

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.7, August 2012 – www.ijais.org

39

Processing Natural Language Requirement to Extract
Basic Elements of a Class

Poonam R. Kothari
Master of Computer Engineering

Pune Institute of Computer Technology, Pune University, Pune, India

ABSTRACT

This paper presents the efficient way to obtain basic elements

of a class diagram from natural language (NL) requirements.

User provides the requirements in simple English in paragraph

and the designed tool i.e. NLPC (Natural language Processing

for Class) applies natural language processing (NLP) methods

to analyze the given input. NL text is semantically analyzed to

obtain classes, data members and member functions. NLPC

helps to fill the gap between the informal natural language

used to describe problems and the formal modeling languages

used to specify software solutions. Input to this tool is clearly

specified user requirement. With correct inputs, NLPC

undergoes stages like Preprocessing, Part of Speech (POS)

Tagging, Class Identification, Attribute and Function

identification and then plotting the classes.

Keywords

Natural Language (NL),Natural Language Processing (NLP),

Part of Speech (POS) tagging,

1. INTRODUCTION

The idea behind this project is to develop a tool which will

extract the basic elements necessary for creating a class

diagram from clearly specified user requirements. NLPC

successfully extracts classes, its data members and member

functions from the given input.

Class diagram helps software developers to identify the key

classes from the given input and to identify the functions

through which the classes interact with each other [1][2][3].

To plot class diagram from the user requirements becomes

time consuming. The motivation behind the development of

NLPC is to automate the plotting of class diagram from user

requirements, and hence to save the time taken by designer to

plot the diagram. NLPC achieves this by using WordNet 2.1

[4] more efficiently.

NLPC is helpful for Software Designers, Software Developers

and Software Engineering students. Figure 1 describes the

Workflow diagram of core capabilities of NLPC. Input to

NLPC is user requirement with detailed specifications.

This input is then processed through different stages like

Preprocessing, POS Tagging, Class Identification, Attribute

and Function Identification and finally plotting Classes.

Figure 1 Core Capabilities of NLPC

2. RELATED WORK

Object Oriented Analysis (OOA) exhibits some unique

difficulties that are inherited form NL. Firstly, NL is highly

informal in nature, with speakers or writers inventing new

forms and combinations of language. Indeed, sentence

patterns of NL can be complex and ambiguous, which may

lead to multiple interpretations [5][6]. Natural Language

Processing (NLP) in Object Oriented Analysis (OOA)can lead

to automatic text analysis. Therefore, NLP can disambiguate

NL descriptions and assist model generation.

LIDA (Linguistic assistant for Domain Analysis) [7]

methodology started with text description in which analyst

reads and marks nouns and verbs then determines the suitable

objects and function.

According to Rada Mihalcea, Hugo Liu, and Henry

Lieberman [8], Natural Language Processing (NLP) holds

great promise for making computer interfaces that are easier

to use for people, since people will be able to interact with the

computer in their own language, rather than learn a

specialized language of computer commands. From design

and coding point of view it is very important to identify the

basic elements of object oriented programming. Also for

beginners of object oriented programming it is difficult to

identify class, data members of the class, and member

functions from generalized problem definition. A new creative

method should be prepared to help them to handle the

problem.

According to Mohd Ibrahim, Rodina Ahmad [9],

“Requirements Analysis and Class Diagram Extraction

(RACE)” is a desktop instrument which will assist

requirement analysts and software engineering students in

analyzing textual requirements, finding core concepts and

Input Preprocessing Classifying

POS

Class

Identification

Attribute

Identification

Function

Identification

Plot Classes

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.7, August 2012 – www.ijais.org

40

their relationships, and step by step extraction of the class

diagram. The evaluation of RACE system is in process.

Khalid Daghameen and Nabil Armana [10] developed a tool

to implement a system that automates the building of class

diagrams from free-text. They first applied natural language

processing techniques for understanding the written

requirements, and then used domain knowledge represented

by domain ontology to improve the performance of class

identification. However, their approach has the overhead of

handling the domain ontology to identify classes of the class

diagram. An important issue is that there is no tool that

automates the process between requirement analysis and

design phases. Their tool introduces a semi-automated

process.

Mich L. [11] proposes a NLP system, LOLITA to generate an

object model automatically from natural language

requirement. It considers nouns as objects and it uses links to

find relationships between objects. LOLITA system does not

distinguish between classes, attributes, and objects. This

approach is limited to extract objects and cannot identify

classes.

Zhou and Zhou [12] propose a methodology that uses NLP

and domain ontology. It is based on that the core classes are

always semantically connected to each other‟s by one to one,

one to many, or many to many relationships in the domain.

This methodology finds candidate classes using NLP through

a part of speech (POS) tagger, a link grammar parser,

linguistic patterns and parallel structure, and then the domain

ontology is used to refine the result [12].

Unlike LIDA, LOLITA, and the tool developed by Khalid

Daghameen and Nabil Armana, NLPC is a fully automated

tool. Also, the output of RACE does not show functions,

whereas NLPC identifies functions and data members too.

Further it can be developed to identify relationships between

classes.

3. METHODOLOGY

NLPC accepts clearly specified user requirement as an input.

The given input goes through following stages:

3.1 Preprocessing

Preprocessing is, breaking down the sentences into set of

words. The stop words are then identified and removed from

the set of words. The remaining words are then further

processed

3.2 Classifying Parts of Speech (POS)

The next stage is classification [13] of word into three main

types, viz, noun, verb or adjective using WordNet 2.1.

3.3 Class Identification

Nouns are very complex and can play multiple roles [14]. It

can be categorized either as class [15] or as data member.

Rules are applied on the identified nouns and then they are

categorized as class and the rejected nouns can be categorized

as data members.

Class identification rules are as below:

1. If hypernyms of identified noun describes it as a

“God”, then discard it.

2. If the identified noun occurs only once in the input

and its frequency is less than 2%, then discard it [9].

3. If the identified noun is related to design element or

location name, then discard it [14].

4. Otherwise consider it as a class [9].

Identified classes are stored in a separately.

3.4 Attribute Identification

Adjectives and nouns which are not classes are the key

candidates for attribute identification.

Identify the class which belongs to the same statement, check

the correspondence, and store the attribute and corresponding

class.

3.5 Function Identification

Verbs are the key candidates for function identification [15].

Also if the verbs are connected by “_” (underscore), then

consider them as a candidate for member function

identification [9].

1. Check whether the identified verb is from

predefined function list.

2. If it is not a part of predefined function list then

identify the class which belongs to the same

statement (as that of identified verb).

Identified member functions are stored along with

corresponding class.

4. ALGORITHM

Step 1. Accept the clearly specified requirement.

Step 2. Perform tokenization on the user input.

Step 3. Identify stop words and remove them from the

input.

Step 4. Send each word to Word Net 2.1 to find its type

(Noun/ verb/ adjective).

Step 5. Store each word in the concept list (hash table)

along with its identified type.

Step 6. Generate the hypernyms list for each noun using

Word net 2.1 and store it in individual concept list.

Step 7. Identify classes by processing each noun (ref Class

Identification).

Step 8. Identify member functions by processing each verb

(ref Function Identification).

Step 9. Identify data members by processing each adjective

and non-class nouns (ref Attribute Identification).

Step 10. Integrate data obtained from step 7 to 9 and plot the

classes.

5. Example

Suppose a user wants to develop a system which keeps track

of record of a shoe company. He would give the requirement

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.7, August 2012 – www.ijais.org

41

to the Requirements Engineer in natural language. The

Requirements Engineer would then put this requirement in

standard grammatical format and use the NLPC to generate

the classes. Following is an example of the requirement:

Consider a Shoe_Company. Customer needs to_register with

the Shoe_Company. Customer can place order.

Shoe_Company will dispatch_the_order. For registration,

Customer need to provide_basic_details, and payment_details.

Customer also needs to provide shoe_sizes, gender, and any

special_details. Shoe_company makes different shoe_types.

Shoe_company will verify_the_details of an order. Then

Shoe_company will process an order. An order can be

waiting_for_dispatch. An order can be waiting_for_delivery

to the customer waiting_for_credit, waiting_for_clearance.

Table 1 Expected result of the above example

Expected

classes

Expected

Attributes

Expected Functions

Shoe_company shoe_types dispatch_the_order

verify details

process order

Customer shoe_sizes

gender

special_details

to_register

make_order

provide_basic_details

place_shoe_order

Order waiting_for_dispatch

waiting_for_delivery

waiting_for_credit

waiting_for_clearance

Figure 2 shows the output of NLPC for above mentioned

example of Shoe Company.

Figure 2 Experimental result obtained from NLPC

Class diagram (marked in red circle in Figure 2) is as follows:

Figure 3 Class Diagram obtained from NLPC

The accuracy of NLPC can be checked from comparing result

of NLPC against expected result.

6. CONCLUSION
NLPC is useful for Software Designers or Requirement

Engineers, who give the natural language requirement and

readily get the classes with all its functionalities. This classes

act as a base for UML diagrams.

To get the exact output from NLPC, it is important to

give the requirement in detail; with the sentence

structure being in standard grammatical format.

Developers can use NLPC to identify the key classes and their

functionality, which is an important part of software

development.

Engineering students can use NLPC to study class diagrams.

Class diagrams are helpful to learn and understand software

languages, such as C++ and JAVA.

7. REFERENCES
[1] Hans_Erik Erikson, Magnus Penker, Brian Lyons, David

Fado, “UML 2 Toolkit” Wiley Publishing.

[2] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,

Lorensen, W., Object-oriented Modeling and Design,

Prentice Hall.

[3] Meyer, B. (1997). Object-Oriented Software

Construction. Prentice Hall.

[4] G.A. Miller, “WordNet2.1,” 2006;

http://wordnet.princeton.edu/.

[5] N. Boyd, “Using Natural Language in Software

Development”, Journal of Object Oriented Programming,

Feb. 1999.

[6] M. Osborne, C.K. MacNish, "Processing Natural

Language Software Requirement Specifications",

Proceedings of the 2th International Conference on

 customer
order

 registration

 shoe_sizes

 gender

 special_details

 to_register()

 make()

provide_basic_details()

 payment_details()

 provide()

 place_shoe_order()

waiting_for_dispatch()

waiting_for_delivery()

waiting_for_credit()

waiting_for_clearance()

 dispatch_the_order()

 verify_the_details()

 process()

shoe_types

shoe_company

http://wordnet.princeton.edu/

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.7, August 2012 – www.ijais.org

42

Requirements Engineering, IEEE, 15-18 April 1996, pp.

229-236

[7] Overmyer , S.P, Lavoie, B, Rambow,O. 2001.Conceptual

Modeling through Linguistic Analysis Using LIDA.

IEEE.

[8] Rada Mihalcea, Hugo Liu, and Henry Lieberman,”NLP

(Natural Language Processing) for NLP (Natural

Language Programming)” pp. 319–330, 2006.

[9] Mohd Ibrahim, Rodina Ahmed, “Class diagram

extraction from textual requirements using Natural

language processing (NLP) techniques,” Proceedings of

Second International Conference on Computer Research

and Development, pp. 200-204, 2010 IEEE.

[10] Khalid Daghameen, Nabil Arman, “REQUIREMENTS

BASED STATIC CLASS DIAGRAM CONSTRUCTOE

(SCDC) CASE TOOL,” Journal of theoretical & Applied

Information Technology, Islamabad Pakistan, pp. 108-

114,may 2010.

[11] L. Mich, NL-OOPs: “From Natural Language to Object

Oriented Using the Natural Language Processing System

LOLITA.”, Natural Language Engineering, 1996,

pp.161-187.

[12] Xiaohua Zhou and Nan Zhou, 2004, Auto-generation of

Class Diagram from Free-text Functional Specifications

and Domain Ontology.

[13] Deva Kumar Deeptimahanti,Muhammad Ali Babar,

“Automated tool for generating UML models from

Natural Language Requirements,” International

Conference on Automated Software Engineering,

IEEE,2009, pp 680-682.

[14] Ke Li, R.G.Dewar, R.J.Pooley, “Requirements capture

in natural language problem Statements ,” 2003.

[15] Pressman,”Software engineering”, A practitioner’s

approach,Mc Graw Hill

