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ABSTRACT 

A group signature allows any member of a group to sign 

anonymously and to act on behalf of the group in such a way 

that only the associated group manager, in case of any dispute, 

is able to reveal the identity of the author of a transaction. The 

functioning of the group signature is based on a set of rules 

that are required to be met at any time by the associated 

scheme. The state-of-the-art of the group signature research 

has shown that several schemes have been proposed but none 

of them satisfy all the fundamental group signature properties 

such as liveliness. When some of these properties are 

satisfied, only informal proofs are available. Hence, one 

cannot claim that these properties are really supported by the 

associated schemes. This paper contributes in the definition of 

a group signature scheme by integrating all the required 

constraints and making it possible to carry out their formal 

proof. The specification of the scheme is based on the finite 

state automata techniques and the temporal logic PLTL of 

CTL* to formally specify the required properties. Finally, the 

model-checker SPIN is used to verify the consistency of the 

resulting scheme. 

Keywords 

Group Signature Scheme, Temporal Logic, Model 
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1. INTRODUCTION 
The notion of Group signature was introduced by Chaum and 

Van Heyst [1]. This notion is a very useful tool in applications 

where the signer's privacy should be protected and in case of 

abuse an authority can identify the misbehaving user. 

However, a well-known group signature problem is that it is 

difficult for the group manager to identify a malicious user 

since all signatures are anonymous. The group manager 

obviously cannot afford to open all the group signatures 

signed, as by so doing, he would compromise the privacy of 

every signer. To tackle this problem, in practice many group 

signature schemes have been proposed. In this purpose, M. 

Abdalla and al. in [19] introduced the concept of unique 

signatures which is of great value from both theoretical and 

applied perspectives in this domain. Abe and al. in [20, 21] 

proposed group signatures with efficient concurrent join. A 

number of unique group signature schemes without random 

oracles under a variety of security models that extend the 

standard security models of ordinary group signatures are 

defined in [22]. Despite the volume of schemes defined in the 

literature, the formal proof of the associated group signature 

properties has not yet been carried out based on any of these 

schemes. This is due to the fact that a generic model of the 

group signature scheme has not been specified. The existing 

schemes have been presented based on specific cases. For this 

end, they do not consider the general aspect of the group 

signature problem. In order to carry out the proof of these 

properties, the paper argues that the scheme should first verify 

two more constraints. Therefore, a scheme obtained from the 

initial group signature theory cannot be used to formally 

prove the main properties of a group signature. 

Formal specification of application software is becoming 

more and more common. Communicating finite state 

machines are suitable for modeling the basic group signature 

scheme. This motivated our choice of Promela as our 

specification language and Spin for checking large state 

spaces of the system. Although Promela’s expressive power is 

rather low and provides only a few basic data types and 

primitive constructor types, it offers the possibility of 

expressing reachability, safety and liveliness requirements by 

logical assertions or linear temporal logic expressions. The 

model is further animated by the Spin simulator and verified 

by the validator [6, 12] with different degrees of precision 

depending on the problem size. The properties are checked 

during the simulation or the verification step and if an error 

occurs it is possible to run the simulator again and look at 

each state to find the problem. 

Only the fundamental group signature scheme of group 

signatures presented by J. Camenish and M. Stadler [4] 

informally satisfies most of the required properties of group 

signatures. A fully specified and verified group signature 

scheme could find application in a wide variety of fields 

where information security is a critical issue [5]; examples of 

information security sensitive domains include: electronic 

commerce, electronic bank transfer, video conferencing, etc. 

In this paper, we contribute to research in the area of group 

signatures by providing a formal specification using finite 

state automata and a formal verification of group signatures 

basic properties presented by Camenish and Stadler in [4], 

which so far have only been informally verified.  

The rest of the paper is organized as follows. Section 2 

identifies fundamentals of group signatures. Section 3 

describes models for the different operations of group 

signatures using finite state automata techniques. Section 4 

formally verifies some properties of our system and provides 

results generated by the model-checker Spin. Section 5 deals 

with the conclusion and highlighting some perspectives for 

future research.  
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2. FUNDAMENTALS OF GROUP 

SIGNATURES 
A group signature scheme is a digital signature scheme 

comprised of the following operations [1, 9, 13, 14]: 

SETUP: An algorithm for generating the group public key y 

and a group secret key S. 

JOIN: A protocol between the group manager and a user that 

results in the user becoming a new group member. 

SIGN: A protocol between a group member and a user 

whereby a group signature on a user supplied message is 

computed by the group member. 

VERIFY: An algorithm for establishing the validity of a 

group signature giving a group public key and a signed 

message. 

OPEN: An algorithm that, given a signed message and a 

group secret key, determines the identity of the signer. 

According to [9, 10], a group signature scheme must satisfy 

the following security properties: 

Unforgeability: Only group members are able to sign 

messages on behalf of the group. 

Anonymity: Given a signature, identifying the actual signer is 

computationally hard for everyone except the group manager. 

Traceability: The group manager is able to open a signature 

and identify the actual signer; moreover, a signer cannot 

prevent the opening of a valid signature. 

2.1 Components and Operations 
The main protagonist in group signatures schemes are: 

- the group manager: it’s a trusted personality who is in 

charge of managing the group. 

- group members: members of a group who can carry out 

group operations such as signing messages on behalf of the 

group. After the initial set up of the group which is achieved 

by the group manager through the SETUP primitive, group 

members and group manager will undertake JOIN, SIGN, 

VERIFY and OPEN operations during their stay in the group. 

 

3. OPERATIONS WITH ASSOCIATED 

AUTOMATA 
The proposed model holds on proactive, active and reactive 

components. A detailed description of each one follows. 

3.1 Operation 1 “SETUP” 
 The group manager computes the following values [9]: 

• an RSA modulus n and two public exponents e1, e2 >1, such 

that e2 is relatively prime to Φ(n), whereas Φ is the Euler Φ 

function; 

• two integer f1, f2 >1, whose e1 - roots and e2 - roots cannot be 

computed without knowing the factorization of n; 

• a cyclic group G = <g>n of order n in which computing 

discrete logarithm is infeasible; 

• an element hG whose discrete logarithm to the base g 

must be unknown. 

• his public key  yR = hρ for a randomly chosen value ρ
nZ ; 

• the group’s public key consist of y = (n,e1,e2,f1,f2,G,g,h,yR), 

whereas ρ and the factorization of n remain the group 

manager’s secret key (also called group secret key). 

 

 Associated automaton 

Figure 1 bellow provides the automaton that represents the 

operation. 

 

 

 

 

 

 
 

Fig 1: setup automaton: AS 
 

 Transition elements are boolean variables: set_param; 

issuing_pk. The symbol ( ¬ ) denote the negation. 

 Atomic propositions 

Here, we denote two atomic propositions. 

S1: all components of the group public key have been 

registered (set_param is set to true). 

S2: the group public key has been issued (issuing_ pk is set to 

true). 

 Automaton’s formal definition 

We obtain the automaton AS = (Q, E, T, Q0, λ) defined as 

follows: 

 the set of states is Q = {S0, S1, S2}; 

 the set of transition labels is E = {¬set_param; 

set_param; ¬issuing_pk; issuing_pk}; 

 the set of transitions is  

T = {(S0,¬set_param,S0); (S0,set_param,S1); 

(S1,¬issuing_pk,S1); (S1,issuing_pk, S2)} 

 the initial state of automaton is Q0 = S0 

 the application λ which for all states of Q associates 

the set of elementary properties which is verified in 

this state is: 
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3.2 Operation 2 “JOIN” 
Let’s call Alice, the person who intends to join the group. 

Alice. Alice and the group manager both participate in this 

operation which comprises three steps presented below. 

 

 first step: 

To become a group member, Alice computes 

• 2

1 2( )(mod )
e

y r f y f n % for r *

nZ  

• U = E-SKROOTLOG 
1

[ : ]
e

z g   

• V = E-SKROOTLOG 
2

1 2[ : ( ) ]
ef fyg z g  

%
 

and sends y%, z, U and V to the group manager. 

 

 second step: 

The group manager verifies whether U and V are correct and 

sends to Alice the blinded certificate 2

1

(mod )
e

v y n% %  

 

 third step: 

Alice unblinds this certificate and obtains her membership 

certificate 2

1

1 2/ ( ) (mod )
e

v v r f y f n  %  

 

 Associated automaton 

We will distinguish two automata: 

The first one describes the user’s (Alice) actions and the 

second the group manager’s actions. 

  

 Alice’s case 

This is the automaton that represents the operation. 

 

S2 
 

S0 S1 

 

_set param _issue pk

¬ set_param ¬ issue_pk 
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Figure 2: Partial automaton of group integration (1): AJA 

 

 Transition elements are boolean variables: comp_param; 

send_param; receiv_cert; unblind_cert. 

 Atomic propositions 

Here, we denote four atomic propositions. 

JA1: Alice has computed her member’s key (comp_param is 

set to true). 

JA2: Alice has sent a blinded version of her member key to 

the group manager (send_param is set to true). 

JA3: Alice has received a blinded version of her membership 

certificate from the group manager (receiv_cert is set to true). 

JA4: Alice has unblinded her membership certificate 

(unblind_cert is set to true). 

 Automaton’s formal definition 

We obtain the automaton AJA = (Q, E, T, Q0,  ) defined as 

follows: 

 the set of states is Q = {JA0, JA1, JA2, JA3, JA4} 

  E = {¬comp_param; comp_param; ¬send_param; 

send_param; ¬receiv_cert; receiv_cert; ¬unblind cert; 

unblind_cert;} 

 T={(JA0,¬comp_param,JA0); 

(JA0,comp_param,JA1); (JA1,¬send_param,JA1); 

(JA1,send_param,JA2); (JA2,¬receiv_cert,JA2); (JA2, 

receiv_cert,JA3); (JA3,¬unblind_cert,JA3); 

(JA3,unblind_cert, JA4)} 

 the initial state of automaton is Q0 = JA0 

 and then,  

 

 

 

 

0

1 1

2 2

3 3

4 4

JA

JA JA

JA JA

JA JA

JA JA



 




 





a

a

a

a

a

 

 

 Group manager’s case 

The automaton associated with the group manager’s set of 

operations is presented in figure 3 below. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 3: Partial automaton of group integration (2): AJM 
 

 Transition elements are boolean variables: receiv_param; 

check_param; send_cert. 

 Atomic propositions 

JM1: the group manager has received Alice’s blinded member 

key (receiv_param is set to true). 

JM2: Alice’s signatures of knowledge are correct 

(check_param is set to true). 

JM3: the group manager has sent a blinded version of Alice’s 

membership certificate to her (send_cert is set to true). 

 Automaton’s formal definition 

We obtain the automaton AJM = (Q, E, T, Q0,  ) defined as 

follows: 

 Q = {JM0, JM1, JM2, JM3} 

 E={¬receiv_param; receiv_param; ¬check_param; 

check_param; ¬send_cert; send_cert} 

 T={(JM0,¬receiv_param,JM0);(JM0,receiv_param,J

M1);(JM1,¬check_param,JM1);(JM1,check_param,J

M2);(JM2,¬send_cert,JM2);(JM2,send_cert,JM3)} 

 the initial state of automaton is Q0 = JM0 

 and then, 
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3.2.1 Global automaton of “JOIN” 
The interaction of the group manager and the user (Alice) in 

the JOIN primitive compels us to synchronize their automaton 

[2, 6]. The synchronized product is based on the send / receive 

message synchronization. In the transition labels, we have 

separated those which correspond to the send (“send”) from 

those corresponding to the receive (“receive”) of the same 

message. 

The synchronization constraint [2] is reduced to the 

simultaneity of the send and the reception of messages. The 

set of synchronization is defined as follows: 

Sync = {(comp_param, -); (send_param, receiv_param); (-, 

check_param); (send_cert, receiv_cert); (unblind_cert, -)}, 

where the symbol “-” means “do nothing”. After building the 

cartesian product automaton [2, 3], we extract the 

synchronized product which is the final automaton of JOIN as 

shown in figure 4 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Final automaton JOIN: AJ = AJA AJM 

 

3.3 Scenario 3 “SIGN” 
Only the group members intervene in this procedure. To sign 

a message on behalf of the group, Alice performs the 

following computations: 

• r yz h g%  

• r

Rd y  

JA4 JA3 _unblind cert

¬ unblind_cert 
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JOIN: User side 

_receiv param _check param

¬ receiv_param ¬ check_param 
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d

_
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¬
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( - :¬
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) 

(¬ comp_param : - ) (¬ send_param : ¬ receiv_param 

 ) 

J0 J1 J2 
(comp_param : - ) 

(send_param :  receiv_param 

 ) ( - :ch
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p
a
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m
) 

JOIN 

J5 J4 J3 

(¬ receiv_cert : ¬send_cert ) (¬unblind_cert : - ) 

(receiv_cert : send_cert ) (unblind_cert : - ) 
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• V1 = E-SKROOTREP 
1

[( , ) : ](' ')
e

z h g M   %  

•V2=E-SKROOTREP 
2

1 2[( , ) : ](' ')
ef fz g h g M   %  

•V3=E-SKREP [( , ) : ](' ')d R z h g M      %  

The resulting signature on the message M consist of ( z%, d, 

V1, V2, V3) and it is valid if the three signatures of 

knowledge V1, V2 and V3 are correct. 

 

 Associated automaton 

The associated automaton is shown in figure 5. 

 

 

 

 

 

 
 

Fig 5: sign automaton : ASI 

 

 

 Transition elements are boolean variables: cal_param; 

make_proof; apply_sign. 

 Atomic propositions 

SI1: Alice has used the group manager’s public key to 

compute the first part of the signature (cal param is set to 

true). 

SI2: Alice has established signatures of knowledge 

(make_proof is set to true). 

SI3: Alice has applied her signature on the massage 

(apply_sign is set to true). 

 Automaton’s formal definition 

We obtain the automaton AS = (Q, E, T, Q0,  ) defined as 

follows: 

 the set of states is Q ={SI0, SI1, SI2,SI3} 

 E ={¬cal_param; cal_param; ¬make_proof; 

make_proof; ¬apply_sign; apply_sign} 

 T = {(SI0,¬cal_param,SI0); (SI0,cal_param,SI1); 

(SI1,¬make_proof,SI1); (SI1,make_proof,SI2); 

(SI2,¬apply_sign,SI2); (SI2,apply sign,SI3)} 

 the initial state of automaton is Q0 = SI0 

 and 
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3.4 Operation 4 “OPEN” 
Only the group manager is involved here. Given a signature 

( z%, d, v1, V2, V3) on a message M, he computes the 

following: 

•
1/ˆ / wz z d % , which corresponds to the signer’s membership 

key z. 

• SKREP [ : ](' ')w w

Rw z zd h y M  % , to prove that z is 

indeed encrypted in z%and d. 

• extracts in z the identity of Alice and reveals it. 

 Associated automaton 

Here is the associated automaton. (figure 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6: open signature automaton: AO 
 

 Transition elements are boolean variables: open_key; 

encr_proof; revel_id. 

 Atomic propositions 

Here, we denote two atomic propositions. 

O1: the group manager has extracted the member key of the 

signer in the signature (open_key is set to true). 

O2: the group manager has proven that the member key is 

indeed encrypted in the signature (encr_proof is set to true). 

O3: the group manager has revealed the identity of the signer 

(revel_id is set to true). 

 Automaton’s formal definition 

We obtain the automaton AO = (Q, E, T, Q0,  ) defined as 

follows: 

 Q ={O0, O1,O2} 

 E ={¬open_key; open_key; ¬encr_proof; encr_proof; 

¬Revel_id; revel_id} 

 T={(O0,¬open_key,O0); (O0,open_key,O1); 

(O1,¬encr_proof,O1); (O1,encr_proof,O2); 

(O2,¬revel_id,O2);(O2,revel_id,O3)} 

 Q0 = O0 

 and, 
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3.5 Operation 5 “VERIFY” 
Only the group manager intervenes in this operation. He 

carries out the following tasks [3]: 

• check V1 to convince himself that the signer knows the 

secret key. 

• check V2 to convince himself that the signer knows the 

membership certificate associated to his secret key. 

• check V3 to convince himself that the signature could be 

opened if it necessary. 

 Associated automaton 

This is the associated automaton (figure 7). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: verify automaton: AV 
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 Transition elements are boolean variables: check_gm; 

check_open; check_sign_value; valid_sign. 

 Atomic propositions 

V1: the group manager is convinced that the first signature of 

knowledge is correct (check_gm is set to true). 

V2: the group manager is convinced that the signature could 

be opened (check_open is set to true). 

V3: the group manager is convinced that the signer is a group 

member (check_sign value is set to true). 

V4: the group manager has validated the signature (valid_sign 

is set to true). 

 Automaton’s formal definition 

We obtain the automaton AV = (Q, E, T, Q0,  ) defined as 

follows: 

 Q = {V0, V1, V2, V3,V4} 

 E ={¬check_gm; check_gm;¬check_open; 

check_open;¬check_sign_value; 

check_sign_value;¬valid_sign;valid_sign} 

 T = {(V0,¬check_gm,V0); (V0,check_gm,V1); 

(V1,¬check_open,V1); (V1,check_open,V2); 

(V2,¬check_sign_value,(V2,check_sign_value,V3); 

(V3,¬valid_sign,V3); (V3,valid_sign,V4)} 

 the initial state of automaton is Q0 = V0 

 and then, 
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4. GLOBAL AUTOMATON OF THE 

SYSTEM 
Given that the system is asynchronous, it was split into 

components that do not interact among themselves. The 

global automaton will therefore be the cartesian product of 

automata that represent the various components (SETUP, 

JOIN, SIGN, VERIFY, OPEN). Hence, a (global) state of the 

automaton is actually a vector of the various (locals) states of 

the components. 

5. VERIFICATION 
The following issues are consigned during verification: 

preventing major problems such as global deadlock of system, 

eliminating unspecified receptions and detecting non 

executable codes at a given moment. Properties verified by 

the system fall into three major groups presented below. 

Every property is first of all formalized using LTL (Linear 

Temporal Logic) of Spin.  

The return of Spin is very verbose but rather discreet 

concerning the truthfulness of a formula. In figure 8 - 12, " 

never-claim + " in the right diagram indicate that the process 

of check was launched on the property stated in Formula As 

typed of the left diagram. Every time that one  “ - “ replace 

one “ + “, it means is that the property was not taken into 

account, in which case Spin will indicate that there is no error. 

The met number of errors is indicated to the end of check. If it 

indicates 0, it means that the property is the true. Otherwise, 

the shown value will indicate the number of errors. 

Futhermore, whenever the specication is not satisfied, the 

ModelChecker will produce a counterexample execution trace 

that shows why the specification does not hold. 

5.1 Reachable properties 
A reachable property indicates that a given situation can be 

reached [3, 6]. 

They are all atomic propositions that we have identified 

during the modeling process. To verify them, Spin ensures 

that states in which these properties are defined are really 

reachable. The pertinent ones are those which are associated 

with finals states of automata defined in the previous section. 

In SETUP, we have the following proposition: 

(S2) “group public key has been issued”. This proposition is 

checked by assert (issuing pk=1). 

Where assert (boolean variable) is a Spin primitive which 

stops the verification process whenever the Boolean variable 

is false. 

In JOIN, we have the following proposition: 

(J5) “Alice has unblinded her member certificate”. This 

proposition is checked by assert (unblind cert=1). 

In SIGN, the pertinent proposition is: 

(SI3) “Alice has signed the massage”. The proposition is 

checked by assert (apply sign=1). 

In VERIFY, we have: 

(V4) “The group manager has validated the signature on the 

massage”. This proposition is checked by assert (valid 

sign=1). 

In OPEN, we have: 

(O3) “The group manager has revealed the identity of the 

signer”. This proposition is checked by assert (reveal_id=1). 

5.2 Safety properties 
A safety property means that, under certains conditions, 

something cannot take place [6]. Examples include anonymity 

and unforgeability. 

 

5.2.1  Anonymity 
“a group member cannot verify or open a signature on a 

message”. This is formalized in PLTL (Propositional 

Linear Temporal Logic) as follows: 

( ( ))G member verify open   

The associated automaton generated by Promela in order to 

run the verification (called never claim) is on the left side. 

(See figure 8) 

One can observe in the verification results (on the right side) 

the large state spaces of the system which had been checked 

without any error (errors:0). 
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5.2.2 Unforgeability 
“any person who signs a message had previously been 

registered before as a group member”. His PLTL 

formalization is: 

1
( )G sign F join


  which is equivalent to 

( ) )sign join G sign     

The never claim associated and the verification results are 

presented in figure 9. 

 

5.3  Liveliness properties 
A liveliness property means that, under certains conditions, 

something will eventually occur [10]. Examples include 

belonging, traceability and feasibility. 

5.3.1 Belonging 
“one cannot be a group member until he runs join” is 

formalized in PLTL as follows: 

¬ member  W  join 

Its equivalence is member join G member     

Here is the associated never claim (figure 10). 

 

 

Figure 8: PROPERTY (a): ( ( ))G member verify open   

 

Figure 9: PROPERTY (b): 
( ) )sign join G sign   
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5.3.2 Traceability 
“the group manager can sign messages, verify and open 

signatures on the messages”. In PLTL, we have: 

( ( )manager G sign verify open    

The associated never claim is presented in figure 11. 

5.3.3 Feasibility 
“any group member can sign a message on behalf of the 

group” is translated in PLTL by: 

member F sign 

The associated never claim is presented in figure 12. 

 

Figure 10: PROPERTY (c): member join G member     

 
Figure 11: PROPERTY (d): ( ( )manager G sign verify open    

 
Figure 12: PROPERTY (e): member F sign 
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6. CONCLUSION AND FUTURE WORK 
Much work has been done in the group signature field leading 

to the development of a great number of group signature 

schemes. However, none of these schemes allows for the 

carrying out of formal proof of the associated group 

properties. The defined schemes have been modeled based on 

specific case studies and do not really take into consideration 

all the initial outlines properties. In this paper, we have 

presented a formal model of group signatures specified using 

finite state automata in order to contribute in the resolution of 

this difficulty. The proof process has been done 

incrementally; first we have added and proved two salient 

properties that are used in verifying the main properties of the 

group signature defined by D. Chaum and al. The Linear 

Temporal Logic PLTL which asserts how the behavior of the 

system evolves over time has been used. Secondly, the SPIN 

model checker was later used to check whether the abstract 

model satisfies the properties identified and formalized using 

PLTL temporal logic. These properties include: reachable 

properties, safety properties and liveliness properties. By 

applying each property in turn as well as the model of the 

system to the SPIN model-checker, we formally verified that 

the defined model satisfied all the properties listed by D. 

Chaum. During the verification process, liveliness properties 

such as “belonging” and “feasibility” impose themselves as 

conditions of the achievement of the “traceability” required to 

be one of the fundamental group signature properties. As 

future work, we plan to implement the defined group 

signature scheme, and extend the model in order to carry out 

verification of a group signature scheme in which the group 

management is shared among its members such that every 

member is involved in all management transactions. 
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