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ABSTRACT 

In general frequent itemsets are generated from large data sets 

by applying various association rule mining algorithms, these 

produce many redundant frequent itemsets. In this paper we 

proposed a new framework for Non-redundant frequent 

itemset generation using closed frequent itemsets without lose 

of information on Taxonomy Datasets using concept lattices.     
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1. INTRODUCTION 
Data mining has attracted a great deal of attention in the 

information industry and in society as a whole in recent years, 

due to the wide availability of huge amounts of data and the 

imminent need for turning such data into useful information 

and knowledge. The information and knowledge gained can 

be used for applications ranging from market analysis, fraud 

detection, and customer retention, to production control and 

science exploration.  

Frequent pattern mining is an important area of Data mining 

research. The frequent patterns are patterns (such as itemsets, 

subsequences, or substructures) that appear in a data set 

frequently. For example, a set of items, such as milk and 

bread that appear frequently together in a transaction data set 

is a frequent itemset. A subsequence, such as buying first a 

PC, then a digital camera, and then a memory card, if it occurs 

frequently in a shopping history database, is a frequent 

sequential pattern. A substructure can refer to different 

structural forms, such as subgraphs, subtrees, or sublattices, 

which may be combined with itemsets or subsequences. If a 

substructure occurs frequently, it is called a frequent 

structured pattern. Finding such frequent patterns plays an 

essential role in mining associations, correlations, and many 

other interesting relationships among data. Moreover, it helps 

in data classification, clustering, and other data mining tasks 

as well. 

The process of discovering interesting and unexpected rules 

from large data sets is known as association rule mining. This 

refers to a very general model that allows relationships to be 

found between items of a database. An association rule is an 

implication or if-then-rule which is supported by data. The 

association rules problem was first formulated in [1][5] and 

was called the market-basket problem. The initial problem 

was the following: given a set of items and a large collection 

of sales records, which consist in a transaction data and the 

items bought in the transaction, the task is to find 

relationships between the items contained in the different 

transactions. A typical association rule resulting from such a 

study could be “90 percent of all customers who buy bread 

and butter also buy milk" – which reveals a very important 

information. Therefore this analysis can provide new insights 

into customer behavior and can lead to higher profits through 

better customer relations, customer retention and better 

product placements. 

1.1 Previous Work 
Mining of association rules is a field of data mining that has 

received a lot of attention in recent years. The main 

association rule mining algorithm, Apriori[1], not only 

influenced the association rule mining community, but it 

affected other data mining fields as well. Apriori and all its 

variants like Partition[6], Pincer-Search[4], Incremental[10], 

Border algorithm[11] etc. take too much computer time to 

compute all the frequent itemsets. These algorithms produce 

redundant association rules. Some Algorithms [2][4] generate 

maximal frequent itemsets. Maximal itemsets cannot be used 

for rule generation, since support of subsets is required for 

confidence computation, this requires one more scan to gather 

the supports of all subsets, and this still have the problem of 

redundant association rules. Further, for all these methods, it 

is not possible to find association rules in dense datasets 

which may easily have frequent itemsets. 

There has been some work in pruning discovered association 

rules by forming rule covers [8]. However, the problem of 

constructing a generating set has not been studied previously. 

The recent work in [3] addresses the problem of mining the 

most interesting rules. They do not address the issue of rule 

redundancy, The Pasiquir [12][13] have used closed itemset 

for association rule mining. However they mainly concentrate 

on the discovery of frequent closed itemset and do not report 

any experiments on non-redundant association rule mining. 

In this paper, an attempt has been made to compute frequent 

itemsets by using closed frequent itemsets to remove the 

redundant itemsets. We use the recently proposed CHARM 

algorithm [9] for mining all closed frequent itemsets, in a 

fraction of the time it takes to mine all frequent itemsets using 

the Apriori [1] method. Our framework builds upon and 

adapts the work in [7]. However our characterization of the 

generating set is different, and we also present an 

experimental verification. 

2. ASSOCIATION RULE MINING 
Association Rule Mining aims to extract interesting 

correlations, frequent patterns, associations or casual 

structures among sets of items in the transaction databases or 
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other data repositories [5]. The major aim of ARM is to find 

the set of all subsets of items or attributes that frequently 

occur in many database records or transactions, and 

additionally, to extract rules on how a subset of items 

influences the presence of another subset. ARM algorithms 

discover high-level prediction rules in the form: IF the 

conditions of the values of the predicting attributes are true, 

THEN predict values for some goal attributes. 

In general, the association rule is an expression of the form 

X=>Y, where X is antecedent and Y is consequent. 

Association rule shows how many times Y has occurred if X 

has already occurred depending on the support and confidence 

value. 

Support: It is the probability of item or item sets in the given 

transactional data base:  

support(X) = n(X) / n where n is the total number of 

transactions in the database and n(X) is the 

number of transactions that contains the item set X. 

Therefore, support (XY) = p(XUY). 

Frequent itemset: Let A be a set of items, T be the transaction 

database and minsup be the user specified minimum support. 

An itemset X in A (i.e., X is a subset of A) is said to be a 

frequent itemset in T with respect to minsup if support(X)T > 

minsup 

The problem of mining association rules can be decomposed 

into two sub-problems: 

 Find all itemsset whose support is greater than the user-

specified minimum support, minsup. Such itemsets are 

called frequent itemsets. 

 

 Use the frequent itemsets to generate the desired rules. The 

general idea is that if, say ABCD and AB are frequent 

itemsets, then we can determine if the rule AB=>CD holds 

by checking the following inequality 

support({A,B,C,D}) / support({A,B}) > minconf, where the 

rule holds with confidence minconf 

To demonstrate the use of the support-confidence framework, 

we illustrate the process of mining association rules by the 

following example. 

Example 1. Assume that we have a transaction database in a 

supermarket, as shown in Table 1. There are six transactions 

in the database with their transaction identifiers (TIDs) 

ranging from 100 to 600. The universal itemset I ={A, B, C, 

D, E}, where A, B, C, D and E can be any items in the 

supermarket. 

Table 1. An example transaction database 

 

TID Items 

100 ABDE 

200 BCE 

300 ABDE 

400 ABCE 

500 ABCDE 

600 BCD 

 

There are totally 25(=32) itemsets. {A}, {B}, {C}, {D}, and 

{E} are all 1-itemsets, {AC} is a 2-itemset, and so on. All 

Frequent Itemset with min support =50% is 

 

 

Table 2. Frequent Itemset 

Itemsets Support 

B 100% 

E, BE 83% 

A, C, D, AB, AE, BC, BD, ABE 66% 

AD, CE, DE, ABD, ADE, BDE, BCE, ABDE 50% 
 

 

ABDE, BCE are maximal-by-inclusion frequent itemsets i.e., 

they are not a subset of any other frequent itemset. 

2.1 Generating confident rules 
This step is relatively straightforward; rules of the form  

 
 
→  , Where X, Y are generated frequent itemset and 

p≥minconf. The following table shows the generated 

confidence rules. 

Table 3: Frequent Itemsets 

Association Rules Confidence 

A→B, A→E, A→BE, C→B, D→B, E→B  100% 

AB→E, AD→B, AD→E, AE→B, CE→B,  100% 

DE→A, DE→B, AD→BE, DE→AD, 

ABD→E, 

 100% 

ADE→B, BDE→A  100% 

B→E 83.33% 

E→AB, BE→A, E→A  80% 

B→AE 66.67 

From the above generated frequent itemset ABE can generate 

6 possible rules those are 
   
→   , B

    
→    , E

    
→    , ,  

  
   
→  ,   

   
→   and BE

   
→    

3. CLOSED FREQUENT ITEMSETS  
In this section we develop the concept of closed frequent 

itemsets, and show that this set is necessary and sufficient to 

capture all the information about frequent itemsets, and has 

smaller cardinality than the set of all frequent itemsets. 

3.1 Partial Order and Lattices 
We first introduce some lattice theory concepts, Let P be a set. 

A partial order on P is a binary relation ≤, such that for all x, 

y, z  P, the relation is: 1) Reflexive, 2) Anti-Symmetric, 3) 

Transitive. The set P with the relation ≤ is called an ordered 

set, and it is denoted as a pair (P, ≤). Let (P, ≤) be an ordered 

set, and let S be a subset of P. An element u  P is an upper 

bound of S if s ≤ u for all s  S. An element l  P is a lower 

bound of S if s ≥ l for all s  S. The least upper bound is called 

join of S, and is denoted by S, and the greatest lower bound 

is called the meet of S, and is denoted by S. If S={x,y}, we 

write xy for join and xy for meet.  

An ordered set (L, ≤) is a lattice, if for any two elements x and 

y in L the join xy and meet xy always exist. L is called 

complete lattice if S, S exist for all SL. Any finite lattice 

is complete, L is called a join semilattice, if only join lattice 

exists. L is called meet semilattice if only a meet exists. 

Let P denote the power set of S. The ordered set (P(S),) is a 

complete lattice, where the meet is intersection and join is 

union. For example the partial orders (P(I), ) is set of all 

possible itemsets, (P(T), ) are the set of all possible 

transaction are both  complete lattices. 

The set of all frequent itemsets is only meet semilattice(Fig – 

1). For any two itemsets, only their meet is guaranted to be 

frequent, while their join may or may not be frequent. This 
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follows from the principle of association rule mining that is, if 

an itemset is frequent, then all its subsets are also frequent. 

For example ABAD = ABAD = A is frequent. For the 

join, ABAD =  AB AD = ABD is frequent, ABCE = 

ABCE is not frequent. 

3.2 Closed Itemsets 
Let the binary relation £ I x T be the input dataset for 

frequent itemset mining. Let XI and YT, the mappings 

 t:I → T, t(X) = {y  T | x  X, x£y} 

 i:T → I, t(Y) = {x  I |  y  Y, x£y} 

(P(I), ) and (P(T), ) are power sets of I and T. We denote a 

X, t(X) pair as X x t(X) and a i(Y), Y pair as i(Y) x Y. The 

mapping t(X) is the set of all transactions which contains the 

itemset X, similarly i(Y) is the itemset that is contained in all 

transactions in Y. For example t(ABE) = 1345, and i(245) = 

BCE. In terms of individual elements t(X) =  Xx
xt


)(  and 

i(Y) =  Yy
yi


)( . For example t(ABE) = t(A)  t(B)  t(E) 

= 1345  123456  12345 = 1345.  

 

 Fig 1. Meet Semi Lattice of Frequent Itemset 

Let S be a set. A function c:P(S) → P(S) is a closure on S if, 

for all X, Y S, c satisfies the following properties 1) 

Extension    X  c(X). 2) Monotonicity: if X  Y, then c(X) 

 c(Y). 3) Idem potency: c(c(X)) = c(X). A subset X of S is 

called closed if c(X) = X 

Let XI and YT. Let cit(X) denote the composition of the 

two mappings i o t(X) = i(t(X). Dually, let cti(Y) = t o i(Y) = 

t(i(Y)). Then cit:P(I)→P(I) and cti:P(T)→P(T) are both closure 

operators on the itemsets and transaction set. 

We define a closed itemset as an itemset X that is that same as 

its closure, i.e X = cit(X). For example the itemset ABE is 

closed. A closed transaction set is a transaction set Y = cti(Y). 

For example, the transaction set 1345 is closed. The mappings 

cit and cti, being closure operators, satisfy the three properties 

of extension, monotonicity, and idem potency. We also call 

the application of i o t or t o i a round-trip, starting with an 

itemset X. For example, let X = AB, then the extension 

property say that X is a subset of its closure, since cit(AB) = 

i(t(AB)) = i(1345) = ABE. Since AB  cit(AB) = ABE, we 

conclude that AB is not closed. On the other hand, the 

idempotency property say that once we map an itemset to the 

transaction set that contains it, and then map that transaction 

set back to the set of items common to all transaction ids in 

the transaction set, we obtain a closed itemset. After this no 

matter how many such round-trips we make we cannot extend 

a closed itemset. For example, after one round-trip for AB we 

obtain the closed itemset ABE. If we perform another round-

trip on ABE, we get cit(ABE) = i(t(ABE)) = i(1345) = ABE. 

For any closed itemset X, there exists a closed transaction set 

given by Y , with the property that Y = t(X) and X = i(Y ) i.e 

for any closed transaction set there exists a closed itemset. We 

can see that X is closed by the fact that X = i(Y ), then 

plugging Y = t(X), we get X = i(Y ) = i(t(X)) = cit(X), thus X 

is closed. Dually, Y is closed. For example, we have seen 

above that for the closed itemset ABE the associated closed 

tidset is 1345. Such a closed itemset and closed tidset pair X x 

Y is called a concept. 

A concept X1 x Y1 is a subconcept of X2 x Y2, denoted as X1 

x Y1 ≤ X2 x Y2, iff X1  X2 (iff Y2  Y1). Let (£) denote 

the set of all possible concepts in the database. Then the 

ordered set ((£),≤) is a complete lattice, called the Galois 

lattice. For example, Figure 2 shows the Galois lattice for our 

example database, which has a total of 10 concepts. The least 

element is the concept C x 123456 and the greatest element is 

the concept ABCDE x 5. Notice that the mappings between 

the closed pairs of itemsets and transaction sets are anti-

isomorphic, i.e., concepts with large cardinality itemsets have 

small transaction sets, and vice versa. 

 

Fig 2: Galois Lattice 

The concept generated by a single item x  I is called an item 

concept, and is given as Ci(x) = cit(x) x t(x). Similarly, the 

concept generated by a single transaction y  T is called a tid 

concept, and is given as Ct(y) = i(y) x cti(y). For example, the 

item concept Ci(A) = i(t(A)) x t(A) = i(1345) x 1345 = ABE x 

1345. Further, the tid concept Ct(2) = i(2) x t(i(2)) = BCE x 

t(BCE) = BCE x 245. 

In Figure 2 if we re-label each concept with the item concept 

or tid concept that it is equivalent to, then we obtain a lattice 

with minimal labeling, with item or tid labels, as shown in the 

figure in bold letters. Such a re-labeling reduces clutter in the 

lattice diagram, which provides an excellent way of 
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visualizing the structure of the patterns and relationships that 

exist between items. We shall see its benefit in the next 

section when we talk about high confidence rules extraction. 

It is easy to reconstruct the concepts from the minimal 

labeling. For example, consider the tid concept Ct(2) = X x Y. 

To obtain the closed itemset X, we append all item labels 

reachable below it. Conversely, to obtain the closed 

transaction set Y we append all labels reachable above Ct(2). 

We see that E, C and B are all the labels reachable by a path 

below it. Thus X = BCE forms the closed itemset. We also see 

that 4 and 5 are the only labels reachable above Ct(2). Thus Y 

= 245, giving the concept BCE x  245, which matches the 

concept shown in the Figure 1. 

3.3  Frequent Closed Itemsets vs. Frequent 

Itemsets 
We begin this section by defining the join and meet operation 

on the concept lattice [6]. The set of all concepts in the 

database relation £, given by ((£), ≤) is a complete lattice 

with join and meet given by  

  Join: (X1 x Y1)  (X2 x Y2) = cit(X1  X2) x (Y1  Y2) 

  meet: (X1 x Y1)  (X2 x Y2) = cit(X1  X2) x (Y1  Y2) 

For the join and meet of multiple concepts, we simply take the 

unions and joins over all of them. For example, consider the 

join of two concepts, (ABCE x 45)  (BCD x 56) = cit(ABCE 

 BCD) x (45  56) = ABCDE x 5. On the other hand their 

meet is given as, (ABCE x 45)  (BCD x 56) = (ABCE  

BCD) x cti(45  56) = BC x cti(456) = BC x 2456. Similarly, 

we can perform multiple concept joins or meets; for example, 

(BD x 1356)  (BC x 2456)  (BCE x 245) = cit(BD  BC  

BCE) x (1356  2456  245) = cit(BCDE) x 5 = ABCDE x 5. 

We define the support of a closed itemset X as the cardinality 

of the closed tidset Y = t(X), i.e, supp(X) = |Y| = |t(X)|. A 

closed itemset or a concept is frequent if its support is at least 

minsup. Table 6 shows all the frequent concepts with minsup 

= 50% (i.e., with tidset cardinality at least 3). The frequent 

concepts form a meet-semilattice, where the meet is 

guaranteed to exist, while the join may not. 

All frequent itemsets can be determined by the join operation 

on the frequent item concepts. For example, since join of item 

concepts C and D, Ci(C)  Ci(D), doesn’t exist, CD is not 

frequent. On the other hand, Ci(A)  Ci(D) = ABDE x 135, 

thus AD is frequent. Furthermore, the support of AD is given 

by the cardinality of the resulting concept’s tidset, i.e., 

supp(AD) = |t(AD)| = |135| = 3. 

Theorem: For any itemset X, its support is equal to the 

support of its closure, i.e., supp(X) = supp(cit(X)). 

This theorem states that all frequent itemsets are uniquely 

determined by the frequent closed itemsets or frequent 

concepts. Furthermore, the set of frequent closed itemsets is 

bounded above by the set of frequent itemsets, and is typically 

much smaller, especially for dense datasets. For very sparse 

datasets, in the worst case, the two sets may be equal. To 

illustrate the benefits of closed itemset mining, contrast Figure 

2, showing the set of all frequent itemsets, with Table 6, 

showing the set of all closed frequent itemsets. We see that 

while there are only 7 closed frequent itemsets, in contrast 

there are 19 frequent itemsets. This example clearly illustrates 

the benefits of mining the closed frequent itemsets. 

 

Table 4: Frequent Concepts 

 

Tidset Frequent Concepts 

245 BDE 

135 ABDE 

1345 ABE 

12345 BE 

1356 BD 

2456 BC 

123456 B 

 

4.  RULE GENERATION 
In the last section, we showed that the support of an itemset X 

equals the support of its closure cit(X). Thus it suffices to 

consider rules only among the frequent concepts. In other 

words the rule 21 XX
p
 is exactly the same as the rule 

)()( 21 XcXc it
p

it  , where p is the confidence. 

From the concept lattice is it is sufficient to consider rules 

among adjacent concepts, since other rules can be inferred by 

transitivity, that is: 

Transitivity: Let X1, X2, X3 be frequent closed itemsets, with  

X1  X2  X3. If  21 XX p
  and 32 XX p

 then 

31 XX p
 . 

In this paper, we consider two cases of association rules, those 

with 100% confidence, i.e., with p = 1:0, and those with p < 

1:0. 

4.1 Rules with 100% confidence 
An association rule 21

0.1 XX  has confidence p = 1:0 if and 

only if  t(X1)  t(X2). i.e all 100% confidence rules are those 

that are directed from a super-concept (X1 x t(X1)) to a sub-

concept (X2 x t(X2)). Since it is precisely in these cases that 

t(X1)  t(X2) (or X1  X2). For example, consider the item 

concepts Ci(E) = BE x12345 and Ci(B) = B x 123456. The 

rule BE 
0.1 is a 100% confidence rule. Note that if we take 

the itemset closure on both sides of the rule, we obtain 

BBE 
0.1 , i.e., a rule between closed itemsets, but since the 

antecedent and consequent are not disjoint in this case, we 

prefer to write the rule as BE 
0.1 although both rules are 

exactly the same.  

Table 5: Rules with 100% confidence 

 

Association Rules Confidence 

DE→A,  DE→AB, BDE→A 100% 

DE→A,  DE→AB, BDE→A 100% 

A→E, A→BE, AB→E 100% 

E→B 100% 

D→B   100% 

C→B 100% 

 

In the above table, we prefer the rule that is most general. For 

example, consider the rules ADE 1.0
 , ABDE 

0.1 and 

ABDE 
0.1 . We prefer the rule ADE 

0.1 A since the 

latter two are obtained by adding one (or more) items to either 

the antecedent or consequent of ADE 
0.1 . In other words

ADE 
0.1 is more general than the latter two rules. In fact, 

we can say that the addition of C to either the antecedent or 

the consequent has no effect on the support or confidence of 

the rule. In this case we also call the other two rules are 

redundant. 
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Let Ri stand for a 100% confidence rule XX
ipi
21

  , and 

let R = {R1,R2, , , Rn} be a set of rules such that I1 = cit (

XX
ii
21

 ) , and I2 = cit( X
i
2

) for all rules Ri. Then all the 

rules are equivalent to the 100% confidence rule 2
0.1

1 II 

, and thus are redundant. 

We find that for the first rule that cit(DEA) = cit(ADE) = 

ABDE. Similarly for the other two rules cit(DEAB) = 

cit(ABDE) = ABDE, and cit(BDEA) = cit(ABDE) = ABDE. 

Thus for these three rules we get the closed itemset I1=ABDE. 

By the same process we obtain I2=ABE. All three rules 

correspond to the edge between the tid concept Ct(1.3) and the 

item concept Ci(A). Finally ADE 
0.1 is the most general 

rule and so other are redundant. 

A set of such general rules constitutes a generating set, i.e., a 

rule set, from which all other 100% confidence rules can 

inferred. Note that in this paper we do not address the 

question of eliminating self redundancy within this generating 

set, i.e., there may still exist rules in the generating set that 

can be derived from other rules in the set. In other words we 

do not claim anything about the minimality of the generating 

set. 

Table 6: generating set with 100% confidence 

 

Frequent Itemset Confidence 

DE→A 100% 

A→E 100% 

E→B 100% 

D→B 100% 

C→B 100% 

 

Table 8 shows the generating set, which includes the 5 most 

general rules ADE 
0.1 , EA 

0.1 , BE 
0.1 , 

BD 
0.1 , BC 

0.1 . All other 100% confidence rules 

can be derived from this generating set by application of 

simple inference rules. For example, we can obtain the rule 

BA 
0.1 by transitivity from the two rules EA 

0.1  and 

BE 
0.1 . The rule BCE 

0.1 can be obtained by 

augmentation of the two rules BE 
0.1 and BC 

0.1 , 

etc. One can easily verify that all the 19 100% confidence 

rules produced by using frequent itemsets, as shown in Table 

3, can be generated from this set of 5 rules, produced using 

the closed frequent itemsets 

4.2  Rules with confidence less than 

100% 
We now turn to the problem of finding a generating set for 

frequent itemset with confidence less than 100%. But in this 

the rules go from sub-concepts to super-concepts. 

Let Ri stand for a 100% confidence rule XX
ipi
21

  , and 

let R = {R1,R2, , , Rn} be a set of rules such that I1 = cit ( X
i
1

) 

, and I2 = cit( XX
ii
21

 ) for all rules Ri. Then all the rules 

are equivalent to the 100% confidence rule 21 II
p
 , and 

thus are redundant. 

The three rules E→A, E→AC and BE→A can be applied to 

the above theorem, then we get I1=cit(E) = cit(BE) = BE, and 

I2 = cit(EA) = cit(EAC) = cit(BEA) = ABE. The support 

of the rule is |t(I1I2)| = |t(ABE)| = 4, and the confidence is 

given as |t(I1I2)|/|t(I1)| = 4/5 = 0.8. similarly we get 

EB 
83.0 Finally AE 

8.0 , EB 
83.0 are the most 

general rule for less than 100% confidence, the other two are 

redundant. 

Table 7: Generating set with <100% confidence 

 

Frequent Itemset Confidence 

E→A 83.33% 

B→E 8.% 

 

By combining the generating set for rules with p = 1.0, shown 

in Table 8 and the generating set for rules with 1.0 > p ≥ 0.8, 

shown in Table 9, we obtain a generating set for all 

association rules with minsup =50%, and minconf = 80%:  {

ADE 
0.1 , EA 

0.1 , BE 
0.1 , BD 

0.1 , 

BC 
0.1 , AE 

8.0 , EB 
83.0 }. 

It can be easily verified that all the association rules shown in 

Table 3, for our example database from Table 1, can be 

derived from this set. Using the closed itemset approach we 

produce 7 rules versus the 22 rules produced in traditional 

association mining. To see the contrast further, consider the 

set of all possible association rules we can mine. With minsup 

= 50%, the least value of confidence can be 50%. There are 60 

possible association rules versus only 13 in the generating set. 

5.  EXPERIMENTS 
All Experiments were performed on a 400MHz Pentium PC 

with 500MB of memory, running on windows XP and 

XLMiner. The Experiments are applied on two datasets Chess 

and Mushroom Datasets obtained from UCI Machine 

Learning Repository. The Database Characteristics are the 

Mushroom dataset contains 8125 rows and 23 attributes and 

census-income contains 32562 rows 15 attributes, the 

proposed model applied on these data sets to identify the no of 

frequent itemsets, no of closed frequent itemsets and no. of 

non redundant frequent itemsets. This is explained in the 

following tables and figures 

Table 7: No. of Frequent, Closed and Redundant Rules 

 

Dataset Minsupp=80% Minsupp=70% 

F FCI NR F FCI NR 

Mushroom 25 8 6 29 10 7 

Census-income 12 10 8 24 18 15 

 

 
Fig. 3: Rules for Frequent, Closed, Redundant Rules 
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6.  CONCLUSIONS 

The traditional Association Rules produces too many rules, in 

which most of them are redundant. In the given proposed, a 

framework based on closed frequent itemsets to reduce the 

rule set, and obtain the strong Non Redundant association 

rules based on the concept lattice. We can extend this concept 

on Multilevel Association rules, in which we may get the 

many redundant rules at different levels, such a redundant 

rules can be avoided to get quality association rules. 

 

7.  REFERENCES 
[1] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and 

Inkeri Verkamo, A. 1996. “Fast discovery of association 

rules. In Advances in Knowledge Discovery and Data 

Mining”, U. Fayyad et al. (Eds.), Menlo Park, CA: AAAI 

Press, pp. 307–328. 

[2] Bayardo, R.J. 1998. “Efficiently mining long patterns 

from databases”. In ACM SIGMOD Conf. Management 

of Data. 

[3] Brin, S., Motwani, R., Ullman, J., and Tsur, S. 1997. 

“Dynamic itemset counting and implication rules for 

market basket data”. In ACM SIGMOD Conf. 

Management of Data. 

[4] Lin, D.-I. and Kedem, Z.M. “Pincer-search: A new 

algorithm for discovering the maximum frequent set”. In 

IEEE Transaction on Knowledge and Data Engineering, 

Vol 14, Issue 3, 2002 

[5]  Agrawal, R., Srikant, R: “Fast Algorithms for Mining 

Association Rules”. Proc. Of the VLDB Conference 

(1994) 487–489, Santiago (Chile) 

[6] Savasere, A., Omiecinski, E., and Navathe, S. 1995. “An 

efficient algorithm for mining association rules in large 

databases”. In 21st VLDB Conf. 

[7] D.G. Kourie, Sergei O ,B. W. Watson ,DVD 

Merwe  “An incremental algorithm to construct 

a lattice of set intersections”. Science of Computer 

Programming, Vol 74, Issue 3,2009, P 128-142. 

[8] Toivonen, H., Klemettinen, M., Ronkainen, P., 

H¨at¨onen, K., and Mannila, H. 1995. “Pruning and 

grouping discovered association rules”. In MLnet 

Wkshp. on Statistics, Machine Learning, and Discovery 

in Databases. 

[9] Zaki, M.J., Hsiao, C.-J., 

"Efficient  algorithms  for  mining  closed  itemsets and 

their lattice structure”, IEEE Transactions 

on  Knowledge and Data Engineering, Volume: 17 

, Issue: 4  2005 , Page(s): 462 – 478 

[10] D.W. Cheung, J. Han, V.Ng and C.Y. Wong, 

“Maintenance of Discovered Association Rules in Large 

Databases, An Incremental updating Techniques” In 

Proc, Intl. Conf. on Data Engineering (ICDE’96), Pages 

106 – 114. 

[11] Yonatan Aumann, Ronen Feldman, Orly Lipshtat, 

“Borders: An Efficient Algorithm for Association 

Generation in Dynamic Databases” Journal of 

Intelligent Information System, 12, 61 – 73 (1999). 

[12] Lei Wen, “An efficient algorithm for mining frequent 

closed itemset”, Fifth World Congress on  Intelligent 

Control and Automation, (WCICA 2004). Page(s): 4296 - 

4299 Vol.5 

 [13]  Pasiquir, Bastide, Y. Stemme G, & Lakhal, 

“Generating a Condensed Representation for Association 

Rule” Journal of Intellegent system 24(1), 29-60, 2005 

 

AUTHOR’S PROFILE 
R. Vijaya Prakash is presently working as associate 

Professor in Department of Computer Science & 

Engineering,SR Engineering College, Warangal, Pursuing 

Ph.D from Kakatiya University, Warangal. He is completed 

his MCA from Kakatiya University and M.Tech(IT) from 

Punjabi University, Patiala. 

 

Prof. A. Govardhan is working as professor in Department of 

Computer Science & Engineering, JNT niversity, Hyderabad. 

He Received his B.Tech in 1992 from Osmania  University, 

M.Tech in 1994 from Jawahar Lal Nehru University, Delhi 

and  

 

 

 

 

 

Ph.D from JNT University in 2003. He is very eminent person 

in the field of teaching he guided 4 Ph.D scholars. 

 

Prof. SSVN. Sarma is a Professor in Mathematics, He 

Worked in Department of Mathematics and Department of 

Informatics, Kakatiya University over period of 30 years.  

Presently he is working as Professor in Dept. of Computer 

Science and Engineering,Vaagdevi College of Engineering 

,Warangal. His research interests include artificial 

Intelligence, Computer Networks, Data Mining, Software 

Engineering 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1401887&contentType=Journals+%26+Magazines&queryText%3DCHARM%3A+An+efficient+algorithm+for+closed+itemset+mining
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1401887&contentType=Journals+%26+Magazines&queryText%3DCHARM%3A+An+efficient+algorithm+for+closed+itemset+mining
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=69
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=30435
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1342322&contentType=Conference+Publications&queryText%3DDiscovering+Frequent+Closed+Itemsets+for+Association+Rule
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1342322&contentType=Conference+Publications&queryText%3DDiscovering+Frequent+Closed+Itemsets+for+Association+Rule
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9294
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9294

