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ABSTRACT 
In Data mining and Knowledge Discovery hidden and valuable 

knowledge from the data sources is discovered. The traditional 

algorithms used for knowledge discovery are bottle necked due 

to wide range of data sources availability.  Class imbalance is a 

one of the problem arises due to data source which provide 

unequal class i.e. examples of one class in a training data set 

vastly outnumber examples of the other class(es). In this paper, 

we present a new hybrid approach using neural networks to 

improve the class imbalance results. This algorithm provides a 

simpler and faster alternative by using multi perceptron back 

propagation neural network as base algorithm. We conduct 

experiments using eleven UCI data sets from various application 

domains using four base learners, and five evaluation metrics. 

Experimental results show that our method has shown good 

performance in terms of Area under the ROC Curve, F-measure, 

precision, TP rate and TN rate values than many existing class 

imbalance learning methods. 

Index Terms: Classification, class imbalance, weighted 

sampling, subset filtering,CILNN. 

 

1. INTRODUCTION 
A dataset is class imbalanced if the classification categories are 

not approximately equally represented. The level of imbalance 

(ratio of size of the majority class to minority class) can be as 

huge as 1:99[1]. It is noteworthy that class imbalance is 

emerging as an important issue in designing classifiers [2], [3], 

[4]. Furthermore, the class with the lowest number of instances 

is usually the class of interest from the point of view of the 

learning task [5]. This problem is of great interest because it 

turns up in many real-world classification problems, such as 

remote-sensing [6], pollution detection [7], risk management [8], 

fraud detection [9], and especially medical diagnosis [10]–[13]. 

There exist techniques to develop better performing classifiers 

with imbalanced datasets, which are generally called Class 

Imbalance Learning (CIL) methods. These methods can be 

broadly divided into two categories, namely, external methods 

and internal methods. External methods involve preprocessing of 

training datasets in order to make them balanced, while internal 

methods deal with modifications of the learning algorithms in 

order to reduce their sensitiveness to class imbalance [14]. The 

main advantage of external methods as previously pointed out, is 

that they are independent of the underlying classifier. In this 

paper, we are laying more stress to propose an external CIL 

method for solving the class imbalance problem. 

This paper is organized as follows. Section 2 briefly reviews the 

Data Balancing problems and its measures. And in Section 3, we 

discuss the proposed method of using the back propagation 

neural network as one of the component for CIL. Section 4 

presents the imbalanced datasets used and measures used for 

validation, while In Section 5, we present the experimental 

setting and In Section 6discuss, in detail, the classification 

results obtained by the proposed method and compare them with 

the results obtained by different existing methods and finally, in 

Section 7, we conclude the paper. 

 

2. DATA BALANCING 
Whenever a class in a classification task is underrepresented 

(i.e., has a lower prior probability) compared to other classes, we 

consider the data as imbalanced [15], [16]. The main problem in 

imbalanced data is that the majority classes that are represented 

by large numbers of patterns rule the classifier decision 

boundaries at the expense of the minority classes that are 

represented by small numbers of patterns. This leads to high and 

low accuracies in classifying the majority and minority classes, 

respectively, which do not necessarily reflect the true difficulty 

in classifying these classes. Most common solutions to this 

problem balance the number of patterns in the minority or 

majority classes.  

Either way, balancing the data has been found to alleviate the 

problem of imbalanced data and enhance accuracy [15],[16], 

[17]. Data balancing is performed by, e.g., oversampling 

patterns of minority classes either randomly or from areas close 

to the decision boundaries. Interestingly, random oversampling 

is found comparable to more sophisticated oversampling 

methods [17]. Alternatively, under sampling is performed on 

majority classes either randomly or from areas far away from the 

decision boundaries. We note that random under sampling may 

remove significant patterns and random oversampling may lead 

to over fitting, so random sampling should be performed with 

care. We also note that, usually, oversampling of minority 

classes is more accurate than under sampling of majority classes 

[17]. 

Resampling techniques can be categorized into three groups. 

Under sampling methods, which create a subset of the original 

data-set by eliminating instances (usually majority class 

instances); oversampling methods, which create a superset of the 

original data-set by replicating some instances or creating new 

instances from existing ones; and finally, hybrids methods that 

combine both sampling methods. Among these categories, there 

exist several different proposals; from this point, we only center 

our attention in those that have been used in under sampling. 

 Random under sampling: It is a non heuristic 

method that aims to balance class distribution through 

the random elimination of majority class examples. Its 

major drawback is that it can discard potentially useful 

data, which could be important for the induction 

process.  

 Random oversampling: In the same way as random 

oversampling, it tries to balance class distribution, but 

in this case, randomly replicating minority class 

instances. Several authors agree that this method can 

increase the likelihood of occurring over fitting, since 

it makes exact copies of existing instances. 
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 Hybrid Methods: In this hybrid method both under 

sampling and oversampling will be applied for the 

datasets so as to make it a balance dataset. 

 

The bottom line is that when studying problems with imbalanced 

data, using the classifiers produced by standard machine 

learning algorithms without adjusting the output threshold may 

well be a critical mistake. This skewness towards minority class 

(positive) generally causes the generation of a high number of 

false-negative predictions, which lower the model’s performance 

on the positive class compared with the performance on the 

negative (majority) class. A comprehensive review of different 

CIL methods can be found in [18]. The following two sections 

briefly discuss the external-imbalance and internal-imbalance 

learning methods.  

The external methods are independent from the learning 

algorithm being used, and they involve preprocessing of the 

training datasets to balance them before training the classifiers. 

Different resampling methods, such as random and focused 

oversampling and under sampling, fall into to this category. In 

random under sampling, the majority-class examples are 

removed randomly, until a particular class ratio is met [19]. In 

random oversampling, the minority-class examples are randomly 

duplicated, until a particular class ratio is met [18]. Synthetic 

minority oversampling technique (SMOTE) [20] is an 

oversampling method, where new synthetic examples are 

generated in the neighborhood of the existing minority-class 

examples rather than directly duplicating them. In addition, 

several informed sampling methods have been introduced in 

[21]. A clustering-based sampling method has been proposed in 

[22], while a genetic algorithm based sampling method has been 

proposed in [23]. 

 

3. CLASS IMBALANCE LEARNING 

USING SUBSET FILTERING  
In this section, we follow a design decomposition approach to 

systematically analyze the different unbalanced domains. We 

first briefly introduce the design decomposition methodology 

adopted for new proposed approach. 

 

Algorithm 1:CIL-NN 

 

1: {Input: A set of minor class examples P, a set  

Of major class examples N,jPj<jN j, and T,  

The number of subsets to be sampled from N.} 

2: i ← 0, T=N/P. 

3: repeat 

4: i= i+ 1 

5: Randomly sample a subset Ni from N, 

jNij=jPj. 

6: Combine P and Ni to form NPi 

6: Apply filter on a NPi 

7: Train and Learn  A Base Classifier (BPN) 

Using NPi. Obtain the values of 

 AUC,TP,FP,F-Measure 

7: until i= T 

8: Output: Average Measure; 

 

 

The different components of our proposed algorithm are 

elaborated in the next subsections. 

3.1 Dataset Sampling 
An easy way to sample a dataset is by selecting instances 

randomly from all classes. However, sampling in this way can 

break the dataset in an unequal priority way and more number of 

instances of the same class may be chosen in sampling. To 

resolve this problem and maintain uniformity in sample, we 

propose a sampling strategy called weighted component 

sampling. Before creating multiple subsets, we will create the 

number of majority subsets depending upon the number of 

minority instances. 

3.2 Identifying number of subsets of majority 

class 
The ratio of majority and minority instances in the unbalanced 

dataset is used to decide the number of subset of majority 

instances (T) to be created. 

 

T= no. of majority inst(N)./no. of minority inst(P). 

 

3.3 Applying filter  
Subsets of majority instances are combined with minority subset 

and multiple balanced subsets are formed. Applying a specific 

filtering technique at this stage will help to reduce the class 

imbalance effects. So, Correlation based Feature Subset (CFS) 

filter is applied at this stage.  

3.4. Averaging the measures   
The subsets of balanced datasets created are used to run multiple 

times and the resulted values are averaged to find the overall 

result. In results we have obtained observations for AUC, 

Precision, F-measure, Sensitivity, Specificity and Accuracy by 

using Back Propagation Neural Networks as its base classifier. 
 

4. DATASETS AND MEASURES 
We considered four benchmark real-world imbalanced dataset 

from the UCI machine learning repository [24] to validate our 

proposed method. Table II summarizes the details of these 

datasets in the ascending order of the positive-to-negative 

dataset ratio. This contains the name of the dataset, the total 

number of examples (Total), attribute, the number of target 

classes for each dataset, number of minority class examples 

(#min.), the number of .majority class examples (#maj.). These 

datasets represent a whole variety of domains, complexities, and 

imbalance ratios. 

For every data set, we perform a tenfold stratified cross 

validation. Within each fold, the classification method is 

repeated ten times considering that the sampling of subsets 

introduces randomness. The AUC, Precision,  F-measure, TP 

rate and TN Rate of this cross-validation process are averaged 

from these ten runs. The whole cross-validation process is 

repeated for ten times, and the final values from this method are 

the averages of these ten cross-validation runs. 

4.1. Evaluation Criteria: 
To assess the classification results we count the number of true 

positive (TP),true negative (TN), false positive (FP) (actually 

negative, but classifiedes positive) and false negative (FN) 

(actually positive, but classified as negative) examples. It is now 

well known that error rate is not an appropriate evaluation 

criterion when there is class imbalance or unequal costs. In this 

paper, we use AUC, Precision, F-measure, TP Rate and TN Rate 

as performance evaluation measures.  

Let us define a few well known and widely used measures: 
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Apart from these simple metrics, it is possible to encounter 

several more complex evaluation measures that have been used 

in different practical domains. One of the most popular 

techniques for the evaluation of classifiers in imbalanced 

problems is the Receiver Operating Characteristic (ROC) curve, 

which is a tool for visualizing, organizing and selecting 

classifiers based on their tradeoffs between benefits (true 

positives) and costs (false positives). 

A quantitative representation of a ROC curve is the area under it, 

which is known as AUC. When only one run is available from a 

classifier, the AUC can be computed as the arithmetic mean 

(macro-average) of TPrate and TNrate: 

The Area under Curve (AUC) measure is computed by, 

 

 

 

 

                       Or      
 

 
 

 

On the other hand, in several problems we are especially 

interested in obtaining high performance on only one class. For 

example, in the diagnosis of a rare disease, one of the most 

important things is to know how reliable a positive diagnosis is. 

For such problems, the precision (or purity) metric is often 

adopted, which 

can be defined as the percentage of examples that are correctly 

labeled as positive: 

The Precision measure is computed by, 

   FPTP

TP
ecision


Pr

 

 
The F-measure Value is computed by, 

 

 

 
To deal with class imbalance, sensitivity (or recall) and 

specificity have usually been adopted to monitor the 
classification performance on each class separately. Note that 
sensitivity (also called true positive rate, TPrate) is the 

percentage of positive examples that are correctly classified, 

while specificity (also referred to as true negative rate, TNrate) 

is defined as the proportion of negative examples that are 

correctly classified: 

The True Positive Rate measure is computed by, 

 

   FNTP

TP
veRateTruePositi




 
 
The True Negative Rate measure is computed by, 

 

   FPTN

TN
veRateTrueNegati




 
 

5. EXPERIMENTAL SETTINGS 
A. Algorithms and Parameters 
In first place, we need to define a baseline classifier which we 

use in our proposed algorithm implementation. With this goal, 

we have used C4.5 decision tree generating algorithm [25]. 

Furthermore, it has been widely used to deal with imbalanced 

data-sets [26]–[28], and C4.5 has also been included as one of 

the top-ten data-mining algorithms [29]. Because of these facts, 

we have chosen it as the most appropriate base learner. C4.5 

learning algorithm constructs the decision tree top-down by the 

usage of the normalized information gain (difference in entropy) 

that results from choosing an attribute for splitting the data. The 

attribute with the highest normalized information gain is the one 

used to make the decision.  

To validate the proposed algorithm, we compared it with the 

traditional C4.5,CART,REP and SMOTE. Eleven real world 

benchmark data sets taken from the UCI Machine Learning 

Repository are used throughout the experiments (see Table 1). 

We performed the implementation using Weka on Windows XP 

with 2Duo CPU running on 3.16 GHz PC with 3.25 GB RAM. 

 

2) Evaluations on Eleven Real-World Datasets: 
We evaluate the CIL-NN model on eleven real-world datasets 

obtained from the University of California at Irvine machine 

learning repository [24].   

We then construct classifiers from the imbalanced data based on 

the training dataset, and perform evaluations on the test data. We 

repeat this procedure ten times and use the average of the results 

as the performance metric. The detailed information about the 

datasets is described in Table 1. 
 

Table 1 Summary of benchmark imbalanced datasets 

__________________________________________________ 

Datasets # Ex.# Atts. Class (_,+)  

__________________________________________________ 

Ecolic           336 8  (cp, im)    

Hepatitis       155   19 (die; live) 

Ionosphere   351 34  (b;g) 

Labor           56 16 (bad ; good )  

Breast            268 9 (recurrence; no-recurrence) 

Breast_w699  9 (benign; malignant) 

Diabetes       768  8 (tested-positive; tested-negative) 

Vote             435 16 (democrat ;republican )  

Sonar       208 61  (Rock, Mine) 

Sick     3772  30  (Negative, Sick) 

__________________________________________________ 

6. EXPERIMENTAL RESULTS 
We have analysis the performance of our proposed algorithm on 

class imbalance problem in the following eleven real-world 

datasets. 

The results of the tenfold cross validation with standard 

deviation are shown in Table 2 to 12.Figure 1(a) - (d), AUC 

results of some datasets have been represented for all the 

methods in the study. Tables 13-17, we can observe the results 

of our proposed algorithm CIL-NN Vs various algorithms with 

respect to AUC, Precision, F-measure, TP rate and TN rate. 

From Table 13, we can see that all the datasets have performed 

excellent against all the algorithms in terms of AUC. In From 

Table 14, one can observe that except, Breast, Credit, Diabetes 

and Labor remaining all the datasets have reacted well to our 

algorithm and had given expected results in terms of precision. 

From Table 15, we can conclude again the same datasets Breast, 

credit-g, Diabetes are the under performers, remaining all the 

datasets have performed well. From Table 16 and 17 we can 

2
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easily identify the group of datasets which are behaving in the negative way and that is due to their internal properties.  
 

 

 

Table 2 Tenfold cross validation classification performance for Ecolicdataset 

 

   System AUC  Precision F-measure TP Rate TN Rate 

_____________________________________________________________________________________________ 

C4.5 0.963±0.033          0.935±0.058 0.945±0.040 0.959±0.054 0.948±0.050 

CART 0.955±0.032         0.920±0.062               0.944±0.039 0.973±0.041 0.934±0.054 

REP  0.950±0.036          0.904±0.071 0.928±0.042 0.959±0.052 0.919±0.071 

SMOTE 0.960±0.037                  0.935±0.061         0.943±0.041        0.955±0.057        0.948±0.053 

CIL-NN 0.986±0.033          0.956±0.072 0.957±0.057       0.964±0.074 0.971±0.050 

_____________________________________________________________________________________________ 

 

Table 3 Tenfold cross validation classification performance for Hepatitis dataset 

 

 System AUC              Precision             F-measure        TP Rate           TN Rate 

 

C4.5 0.668±0.184 0.510±0.371 0.409±0.272 0.374±0.256 0.900±0.097 

CART 0.563±0.126 0.232±0.334 0.179±0.235 0.169±0.236 0.928±0.094 

REP  0.619±0.149       0.293±0.386       0.210±0.259        0.187±0.239      0.942±0.093 

SMOTE 0.792±0.112       0.709±0.165      0.677±0.138         0.681±0.188       0.837±0.109 

CIL-NN 0.820±0.175         0.807±0.197 0.754±0.170 0.758±0.242 0.778±0.230 

   

 
 

Table 4 Tenfold cross validation performance for ionosphere dataset 

_____________________________________________________________________________________________                                           

System  AUC                  Precision          F-measure        TP Rate            TN Rate 

_____________________________________________________________________________________________ 

C4.5  0.891±0.060    0.895±0.084    0.850±0.066     0.821±0.107    0.940±0.055 

CART       0.896±0.059   0.868±0.096     0.841±0.070      0.803±0.112    0.921±0.066  

REP           0.902±0.054    0.886±0.092     0.848±0.067        0.826±0.104    0.933±0.063          

SMOTE     0.904±0.053   0.934±0.049       0.905±0.048       0.881±0.071   0.928±0.057     

CIL-NN  0.948±0.048        0.945±0.061 0.892±0.070 0.852±0.110        0.940±0.071 

_____________________________________________________________________________________________ 
 

 

Table 5 Tenfold cross validation performance for labor dataset 

_____________________________________________________________________________________________               

System  AUC               Precision    F-measure        TP Rate           TN Rate 

_____________________________________________________________________________________________ 

C4.5  0.726±0.224 0.696±0.359      0.636±0.312      0.640±0.349       0.833±0.127 

CART         0.750±0.248 0.715±0.355      0.660±0.316      0.665±0.359      0.871±0.151 

REP            0.767±0.232       0.698±0.346      0.650±0.299        0.665±0.334     0.765±0.194           

SMOTE     0.833±0.127      0.871±0.151 0.793±0.132         0.765±0.194     0.847±0.187       

CIL-NN  0.928±0.172         0.887±0.178        0.865±0.158 0.893±0.206 0.820±0.262 
_________________________________________________________________________________________________ 

 

Table 6 Tenfold cross validation classification performance for breast_cancer dataset 

_____________________________________________________________________________________________    

System AUC                     Precision         F-measure          TP Rate                TN Rate 

 ____________________________________________________________________________________________ 

C4.5  0.606±0.087    0.753±0.042       0.838±0.040    0.947±0.060         0.260±0.141  

CART         0.587±0.110         0.728±0.038       0.813±0.038     0.926±0.081       0.173±0.164 

REP            0.578±0.116          0.721±0.037       0.805±0.042       0.917±0.087        0.151±0.164            

SMOTE     0.717±0.084          0.710±0.075      0.730±0.076        0.763±0.117        0.622±0.137     

CIL-NN  0.674±0.116          0.669±0.096        0.690±0.099      0.730±0.146        0.556±0.177 
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Table 7 Tenfold cross validation classification performance for breast_w dataset 
 

System    AUC                   Precision             F-measure     TP Rate         TN Rate 

 

C4.5 0.957±0.034 0.965±0.026 0.962±0.021 0.959±0.033 0.932±0.052 

CART 0.950±0.032      0.968±0.026         0.959±0.020      0.952±0.034 0.940±0.051 

REP  0.957±0.030        0.965±0.030         0.960±0.021      0.957±0.033     0.931±0.060 

SMOTE0.967±0.025        0.974±0.024         0.960±0.022        0.947±0.035     0.975±0.024 

CIL-NN 0.990±0.013 0.973±0.033 0.963±0.027 0.954±0.043 0.974±0.032 

  

 
 

Table 8 Tenfold cross validation classification performance for credit-g dataset 

_____________________________________________________________________________________________ 

 AUC                   Precision          F-measure         TP Rate           TN Rate 

_____________________________________________________________________________________________ 

C4.5  0.647±0.062 0.767±0.025 0.805±0.022 0.847±0.036 0.398±0.085 

CART         0.716±0.055 0.779±0.030        0.820±0.028 0.869±0.047 0.421±0.102 

REP             0.705±0.057      0.765±0.025         0.814±0.026      0.872±0.057       0.371±0.105   

SMOTE       0.778±0.041     0.768±0.034         0.787±0.034      0.810±0.058      0.713±0.056 

CIL-NN  0.722±0.062         0.704±0.063         0.696±0.063       0.695±0.100        0.652±0.108 

 

 
Table 9 Tenfold cross validation classification performance for Pima Diabetes dataset 

 

  System      AUC               Precision   F-measure       TP Rate            TN Rate 

_____________________________________________________________________________________________ C4.5          

0.751±0.070     0.797±0.045 0.806±0.044         0.821±0.073        0.603 ±0.111 

CART      0.743±0.071 0.782±0.042         0.812±0.040 0.848±0.066 0.554±0.113 

REP         0.754±0.060        0.785±0.037         0.809±0.037          0.8384±0.072    0.567±0.105 

SMOTE   0.791±0.041        0.781±0.064         0.741±0.046        0.712±0.076        0.807±0.077 

CIL-NN    0.823±0.052 0.743±0.079  0.724±0.065 0.717±0.105 0.758±0.099 

  

 
Table 10 Tenfold cross validation performance for vote dataset 

____________________________________________________________________________________________ 

System               AUC                   Precision          F-measure        TP Rate        TN Rate 

___________________________________________________________________________________________ 

C4.5  0.979±0.025 0.971±0.027      0.972±0.021   0.974±0.029    0.953±0.045   

CART        0.973±0.027 0.971±0.028      0.966±0.022 0.961±0.037 0.953±0.046            

REP           0.957±0.023       0.969±0.035      0.961±0.025      0.955±0.034     0.949±0.059            

SMOTE    0.984±0.017      0.977±0.027      0.969±0.021       0.963±0.037    0.981±0.023 

CIL-NN  0.991±0.015         0.965±0.047        0.943±0.042       0.926±0.064        0.972±0.040 
______________________________________________________________________________________________________________ 

 

Table 11 Tenfold cross validation performance for Sonar dataset 

_____________________________________________________________________________________________               

System  AUC               Precision    F-measure        TP Rate           TN Rate 

_____________________________________________________________________________________________ 

C4.5  0.753±0.113 0.728±0.121 0.716±0.105 0.721±0.140 0.749±0.134 

CART         0.721±0.106 0.709±0.118      0.672±0.106      0.652±0.137     0.756±0.121 

REP            0.746±0.106       0.733±0.134      0.689±0.136        0.685±0.192     0.762±0.145           

SMOTE     0.814±0.090      0.863±0.068 0.861±0.061         0.865±0.090     0.752±0.113 

CIL-NN  0.932±0.080        0.903±0.076 0.903±0.061       0.910±0.088 0.818±0.156 
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Table 12 Tenfold cross validation performance for Sick dataset 

_____________________________________________________________________________________________               

System  AUC               Precision    F-measure        TP Rate           TN Rate 

_____________________________________________________________________________________________ 

C4.5  0.726±0.224 0.696±0.359      0.636±0.312      0.640±0.349       0.833±0.127 

CART         0.750±0.248 0.715±0.355      0.660±0.316      0.665±0.359      0.871±0.151 

REP            0.767±0.232       0.698±0.346      0.650±0.299        0.665±0.334     0.765±0.194           

SMOTE     0.833±0.127      0.871±0.151 0.793±0.132         0.765±0.194     0.847±0.187 

CIL-NN  0.957±0.030 0.912±0.054 0.917±0.039 0.926±0.055 0.905±0.065 

      

 

 

 
  Fig. 1(a)       Fig. 1(b)   

 

 

 
  Fig. 1(c)       Fig. 1(d) 
 

Fig. 1(a) – 1(d) Test results on AUC between the C4.5, CART, REP, SMOTE, and CIL-NN for Hepatitis, Pima Diabetes, Sonar 

and Sick datasets. 
 

 

Table 13. Summary of results on AUC VsCIL-NN 

_____________________________________________ 

System   C4.5   CART   REPSMOTE 

Dataset       __________________________________ 
Ecolic  Win Win Win Win 

Hepatitis        Win Win Win Win 

Ionosphere    Win Win Win Win 

Labor                    Win Win Win Win 

Breast  Win Win Win Loss 

Breast_w  Win Win Win Win  

Credit-g  Win Win Win Loss 

Diabetes        Win Win Win Win 

Vote                    Win Win Win Win 

Sonar                    Win Win Win Win 

Sick                    Win Win Win Win 

____________________________________________ 
 

 
 

 

 

 

 

 

 

Table 14. Summary of results on Precision VsCIL-NN 

_____________________________________________ 

System   C4.5     CART    REP      SMOTE 

Dataset       __________________________________ 
Ecolic  Win Win Win Win 

Hepatitis        Win Win Win Win 

Ionosphere    Win Win Win Win 

Labor                    Win Win Win Win 

Breast  Loss Loss Loss Loss 

Breast_w  Win Win Win Tie  

Credit-g  Loss Loss Loss Loss 

Diabetes        Loss Loss Loss Loss 

Vote                    Loss Loss Loss Loss 

Sonar                   Win Win Win Win 

Sick                   Win Win Win Win 

____________________________________________ 
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Table 15. Summary of results on F-Measure VsCIL-NN 

_____________________________________________ 

System   C4.5     CART    REP      SMOTE 

Dataset       __________________________________ 
Ecolic  Win Win Win Win 

Hepatitis        Win Win Win Win 

Ionosphere    Win Win Win Loss 

Labor                    Win Win Win Win 

Breast  Loss Loss Loss Loss 

Breast_w  Tie Win Win Win  

Credit-g  Loss Loss Loss Loss 

Diabetes        Loss Loss Loss Loss 

Vote                    Loss Loss Loss Loss 

Sonar                   Win Win Win Win 

Sick                   Win Win Win Win 
____________________________________________________ 

 

 

 

Table 16.Summary of results on TP Rate Vs Prop.Algor. 
_____________________________________________ 

System   C4.5     CART    REP      SMOTE 

Dataset       __________________________________ 

Ecolic  Loss Win Loss Loss 

Hepatitis        Win Win Win Win 

Ionosphere    Win Win Win Loss 

Breast  Loss Loss Loss Win             

Breast_w  Loss Win Loss Win  

Credit-g  Loss Loss Loss Loss 

Diabetes        Loss Loss Loss Win 

Labor             Win Win Win Win 

Vote               Loss Loss Loss Loss 

Sonar                    Win Win Win Win 

Sick                    Win Win Win Win 

____________________________________________ 

 

Table 17. Summary of results on TN Rate VsCIL-NN 
_____________________________________________ 

System   C4.5     CART    REP      SMOTE 

Dataset       __________________________________ 

Ecolic  Win Win Win Win 

Hepatitis        Loss Loss Loss Loss 

Ionosphere    Win Win Win Win 

Labor             Loss Loss Win Loss 

Breast  Win Win Win Loss 

Breast_w  Win Win Win Tie  

Credit-g  Win Win Win Loss 

Diabetes        Win Win Win Loss 

Vote               Win Win Win Win 

Sonar                    Win Win Win Win 

Sick                    Win Win Win Win 

____________________________________________ 

 
In overall, from all the tables we can observe that the datasets 

Sick, Ecolic, Hepatitis, Ionosphere, Labor and Sonar have 

performed exceptionally well on all the measures against all the 

algorithms. One the Reason for the performance of proposed 

algorithm on all the above dataset is due to the very huge size of 

the dataset, irrelevant attributes present in the dataset, the multi 

class nature of the dataset and the majority and minority ratio of 

the datasets. The datasets Credit-g, Diabeties, Breast_w, Breast 

and Vote have not shown their performance up to their 

expectation. One the Reason for the underperformance of 

proposed algorithm is due to the problem in the minority set. 

Our proposed algorithm is not streamlining the instances present 

in the minority class. Another reason can be the verysmall size 

of some dataset such as labor, and the final reason can be 

thenoises present in the dataset. 

 

7. CONCLUSION 
Class imbalance problem have given a scope for a new paradigm 

of algorithms in data mining. The traditional and benchmark 

algorithms are worthwhile for discovering hidden knowledge 

from the data sources, meanwhile Class imbalance Learning 

methods can improve the results which are very much critical in 

real world applications. In this paper we present the class 

imbalance problem paradigm, which exploits the subset filtering 

strategy in the supervised learning research area, and implement 

it with neural networks as its base learner. Experimental results 

show thatour proposed algorithm performed well in the case of 

multi class imbalance datasets. In our future work, we will apply 

our proposed algorithm to more learning tasks, especially high 

dimensional feature learning tasks. 
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