

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.9, February 2012 – www.ijais.org

25

Modelling and Verification
of

Group Signatures Properties

MBOUPDA MOYO Achille
University of Yaounde I

Faculty of Sciences

Cameroon

 ATSA ETOUNDI Roger
University of Yaounde I

Faculty of Sciences

Cameroon

ABSTRACT

A group signature allows any member of a group to sign

anonymously and to act on behalf of the group in such a way

that only the associated group manager, in case of any dispute,

is able to reveal the identity of the author of a transaction. The

functioning of the group signature is based on a set of rules

that are required to be met at any time by the associated

scheme. The state-of-the-art of the group signature research

has shown that several schemes have been proposed but none

of them satisfy all the fundamental group signature properties

such as liveliness. When some of these properties are

satisfied, only informal proofs are available. Hence, one

cannot claim that these properties are really supported by the

associated schemes. This paper contributes in the definition of

a group signature scheme by integrating all the required

constraints and making it possible to carry out their formal

proof. The specification of the scheme is based on the finite

state automata techniques and the temporal logic PLTL of

CTL* to formally specify the required properties. Finally, the

model-checker SPIN is used to verify the consistency of the

resulting scheme.

Keywords

Group Signature Scheme, Temporal Logic, Model

Verification.

1. INTRODUCTION
The notion of Group signature was introduced by Chaum and

Van Heyst [1]. This notion is a very useful tool in applications

where the signer's privacy should be protected and in case of

abuse an authority can identify the misbehaving user.

However, a well-known group signature problem is that it is

difficult for the group manager to identify a malicious user

since all signatures are anonymous. The group manager

obviously cannot afford to open all the group signatures

signed, as by so doing, he would compromise the privacy of

every signer. To tackle this problem, in practice many group

signature schemes have been proposed. In this purpose, M.

Abdalla and al. in [19] introduced the concept of unique

signatures which is of great value from both theoretical and

applied perspectives in this domain. Abe and al. in [20, 21]

proposed group signatures with efficient concurrent join. A

number of unique group signature schemes without random

oracles under a variety of security models that extend the

standard security models of ordinary group signatures are

defined in [22]. Despite the volume of schemes defined in the

literature, the formal proof of the associated group signature

properties has not yet been carried out based on any of these

schemes. This is due to the fact that a generic model of the

group signature scheme has not been specified. The existing

schemes have been presented based on specific cases. For this

end, they do not consider the general aspect of the group

signature problem. In order to carry out the proof of these

properties, the paper argues that the scheme should first verify

two more constraints. Therefore, a scheme obtained from the

initial group signature theory cannot be used to formally

prove the main properties of a group signature.

Formal specification of application software is becoming

more and more common. Communicating finite state

machines are suitable for modeling the basic group signature

scheme. This motivated our choice of Promela as our

specification language and Spin for checking large state

spaces of the system. Although Promela’s expressive power is

rather low and provides only a few basic data types and

primitive constructor types, it offers the possibility of

expressing reachability, safety and liveliness requirements by

logical assertions or linear temporal logic expressions. The

model is further animated by the Spin simulator and verified

by the validator [6, 12] with different degrees of precision

depending on the problem size. The properties are checked

during the simulation or the verification step and if an error

occurs it is possible to run the simulator again and look at

each state to find the problem.

Only the fundamental group signature scheme of group

signatures presented by J. Camenish and M. Stadler [4]

informally satisfies most of the required properties of group

signatures. A fully specified and verified group signature

scheme could find application in a wide variety of fields

where information security is a critical issue [5]; examples of

information security sensitive domains include: electronic

commerce, electronic bank transfer, video conferencing, etc.

In this paper, we contribute to research in the area of group

signatures by providing a formal specification using finite

state automata and a formal verification of group signatures

basic properties presented by Camenish and Stadler in [4],

which so far have only been informally verified.

The rest of the paper is organized as follows. Section 2

identifies fundamentals of group signatures. Section 3

describes models for the different operations of group

signatures using finite state automata techniques. Section 4

formally verifies some properties of our system and provides

results generated by the model-checker Spin. Section 5 deals

with the conclusion and highlighting some perspectives for

future research.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.9, February 2012 – www.ijais.org

26

2. FUNDAMENTALS OF GROUP

SIGNATURES
A group signature scheme is a digital signature scheme

comprised of the following operations [1, 9, 13, 14]:

SETUP: An algorithm for generating the group public key y

and a group secret key S.

JOIN: A protocol between the group manager and a user that

results in the user becoming a new group member.

SIGN: A protocol between a group member and a user

whereby a group signature on a user supplied message is

computed by the group member.

VERIFY: An algorithm for establishing the validity of a

group signature giving a group public key and a signed

message.

OPEN: An algorithm that, given a signed message and a

group secret key, determines the identity of the signer.

According to [9, 10], a group signature scheme must satisfy

the following security properties:

Unforgeability: Only group members are able to sign

messages on behalf of the group.

Anonymity: Given a signature, identifying the actual signer is

computationally hard for everyone except the group manager.

Traceability: The group manager is able to open a signature

and identify the actual signer; moreover, a signer cannot

prevent the opening of a valid signature.

2.1 Components and Operations
The main protagonist in group signatures schemes are:

- the group manager: it’s a trusted personality who is in

charge of managing the group.

- group members: members of a group who can carry out

group operations such as signing messages on behalf of the

group. After the initial set up of the group which is achieved

by the group manager through the SETUP primitive, group

members and group manager will undertake JOIN, SIGN,

VERIFY and OPEN operations during their stay in the group.

3. OPERATIONS WITH ASSOCIATED

AUTOMATA
The proposed model holds on proactive, active and reactive

components. A detailed description of each one follows.

3.1 Operation 1 “SETUP”
 The group manager computes the following values [9]:

• an RSA modulus n and two public exponents e1, e2 >1, such

that e2 is relatively prime to Φ(n), whereas Φ is the Euler Φ

function;

• two integer f1, f2 >1, whose e1 - roots and e2 - roots cannot be

computed without knowing the factorization of n;

• a cyclic group G = <g>n of order n in which computing

discrete logarithm is infeasible;

• an element hG whose discrete logarithm to the base g

must be unknown.

• his public key yR = hρ for a randomly chosen value ρ
nZ ;

• the group’s public key consist of y = (n,e1,e2,f1,f2,G,g,h,yR),

whereas ρ and the factorization of n remain the group

manager’s secret key (also called group secret key).

 Associated automaton

Figure 1 bellow provides the automaton that represents the

operation.

Fig 1: setup automaton: AS

 Transition elements are boolean variables: set_param;

issuing_pk. The symbol (¬) denote the negation.

 Atomic propositions

Here, we denote two atomic propositions.

S1: all components of the group public key have been

registered (set_param is set to true).

S2: the group public key has been issued (issuing_ pk is set to

true).

 Automaton’s formal definition

We obtain the automaton AS = (Q, E, T, Q0, λ) defined as

follows:

 the set of states is Q = {S0, S1, S2};

 the set of transition labels is E = {¬set_param;

set_param; ¬issuing_pk; issuing_pk};

 the set of transitions is

T = {(S0,¬set_param,S0); (S0,set_param,S1);

(S1,¬issuing_pk,S1); (S1,issuing_pk, S2)}

 the initial state of automaton is Q0 = S0

 the application λ which for all states of Q associates

the set of elementary properties which is verified in

this state is:

0

1 1

2 2

S

S S

S S

a

a

a

3.2 Operation 2 “JOIN”
Let’s call Alice, the person who intends to join the group.

Alice. Alice and the group manager both participate in this

operation which comprises three steps presented below.

 first step:

To become a group member, Alice computes

• 2

1 2()(mod)
e

y r f y f n % for r *

nZ

• U = E-SKROOTLOG
1

[:]
e

z g

• V = E-SKROOTLOG
2

1 2[: ()]
ef fyg z g

%

and sends y%, z, U and V to the group manager.

 second step:

The group manager verifies whether U and V are correct and

sends to Alice the blinded certificate 2

1

(mod)
e

v y n% %

 third step:

Alice unblinds this certificate and obtains her membership

certificate 2

1

1 2/ () (mod)
e

v v r f y f n %

 Associated automaton

We will distinguish two automata:

The first one describes the user’s (Alice) actions and the

second the group manager’s actions.

 Alice’s case

This is the automaton that represents the operation.

S2

S0 S1

_set param _issue pk

¬ set_param ¬ issue_pk

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.9, February 2012 – www.ijais.org

27

Figure 2: Partial automaton of group integration (1): AJA

 Transition elements are boolean variables: comp_param;

send_param; receiv_cert; unblind_cert.

 Atomic propositions

Here, we denote four atomic propositions.

JA1: Alice has computed her member’s key (comp_param is

set to true).

JA2: Alice has sent a blinded version of her member key to

the group manager (send_param is set to true).

JA3: Alice has received a blinded version of her membership

certificate from the group manager (receiv_cert is set to true).

JA4: Alice has unblinded her membership certificate

(unblind_cert is set to true).

 Automaton’s formal definition

We obtain the automaton AJA = (Q, E, T, Q0,) defined as

follows:

 the set of states is Q = {JA0, JA1, JA2, JA3, JA4}

 E = {¬comp_param; comp_param; ¬send_param;

send_param; ¬receiv_cert; receiv_cert; ¬unblind cert;

unblind_cert;}

 T={(JA0,¬comp_param,JA0);

(JA0,comp_param,JA1); (JA1,¬send_param,JA1);

(JA1,send_param,JA2); (JA2,¬receiv_cert,JA2); (JA2,

receiv_cert,JA3); (JA3,¬unblind_cert,JA3);

(JA3,unblind_cert, JA4)}

 the initial state of automaton is Q0 = JA0

 and then,

0

1 1

2 2

3 3

4 4

JA

JA JA

JA JA

JA JA

JA JA

a

a

a

a

a

 Group manager’s case

The automaton associated with the group manager’s set of

operations is presented in figure 3 below.

Fig 3: Partial automaton of group integration (2): AJM

 Transition elements are boolean variables: receiv_param;

check_param; send_cert.

 Atomic propositions

JM1: the group manager has received Alice’s blinded member

key (receiv_param is set to true).

JM2: Alice’s signatures of knowledge are correct

(check_param is set to true).

JM3: the group manager has sent a blinded version of Alice’s

membership certificate to her (send_cert is set to true).

 Automaton’s formal definition

We obtain the automaton AJM = (Q, E, T, Q0,) defined as

follows:

 Q = {JM0, JM1, JM2, JM3}

 E={¬receiv_param; receiv_param; ¬check_param;

check_param; ¬send_cert; send_cert}

 T={(JM0,¬receiv_param,JM0);(JM0,receiv_param,J

M1);(JM1,¬check_param,JM1);(JM1,check_param,J

M2);(JM2,¬send_cert,JM2);(JM2,send_cert,JM3)}

 the initial state of automaton is Q0 = JM0

 and then,

0

1 1

2 2

3 3

JM

JM JM

JM JM

JM JM

a

a

a

a

3.2.1 Global automaton of “JOIN”
The interaction of the group manager and the user (Alice) in

the JOIN primitive compels us to synchronize their automaton

[2, 6]. The synchronized product is based on the send / receive

message synchronization. In the transition labels, we have

separated those which correspond to the send (“send”) from

those corresponding to the receive (“receive”) of the same

message.

The synchronization constraint [2] is reduced to the

simultaneity of the send and the reception of messages. The

set of synchronization is defined as follows:

Sync = {(comp_param, -); (send_param, receiv_param); (-,

check_param); (send_cert, receiv_cert); (unblind_cert, -)},

where the symbol “-” means “do nothing”. After building the

cartesian product automaton [2, 3], we extract the

synchronized product which is the final automaton of JOIN as

shown in figure 4 below.

Figure 4: Final automaton JOIN: AJ = AJA AJM

3.3 Scenario 3 “SIGN”
Only the group members intervene in this procedure. To sign

a message on behalf of the group, Alice performs the

following computations:

• r yz h g%

• r

Rd y

JA4 JA3 _unblind cert

¬ unblind_cert

_comp param _send param

¬ comp_param ¬ send_param

JA0 JA1 JA2

¬
 receiv_

p
a
ra

m

¬
 receiv_

p
a
ra

m

JOIN: User side

_receiv param _check param

¬ receiv_param ¬ check_param

JM0 JM1 JM2

sen
d

_
cert

¬
 sen

d
_
cert

JM3
JOIN: Manager side

(- :¬
 ch

eck_
p

a
ra

m
)

(¬ comp_param : -) (¬ send_param : ¬ receiv_param

)

J0 J1 J2
(comp_param : -)

(send_param : receiv_param

) (- :ch
eck_

p
a
ra

m
)

JOIN

J5 J4 J3

(¬ receiv_cert : ¬send_cert) (¬unblind_cert : -)

(receiv_cert : send_cert) (unblind_cert : -)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.9, February 2012 – www.ijais.org

28

• V1 = E-SKROOTREP
1

[(,) :](' ')
e

z h g M %

•V2=E-SKROOTREP
2

1 2[(,) :](' ')
ef fz g h g M %

•V3=E-SKREP [(,) :](' ')d R z h g M %

The resulting signature on the message M consist of (z%, d,

V1, V2, V3) and it is valid if the three signatures of

knowledge V1, V2 and V3 are correct.

 Associated automaton

The associated automaton is shown in figure 5.

Fig 5: sign automaton : ASI

 Transition elements are boolean variables: cal_param;

make_proof; apply_sign.

 Atomic propositions

SI1: Alice has used the group manager’s public key to

compute the first part of the signature (cal param is set to

true).

SI2: Alice has established signatures of knowledge

(make_proof is set to true).

SI3: Alice has applied her signature on the massage

(apply_sign is set to true).

 Automaton’s formal definition

We obtain the automaton AS = (Q, E, T, Q0,) defined as

follows:

 the set of states is Q ={SI0, SI1, SI2,SI3}

 E ={¬cal_param; cal_param; ¬make_proof;

make_proof; ¬apply_sign; apply_sign}

 T = {(SI0,¬cal_param,SI0); (SI0,cal_param,SI1);

(SI1,¬make_proof,SI1); (SI1,make_proof,SI2);

(SI2,¬apply_sign,SI2); (SI2,apply sign,SI3)}

 the initial state of automaton is Q0 = SI0

 and

0

1 1

2 2

3 3

SI

SI SI

SI SI

SI SI

a

a

a

a

3.4 Operation 4 “OPEN”
Only the group manager is involved here. Given a signature

(z%, d, v1, V2, V3) on a message M, he computes the

following:

•
1/ˆ / wz z d % , which corresponds to the signer’s membership

key z.

• SKREP [:](' ')w w

Rw z zd h y M % , to prove that z is

indeed encrypted in z%and d.

• extracts in z the identity of Alice and reveals it.

 Associated automaton

Here is the associated automaton. (figure 6).

Fig 6: open signature automaton: AO

 Transition elements are boolean variables: open_key;

encr_proof; revel_id.

 Atomic propositions

Here, we denote two atomic propositions.

O1: the group manager has extracted the member key of the

signer in the signature (open_key is set to true).

O2: the group manager has proven that the member key is

indeed encrypted in the signature (encr_proof is set to true).

O3: the group manager has revealed the identity of the signer

(revel_id is set to true).

 Automaton’s formal definition

We obtain the automaton AO = (Q, E, T, Q0,) defined as

follows:

 Q ={O0, O1,O2}

 E ={¬open_key; open_key; ¬encr_proof; encr_proof;

¬Revel_id; revel_id}

 T={(O0,¬open_key,O0); (O0,open_key,O1);

(O1,¬encr_proof,O1); (O1,encr_proof,O2);

(O2,¬revel_id,O2);(O2,revel_id,O3)}

 Q0 = O0

 and,

0

1 1

2 2

3 3

O

O O

O O

O O

a

a

a

a

3.5 Operation 5 “VERIFY”
Only the group manager intervenes in this operation. He

carries out the following tasks [3]:

• check V1 to convince himself that the signer knows the

secret key.

• check V2 to convince himself that the signer knows the

membership certificate associated to his secret key.

• check V3 to convince himself that the signature could be

opened if it necessary.

 Associated automaton

This is the associated automaton (figure 7).

Figure 7: verify automaton: AV

_open key _encr proof

¬ open_key ¬ encr_proof

O0 O1 O2

 revel_
id

¬
 revel_

id

O3

V4 V3 _valid sign

¬ valid_sign

_check gm _check open

¬ check_gm ¬check_open

V0 V1 V2

¬
 ch

eck_
sig

n
_
va

lu
e

ch
eck_

sig
n

_
va

lu
e

_call param _make proof

¬ cal_param ¬ make_proof

SI0 SI1 SI2

 a
p
p
ly_

sig
n

¬
 a

p
p
ly_

sig
n

SI3

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.9, February 2012 – www.ijais.org

29

 Transition elements are boolean variables: check_gm;

check_open; check_sign_value; valid_sign.

 Atomic propositions

V1: the group manager is convinced that the first signature of

knowledge is correct (check_gm is set to true).

V2: the group manager is convinced that the signature could

be opened (check_open is set to true).

V3: the group manager is convinced that the signer is a group

member (check_sign value is set to true).

V4: the group manager has validated the signature (valid_sign

is set to true).

 Automaton’s formal definition

We obtain the automaton AV = (Q, E, T, Q0,) defined as

follows:

 Q = {V0, V1, V2, V3,V4}

 E ={¬check_gm; check_gm;¬check_open;

check_open;¬check_sign_value;

check_sign_value;¬valid_sign;valid_sign}

 T = {(V0,¬check_gm,V0); (V0,check_gm,V1);

(V1,¬check_open,V1); (V1,check_open,V2);

(V2,¬check_sign_value,(V2,check_sign_value,V3);

(V3,¬valid_sign,V3); (V3,valid_sign,V4)}

 the initial state of automaton is Q0 = V0

 and then,

0

1 1

2 2

3 3

V

V V

V V

V V

a

a

a

a

4. GLOBAL AUTOMATON OF THE

SYSTEM
Given that the system is asynchronous, it was split into

components that do not interact among themselves. The

global automaton will therefore be the cartesian product of

automata that represent the various components (SETUP,

JOIN, SIGN, VERIFY, OPEN). Hence, a (global) state of the

automaton is actually a vector of the various (locals) states of

the components.

5. VERIFICATION
The following issues are consigned during verification:

preventing major problems such as global deadlock of system,

eliminating unspecified receptions and detecting non

executable codes at a given moment. Properties verified by

the system fall into three major groups presented below.

Every property is first of all formalized using LTL (Linear

Temporal Logic) of Spin.

The return of Spin is very verbose but rather discreet

concerning the truthfulness of a formula. In figure 8 - 12, "

never-claim + " in the right diagram indicate that the process

of check was launched on the property stated in Formula As

typed of the left diagram. Every time that one “ - “ replace

one “ + “, it means is that the property was not taken into

account, in which case Spin will indicate that there is no error.

The met number of errors is indicated to the end of check. If it

indicates 0, it means that the property is the true. Otherwise,

the shown value will indicate the number of errors.

Futhermore, whenever the specication is not satisfied, the

ModelChecker will produce a counterexample execution trace

that shows why the specification does not hold.

5.1 Reachable properties
A reachable property indicates that a given situation can be

reached [3, 6].

They are all atomic propositions that we have identified

during the modeling process. To verify them, Spin ensures

that states in which these properties are defined are really

reachable. The pertinent ones are those which are associated

with finals states of automata defined in the previous section.

In SETUP, we have the following proposition:

(S2) “group public key has been issued”. This proposition is

checked by assert (issuing pk=1).

Where assert (boolean variable) is a Spin primitive which

stops the verification process whenever the Boolean variable

is false.

In JOIN, we have the following proposition:

(J5) “Alice has unblinded her member certificate”. This

proposition is checked by assert (unblind cert=1).

In SIGN, the pertinent proposition is:

(SI3) “Alice has signed the massage”. The proposition is

checked by assert (apply sign=1).

In VERIFY, we have:

(V4) “The group manager has validated the signature on the

massage”. This proposition is checked by assert (valid

sign=1).

In OPEN, we have:

(O3) “The group manager has revealed the identity of the

signer”. This proposition is checked by assert (reveal_id=1).

5.2 Safety properties
A safety property means that, under certains conditions,

something cannot take place [6]. Examples include anonymity

and unforgeability.

5.2.1 Anonymity
“a group member cannot verify or open a signature on a

message”. This is formalized in PLTL (Propositional

Linear Temporal Logic) as follows:

(())G member verify open

The associated automaton generated by Promela in order to

run the verification (called never claim) is on the left side.

(See figure 8)

One can observe in the verification results (on the right side)

the large state spaces of the system which had been checked

without any error (errors:0).

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.9, February 2012 – www.ijais.org

30

5.2.2 Unforgeability
“any person who signs a message had previously been

registered before as a group member”. His PLTL

formalization is:

1
()G sign F join

 which is equivalent to

())sign join G sign

The never claim associated and the verification results are

presented in figure 9.

5.3 Liveliness properties
A liveliness property means that, under certains conditions,

something will eventually occur [10]. Examples include

belonging, traceability and feasibility.

5.3.1 Belonging
“one cannot be a group member until he runs join” is

formalized in PLTL as follows:

¬ member W join

Its equivalence is member join G member

Here is the associated never claim (figure 10).

Figure 8: PROPERTY (a): (())G member verify open

Figure 9: PROPERTY (b):
())sign join G sign

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.9, February 2012 – www.ijais.org

31

5.3.2 Traceability
“the group manager can sign messages, verify and open

signatures on the messages”. In PLTL, we have:

(()manager G sign verify open

The associated never claim is presented in figure 11.

5.3.3 Feasibility
“any group member can sign a message on behalf of the

group” is translated in PLTL by:

member F sign

The associated never claim is presented in figure 12.

Figure 10: PROPERTY (c): member join G member

Figure 11: PROPERTY (d): (()manager G sign verify open

Figure 12: PROPERTY (e): member F sign

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.9, February 2012 – www.ijais.org

32

6. CONCLUSION AND FUTURE WORK
Much work has been done in the group signature field leading

to the development of a great number of group signature

schemes. However, none of these schemes allows for the

carrying out of formal proof of the associated group

properties. The defined schemes have been modeled based on

specific case studies and do not really take into consideration

all the initial outlines properties. In this paper, we have

presented a formal model of group signatures specified using

finite state automata in order to contribute in the resolution of

this difficulty. The proof process has been done

incrementally; first we have added and proved two salient

properties that are used in verifying the main properties of the

group signature defined by D. Chaum and al. The Linear

Temporal Logic PLTL which asserts how the behavior of the

system evolves over time has been used. Secondly, the SPIN

model checker was later used to check whether the abstract

model satisfies the properties identified and formalized using

PLTL temporal logic. These properties include: reachable

properties, safety properties and liveliness properties. By

applying each property in turn as well as the model of the

system to the SPIN model-checker, we formally verified that

the defined model satisfied all the properties listed by D.

Chaum. During the verification process, liveliness properties

such as “belonging” and “feasibility” impose themselves as

conditions of the achievement of the “traceability” required to

be one of the fundamental group signature properties. As

future work, we plan to implement the defined group

signature scheme, and extend the model in order to carry out

verification of a group signature scheme in which the group

management is shared among its members such that every

member is involved in all management transactions.

7. REFERENCES
[1] D. Chaum: “Blind signature systems”. In advances in

cryptology-CRYPTO, 1983, pages 153. Plenum Press,

1984.

[2] G. Berry, P. Couronne and G. Gonthier: “Synchronous

Programming of Reactive Systems: An introduction to

ESTEREL”. Proc. 1st Franco-Japanese Symp. on

programming of Future Generation Computers, 1986,

Tokyo. pp.35-56.

[3] W. Thomas: “Automata on Infinite Objects”. Handbook

on Theoretical Computer Science, J. Van Leeuwen, ed,

pp. 133-187, Elsevier Science, 1990.

[4] D. Chaum and E. Van Heyst: “Group signatures”. In

advances in cryptology-EUROCRYPT 1991, volume 547

of Lecture notes in computer Science, pages 257-265.

Springer-Verlag, 1991.

[5] G. J. Holzmann: “Design and Validation of Computers

Protocols”. Englewood Cli

s, N.J. Prentice Hall, 1991.

[6] Z. Manna, A. Pnueli: “The Temporal Logic of Reactive

and Concurrent Systems Programs”. Springer-Verlag,

1991.

[7] G. J. Holzmann: “Basic Spin Manual”. AT&Bell

Laboratories, Murray Hill, New Jersey. 1995.

[8] J. Magnier: “Représentation symbolique et Vérification

formelle de machines séquentielles”. State Thesis

University of Montpellier II, France, 1996.

[9] J. Camenisch: “Efficient and generalized group

signatures”. In advances in cryptology-

EUROCRYPT’97, volume 1233 of Lecture notes in

computer Science, pages 465-479. Springer-Verlag,

1997.

[10] Jan Camenisch and Markus Stadler: “Efficient Group

Signatures Schemes for large Groups”. In advances in

cryptology-CRYPTO, 1997, volume 1294 of Lecture

notes in computer Science, pages 410-424. Springer-

Verlag, 1997.

[11] B. Berard, M. Bidoit, F. Laroussinie, A. Petit, P.

Schnoebelen: “Vérification de logiciels – Techniques et

outils du model-checking”. Vuibert, Paris, 1999.

[12] G. Ateniese and G. Tsudik: “Some Open Issues and New

Directions in Group Signatures”. In cryptography’99,

1999.

[13] Dan Boneh, Xavier BoyenetHovav Shacham: “Short

Group Signatures” Advances in Cryptology – CRYPTO

2004, Volume 3152/2004, 227-242

[14] Jan Camenische and Jens Groth: “Group Signatures:

Better Efficiency and New Theoretical Aspects” Security

in Communication Networks, 2005, Volume 3352/2005,

120-133.

[15] Jens Groth: “Fully Anonymous Group Signatures

without Random Oracles” Advances in Cryptology –

ASIACRYPT, Volume 4833/2007, 164-180.

[16] Xiaojun Wen, Yuan Tian, Liping Ji1 and Xiamu Niu “A

group signature scheme based on quantum teleportation”

Physica Scripta; Volume 81; Number 5; May 2010.

[17] S. Dov Gordon and Jonathan Katz and Vinod

Vaikuntanathan “A Group Signature Scheme from

Lattice Assumptions” Cryptology ePrint Archive,

Version: 20110208:170219, last revised 8 Feb 2011.

[18] G. J. Holzmann: “Basic Spin Manual”. AT&Bell

Laboratories, Murray Hill, New Jersey.

[19] M. Abdalla, D. Catalano, and D. Fiore. “Veritable

random functions from identity-based key encapsulation.

EUROCRYPT 2009, LNCS vol. 5479, Springer, pp. 554-

571, 2009.

[20] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and

M. Ohkubo. “Structure-perserving signatures and

commitments to group elements”. CRYPTO 2010, LNCS

vol. 6223, Springer, pp. 209-236, 2010.

[21] M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo.

“Optimal structure-preserving signatures in asymmetric

bilinear groups”. CRYPTO 2011, LNCS vol. 6841,

Springer, pp. 649-666, 2011.

[22] Matthew Franklin, Haibin Zhang “Unique Group

Signatures”, ESORICS 2012.

