludhiana Pin - 141101

ABSTRACT

We present a system which gives prior idea about the

defective module. The task is accomplished using Adaptive

Resonance Neural Network (ARNN), a special case of

unsupervised learning. A vigilance parameter (θ) in ARNN

defines the stopping criterion and hence helps in manipulating

the accuracy of the trained network. To demonstrate the

usefulness of ARNN, we used dataset from promisedata.org.

This dataset contains 121 modules out of which 112 are not

defected and 9 are defected. In this dataset modules are

termed as defected on the basis of three measures that are

LOC, HALSTEAD, MCCABE measures that have been

normalized in the range of 0-1.We see that at θ=0.1858 the

network has maximum Recall (i.e. true negative rate) is 100%

and average Precision=54%.In case of ART n/w shortfalls are

seen for Accuracy as this is a subjective measure.

Keyword: Resonance, Clustering, Unsupervised learning,

Confusion metrics.

1. INTRODUCTION
Today software is used in almost every walk of life. The

software development companies cannot risk their business by

shipping poor quality software as it results in customer

dissatisfaction. Risk to business can be minimized by

predicting the quality of the software in the early stages of the

software development lifecycle (SDLC). This would not only

keep the clients satisfied but also reduce the cost of correction

of defects. It has been reported in that the cost of detect

correction is significantly high if the corrections are made

after testing. An additional benefit of early prediction of

software quality is better resource planning and test planning.

Therefore the key is to identify defect prone modules at an

early SDLC stage. The importance of early software quality

prediction is evident from a number of studies conducted in

the regard.

It is beneficial to obtain early estimates of system reliability or

fault-proneness to help inform decisions on testing, code

inspections, design rework, as well as financial costs

associated with a delayed release, etc. In industry, estimates of

system reliability (or pre-release defect density) are often

available too late to affordably guide corrective actions to the

quality of the software. Several studies have been performed

to build models that predict system reliability and fault-

proneness. Quality is considered a key issue in any software

development project. However, many projects face a tradeoff

between cost and quality, as the time and effort for applying

software quality assurance measures is usually limited due to

economic constraints. In practice, quality managers and

testers are in a daily struggle with critical bugs and shrinking

budgets.

Hence, they are eagerly looking for ways to make quality

assurance and testing more effective and efficient. Defect

prediction promises to indicate defect-prone modules in an

upcoming version of software system and thus allows

focusing the effort on those modules. The net result should be

systems that are of higher quality, containing fewer faults, and

projects that stay more closely on schedule than would

otherwise be possible.

With real-time systems becoming more complex and

unpredictable, partly due to increasingly sophisticated

requirements, traditional software development techniques

might face difficulties in satisfying these requirements.

Further real-time software systems may need to dynamically

adapt themselves based on the runtime mission-specific

requirements and operating conditions. This involves dynamic

code synthesis that generates modules to provide the

functionality required to perform the desired operations in

real-time. Telecontrol/telepresence, robotics, and mission

planning systems are some of the examples that fall in this

category. However, the necessitates the need to develop a

real-time assessment technique that classifies these

dynamically generated systems as being faulty/fault-free.

Some of the benefits of dynamic dependability assessment

include providing feedback to the operator to modify the

mission objectives if the dependability is low, the possibility

of masking defects at run-time, and the possibility of pro-

active dependability management. One approach in achieving

this is to use software defect prediction techniques that can

assess the dependability of these systems using defect metrics

that can be dynamically measured.

A variety of software defect prediction techniques have been

proposed, but none has proven to be consistently accurate.

These techniques include statistical methods, machine

learning methods, parametric models and machine learning

methods, parametric models, and mixed algorithms.

Obviously, there is need to find the best prediction techniques

for a given prediction technique for a given prediction

problem in context, and perhaps, conclude that this problem is

largely unsolvable.

2. WHAT IS A NEURAL NETWORK?
Artificial neural networks are computing systems whose

central theme is borrowed from the analogy of biological

neural networks. Artificial neural networks are also referred to

as “neural nets”, “artificial neural systems”, “parallel

distributed processing systems” and “connectionist systems”.

For computing systems to be called by these pretty names, it

is necessary for the system to have a labeled directed graph

structure where nodes perform some simple computations.

From elementary graph theory we recall that a “directed

graph” consists of a set of “nodes” (vertices) and a set of

“connections” (edges/links/arcs) connecting pairs of nodes. A

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.1, September 2012 – www.ijais.org

30

graph is a “labeled graph” if each connection is associated

with a label to identify some property of the connection. In a

neural network, each node performs some simple

computations, each connection conveys a signal from one

node to another, labeled by a number called the “connection

strength” or “weight” indicating the extent to which a signal is

amplified or diminished by a connection. The roots of all

work on neural networks are in century-old neuro-biological

studies. The following century-old statement by William

James (1890) is particularly insightful, and ids reflected in the

subsequent work of many researchers. The amount of activity

at any given point in the brain cortex is the sum of the

tendencies of all other points to discharge into it, such

tendencies being proportionate

1. To the number of times the excitement of other

points may have accompanied that of the points in

questions;

2. To the intensities of such excitements; and

3. To the absence of any rival point functionality

disconnected with the first point, into which the

dischargers may diverted.

Most neural network learning rules have their roots in

statistical correlation analysis and in gradient descent search

procedures. Hebb‟s (1949) learning rule incrementally

modifies connection weights by examining whether two

connected nodes are simultaneously ON or OFF. Such a rule

is widely used, with some modifications.

3. UNSUPERVISED LEARNING
Our neural network is based on unsupervised learning. A

three-month-old child receives the same visual stimuli as a

newborn infant, but can make much more sense of them, and

can recognize various patterns and features of visual input

data. These abilities are not acquired from an external teacher,

and illustrate that a significant amount of learning is

accomplished by biological processes that proceed

“unsupervised” (teacher-less). Motivated by these biological

facts, the artificial neural networks attempt to discover special

features and patterns from available data without using

external help.

Some problems require an algorithm to cluster or to partition a

given data set into disjoint subsets (“clusters”), such that

patterns in the same cluster are as alike as possible, and

patterns in different clusters are as dissimilar as possible. The

application of a clustering procedure results in a partition

(function) that assigns each data point to a unique cluster. A

partition may be evaluated by measuring the average squared

distance between each input pattern and the centroid of the

cluster in which it is placed.

4. ADAPTIVE RESONANCE THEORY
Adaptive resonance theory (ART) models are a neural

network that performs clustering, and can allow the number of

clusters to vary with the size of the problem. The major

diffe3rences between ART and other clustering methods is

that ART allows the user to control the degree of similarity

between members of the same cluster by means of a user-

defined constant called the vigilance parameter. It uses a

MAXNET. A “maxnet” is a recurrent one-layer network that

conducts a competition to determine which node has the

highest initial input value. Apart from neural plausibility and

the desire to perform every task using neural networks, it can

be argued that the maxnet allows for greater parallelism in

execution than the algebraic solution.

4.1 Proposed work
We presented a system to detect that whether a module is

defected or not defected. Neural networks are used to perform

this task. Most fault prediction techniques rely on historical

data. Experiments suggest that a module currently under

development is fault-prone if it has the same or similar

properties, measured by software metrics, as a faulty module

that has been developed or released earlier in the same

environment. Therefore, historical information helps us to

predict fault-proneness. Many modeling techniques have been

proposed for and applied to software quality prediction. In

neural networks historical data which is obtained by

regression analysis or by any other means are fed to network

and the network gets trained accordingly. That data is called

training data. When we input operational data then network

respond accordingly the trained data. So we used Adaptive

Resonance Neural Networks (ARNN) which clusters already

known modules which are faulty and fault-free. As it works

under unsupervised learning so there is no distinction between

training data and operational data.

We used data from promise data repository titled as „software

defect prediction‟ which contains static attributes of some

module codes. On the basis of these static attributes modules

are termed as defected of defect-free. This module level static

code attributes are collected using Prest metrics and analysis

tool. The ARNN classifies the modules which are defected in

one cluster and defect-free in another cluster.

5. RELATED WORK
Fault proneness is defined as the probability of the presence of

faults in the software. Research on fault-proneness has

focused on two areas:-the definition of metrics to capture

software complexity and testing thoroughness and the

identification of and experimentation with models that relate

software metrics to fault-proneness. Fault-proneness can be

estimated based on directly-measurable software attributes if

associations can be established between these attributes and

the system fault-proneness. Faults appear when a program

does not perform according to user‟s specification during

testing and operations stages. A number of techniques have

been used for the analysis of software defect prediction. For

example, optimized set reduction (OSR) techniques and

logistic regression techniques are used for modeling risk and

fault data. OSR attempts to determine which subset of

observation from historical data provides the best
characterization of the programs being assessed.

Munson et al. used discriminant analysis for classifying

programs as fault-prone within a large medical-imaging

software system. In their analysis, they also employed the

data-splitting technique, where subset of programs are

selected at random and used to train or build a model. The

remaining programs are used to quantify the error in

estimation of the number of faults.

5.1 Goal of defect prediction
There are mainly two types of fault prediction goals that have

been studied in literature. In the first type we predict whether

or not a code entity such as a module will contain any faults.

In this case every module is categorized as either faulty or not

and ther is no differentiation between less faulty modules and

more faulty modules. Arisholm , Briand and Khoshgoftaar‟s

research falls into this category. The second type of research

aims to identify the code entities most likely to contain largest

number of faults and sort them into decreasing order of

number of predicted faults. Denaro and Pezze and Succi et al

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.1, September 2012 – www.ijais.org

31

group have worked on this prediction research. Our research

is focused on first type of goal.

 5.2 Metrics for fault prediction
Many measures for fault prediction have been proposed in

literature. They mainly capture the quality of Object-Oriented

(OO) code and design for detecting fault proneness of

modules. Mie Mie and Tong Seng [3] used the object oriented

metrics for fault prediction to obtain assurance about software

quality.

We can use software size and complexity metrics for

predicting the number of defects in the system [9] or we can

infer number of defects from testing information. It has also

been observed that code change history is closely related to

the number of faults that appear in modules of code [10].

Many of the metrics used for software defect prediction are

highly correlated with lines of code, so when changes in code

occurs the number of defects in module may change.

The study on the relationships between existing object-

oriented coupling, cohesion and, inheritance measures and the

probability of fault detection in system during testing has been

performed by Briand et al.(2000). Their analysis has shown

that many coupling and inheritance measures are strongly

related to the probability of fault detection in a module. Their

analysis has shown that by using some of the coupling and

inheritance measures, very accurate models could be derived

to predict in which classes most of the faults actually lie.

Lots of factor affects software defect prediction, resulting in

inconsistencies among learning methods. Hence, there is a

need to develop methods that could remove some of the

randomness (complexity/uncertainties) in the data leading us

to a more definitive explanation of the error analysis. One of

the steps is to capture the dependency among attributes using

probabilistic models, rather than just using the “size” and

“complexity” metrics. Bayesian belief networks (BBN) is one

of the approach along this direction. Ourdataset used lines of

code, Halsted and McCabe measures to find defects in the

modules.

6.DESIGN, INPUT/OUTPUT AND

ALGORITHMS

This includes the dataset information, neural network used

and graphical user interface.

6.1 Dataset
The dataset used is a PROMISE Software Engineering

Repository data set made publicly available in order to

encourage repeatable, refutable, verifiable, and/or improvable

predictive models of software engineering. The AR1 data is

obtained from a Turkish white-goods manufacturer and it is

denoted by Software research laboratory (softlab), Bogazici

university, Istanbul, Turkey. It is a Prest Metrics Extraction

and Analysis Tool, available at http://softlab.boun.edu.tr. It is

embedded software in a white-goods product implemented in

C. The dataset originally has 121 instances each with 30

parameters, having 9 are defective and 112 are defect-free.

Each instance represents a software class (or module). A

classification parameter is used as output to indicate if the

software class is defect prone (D) or not-defect prone (ND).

The rest of 29 static code parameters are software metrics.

These complexity and size metrics include well known Line

of Code (LOC) measures, Halstead and McCabe measures

calculated for that module and are divided into three groups.

Group A has 5 parameters, Group B has 12 parameters and

Group C has 12 parameters. The software metrics used in our

dataset are described as below.

6.1.1 Lines of Code (LOC) measures
The basis of the measure LOC is that program length can be

used as a predictor of program characteristics such as effort

and ease of maintenance. The LOC measure is used to

measure size of the software. LOC is used as DSI (Delivered

source Instructions) and KDSI (Thousands of Delivered

source Instructions). Only source lines that are delivered as

part of the product are included-test drivers and other support

software is excluded. The different LOC measure include total

LOC, blank LOC, comment LOC, code and comment LOC,
executable LOC.

6.1.2 Halstead measures

The Halstead metrics are sensitive to program size and help in

calculating the programming effort in months. The different

Halstead metrics include length, volume, vocabulary, effort,

error, time, level, difficulty, unique operands, unique

operators, total operands and total operator. Halstead´s

metrics is based on interpreting the source code as a sequence

of tokens and classifying each token to be an operator or an

operand.

6.1.3 McCabe measures
McCabe metrics measures code (control flow) complexity and

help in identifying vulnerable code. The different McCabe

metrics include branch count, decision count, call pairs,

condition count, multiple condition count, cyclomatic

complexity, cyclomatic density, decision density, design

complexity, design density, normalized cyclomatic

complexity and formal parameters.

6.1.4Preprocessing of dataset:-
The data in the dataset has been normalized in the range [0,1]

using the formula given below:

,

,

,

i j

i j

i j

a
a

a




for all 0≤i≤121 ; 0≤j≤29

7. NEURAL NETWORK
Adaptive resonance theory (ART) models are neural networks

that perform clustering, and allow the number of clusters to

vary the size of the problem. The major difference between

ART and other clustering methods is that ART allows the user

to control the degree of similarity between members of same

cluster by means of a user-defined constant called the

vigilance parameter. ART networks have been used for many

pattern recognition tasks, such as automatic target recognition

and seismic signal processing.

7.1 Structure of the ARNN
This work uses ART2 architecture of ARNN neural network.

The neural network is implemented with 29 input nodes and

two output nodes as shown in figure 1. The network is trained

with training data extracted from PROMISE dataset. The

network improves the recall(true positive rate) in predicting

weather a module is defected or not.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.1, September 2012 – www.ijais.org

32

ART2 accepts continuous valued vectors. ART2 has highly

complex input processing units. The input processing units if

ART2 of normalization and noise suppression, along with the

comparison of weights needed for reset mechanism. ART2

has two types of continuous valued inputs. One is called noisy

binary posses combination signal and the other truly

continuous. The first one can operate with the fast learning

type data. The second type of data is more suitable with the

slow learning mode. The architecture of ART2 is show in

figure 1. Other parameters used are shown in table1.

Fig 1: Adaptive resonance neural network

Table1. Parameters used during training

S.no. Parameter Value

1. Training algorithm ART2

2. Training mode slow learning

3. Input layer units 29

4. Cluster (output) units 02

5. Number of records used in Training 121

8. EVALUATION AND DISCUSSION

This section presents the methodology used in conducting

experiments and discusses the results obtained when we

applied our proposed neural network to software defect

dataset. The analysis undertaken in this study and the dataset

used in this work are from PROMISE dataset repository, a

publicly available dataset which consists of 93 NASA

projects.

The GUI for the software defect predictor is shown in figure 2.

Fig2. GUI of the software defect predictor

Typically the performance of a binary prediction model is

summarized by the so called confusion matrix, which consists

of the following four counts:-

1. Number of defective modules predicted as defective (true

positive i.e. tp)

2. Number of non-defective modules predicted as defective

(false positive i.e. fp)

3. Number of non-defective modules predicted as non-

defective (true negative i.e. tn)

4. Number of defective modules predicted as non-defective

(false negative i.e. fn)

One may desire tp and tn to have larger values and fp, fn to be

smaller but we can measure it using certain parameters

defined as follows:-

1. PRECISION:The precision measures the chance of

correctly predicting faulty modules among the modules

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 4– No.1, September 2012 – www.ijais.org

33

classified as fault-prone. Either a smaller number of

correctly predicted faulty modules or a large number of

erroneously tagged fault-free modules would result in a

low precision.

 Precision= (1)

2. RECALL (true positive rate):- It is often known as true

positive rate.

 Recall= (2)

3. ACCURACY:- The accuracy measures the chances of

correctly predicting the fault proneness of individual

modules. It ignores the data distribution and cost

information. Therefore ,it can be misleading criterion as

faulty modules are likely to represent a minority of the

modules in the dataset.

 Accuracy= (3)

 4. TRUE NEGATIVE RATE:-

 True negative rate= (4)

We have compared the model with other related purposed

models and the experiments show that the recall of our model

is much better than other models. The comparision results are

shown in Table2.

Table 2: Comparison of Results

Models Precision Recall Accuracy tn rate

ARNN 0.54 1 0.1479 0.076

FIS 0.4783 0.9167 0.7292 0.6667

CT 0.4762 0.83333 0.7292 0.6944

LR 0.6154 0.6667 0.8125 0.8611

NN 0.6000 0.5000 0.7917 0.8889

We can see that the Recall of the ARNN model for defect

prediction is 100% which is best out of any defect predicting

model that has been recently developed. As we can see in

table the best recall is of FIS model which is 91.67%. The

ARNN model ensures that the defected modules will de

detected as defected. When we test software for detecting

defected modules we want that all the defected modules

should be detected as defective but if recall is low then it may

happen that a defective module fall in defect-free module

category which will later can produce incorrect results while

implementing the software. But in case of ARNN model, this

problem will not occur. But due to low accuracy it may

happen that some of the defect-free modules fall in defected

module cluster but it create no problem when we implement

the software as during testing this problem will be solved.

This study needs to be extended for the validation using more

datasets.

8. CONCLUSION
Software defect prediction continues to attract significant

attention as it holds the promise for improving the

effectiveness and offering guidance to software verification

and validation activities. Over the past five years, several

datasets describing module metrics and their fault content

became publicly available. As the result, numerous

methodologies for software quality prediction have been

proposed in search of “the best” modeling technique. The

suggestion to experiment with different modeling techniques

followed by the selection of the most appropriate one has

become common. Performance comparison between different

classification algorithms for detecting fault-prone software

modules has been one of the least studied areas in the

empirical software engineering literature. We have applied

Adaptive Resonance Neural Network for the purpose of

defect-prediction in software programs. The network is

special case of unsupervised learning so it gets trained as we

present new patterns. It recognizes the defect prone modules

very effectively. The results produced by this ARNN may

vary for different datasets. It helps to reduce the efforts and

cost of developing software as it gives prior knowledge of

modules containing defects.

9. REFRENCES
[1] M. Bahrololum, E. Salahi, and M. Khaleghi, 2009,

Anomaly Intrusion Detection Design using Hybrid of

Unsupervised and Supervised Neural Network,

International Journal of Computer Networks &

Communications pp. 26-33.

[2] Venkata U.B. Challagulla, FarokhB.Bastani,I-Ling

Yen2005 ”Empirical Assessment of machine learning

based software defect prediction techniques”.Words’05

Proceedings of the 10th IEEE International Workshop on

Object-Oriented Real-Time Dependable Systems pp 263-

270,.

[3] Mie MieThetThwin,Tong-SengQuah2003 “Application

of neural networks for software quality prediction using

object-oriented metrics” ICSM '03 Proceedings of the

International Conference on Software

Maintenancepp116.

[4] NcahiappanNagappan2005”Static Analysis Tools as

early Indicators of pre-release defect density” ICSE

'05Proceedings of the 27th international conference on

Software engineering pp 580-586.

[5] Rudolf Ramer, Klaus Wolfmair,ErwinStauder, Felix

Kossak and Thomas Natschlager 2009 “Key Questions in

Building defect prediction models in practice”Software

Competence Center HagenbergSoftwarepark 21, A-4232

Hagenberg, Austria, pp. 14–27.

[6] Zeeshan Ali Rana,Mian Muhammad Awais and

ShafayShamail 2009 ”An FIS for early defect prone

modules”Springer-Verlag Berlin Heidelberg ,pp. 144–153.

[7] G. Boetticher, T. Menzies, and T. Ostrand, PROMISE

Repository of Software Research Laboratory

(Softlab),Bogazici University, Istanbul, Turkey, 2007,

http://promisedata.org/ repository.

[8] K. Mehrotra, C. K. Mohan, and S. Ranka, Elements of

Artificial Neural Networks (Massachusetts Institute of

Technology, MA, 2000).

[9] Martin Neil and Norman Fenton 1996 “ Predicting

software quality using Bayesian Belief Networks”.

[10] Todd L. Graves, Alan F. Karr, J.S. Marron and Harvey

Siy 2000 “Predicting Fault Incidence Using software

change history”. IEEE transactions of software

engineering.

tp

tp tf

tp

tp fn

tp tn

tp fn tn fp



  

tn

tn fp

http://www.cs.wustl.edu/icse05/CallForPapers/CallForPapers.shtml
http://www.cs.wustl.edu/icse05/CallForPapers/CallForPapers.shtml
http://www.cs.wustl.edu/icse05/CallForPapers/CallForPapers.shtml
http://promisedata.org/

