

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.7, August 2012 – www.ijais.org

7

Effort Estimation in Agile Software Development using
Story Points

Evita Coelho

Dept. of CSE, R&D
East Point College of Engineering and Technology

Bangalore, Karnataka, India

Anirban Basu
Dept. of CSE, R&D

East Point College of Engineering and Technology
Bangalore, Karnataka, India

ABSTRACT

Agile software development has been gaining popularity and

replacing the traditional methods of developing software.

However, estimating the size and effort in Agile Software

development still remains a challenge. This paper gives an

overview of the different size estimation methods traditionally

used and discusses in details the method based on Story

Points, which is at present the most widely used estimation

technique in Agile Software Development. The paper

describes the steps followed in Story Point based method and

highlights the area which needs to be looked into further.

General Terms

User Story, Velocity, Agility, Scheduling.

Keywords

Story Points, Size Estimation, Effort Estimation

1. INTRODUCTION

Often the traditional ways of project planning do not provide

satisfactory answers with respect to the scope, schedule and

resources involved in a software project, and making it

difficult to meet customer requirements. A crucial deficiency

with traditional planning methods is that they give more thrust

on the completion of activities rather than on delivery of

fruitful features to the customer. The “Agile Manifesto” [1]

valued individuals and the communication between them

more than the development process. Agile planning balances

the effort and investment in planning and the plan is revised

throughout the life cycle of the project. The project owner

ensures that all the team members have a common vision of

the project. The Agile team executes a project in short

Iterations and productive yields are delivered to the customer

based on negotiations and continuous collaboration [1]. The

features chosen to be developed in Iteration are based on

business priority. This ensures that the most important

features are developed first. The focus of Agile Methodology

is on welcoming changing customer requirements even during

later stages of software development. Estimation of schedule

of an agile project is initiated by the work breakdown

structure [1]. Once this activity is completed, the various tasks

or features that can be developed are listed. Each such feature

is called a user Story. Story Point is a measure for relatively

expressing the overall size of a user Story or a feature. The

value of the Story Point is dependent on the development

complexity, effort involved, and the inherent risk and so on.

The team members estimate the effort and duration required

to deliver each feature to the customer. The main challenge

involved in predicting the attributes of an agile project is that

Agility is subject to uncertainty. There may not be adequate

information to estimate upfront. Customer requirements are

subject to change based on changing technology and domain,

budgets, political influence etc. [1]. Further estimates are not

guaranteed to be accurate. All these make estimation in Agile

Software development a challenging task. This paper gives an

overview of the available estimation techniques and describes

in details estimation technique based on Story Points.

2. OVERVIEW OF EXISTING

ESTIMATION TECHNIQUES

Various methods have been proposed to estimate a project’s

size and effort. However, there is no standard method which

satisfies universal acceptability. The simplest technique used

to measure the size of a program is Source Lines of Code

(SLOC)] [2]. Based on this size estimate and the project

team’s productivity; the effort, and time schedule is

computed. Measuring software size by the number of lines of

code has been in practice since the inception of software. This

was considered one of the simplest techniques to measure a

project’s size. Since Line of Code is a physical entity;

automating the counting process can easily eliminate manual-

counting effort. Line of Code serves as a metric for measuring

the size of software due to the fact that it can be seen and the

effect of it can be visualized. Effort is highly correlated with

SLOC: a project with higher SLOC may require more time

and effort to develop. But functionality is not effectively

correlated with SLOC [2]. A skilled developer may develop

the same functionality with less SLOC compared to a novice

developer. As a program with less SLOC may exhibit more

functionality than a program with a larger value of SLOC,

SLOC is a poor productivity measure. The major drawback

with this method is the ambiguity involved in the operational

definition [2]. The SLOC required to develop the same

application in two different platforms may not be the same.

With the advent of high-level languages, the one-to-one

correspondence between one physical line and one instruction

broke down. This requires to pre state whether physical LOC

or logical LOC is being used in a project. Industry wide

standards require conversion techniques between the two

variations of the metric. Finally, a programmer whose

productivity is measured using the SLOC tends to write

verbose code. He is forced to expand his code with unneeded

complexity, which further results in increased maintenance

cost and increased effort for bug fixing.

A better technique proposed was Function Point Analysis

(FPA) [2]. It estimates the metrics for the business

functionality delivered to the end user. There are five major

components of Function Point Analysis: External Inputs (EIs),

External Outputs (EOs), External Inquiries (EQs), Internal

Logical Files (ILFs) and External Interface Files (EIFs).

Function Point measure is independent of language,

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.7, August 2012 – www.ijais.org

8

development method; hardware/platform used and is a better

candidate for benchmarking across organizations. Function

Points can be used to effectively derive empirical formulae

and pinpoint scope for improvement. Despite these benefits;

due to its very nature, Function Points have to be counted

manually. The counting process cannot be automated. A great

level of detail is required to estimate the software size in

terms of Function Points [2]. Information on inputs, outputs,

screens, database tables, and even logical records and fields

are required to perform Function Point Analysis (FPA).

An extension to FPA is the Use Case Points method [3] for

sizing and estimating projects developed using object oriented

methods. The main drawback of this approach is that use case

based estimation method based on UML cannot be done

during the early project phase as the use case document is

usually prepared after project sign off and requires detailed

analysis. When applying this method, there are no detailing

guidelines defined for a use case and for actor identification.

Another technique is a group estimation technique called

Wideband Delphi method [3]. Although this method provides

broad analytical perspective, it tends to provide a biased

opinion. It eliminates the extreme positions and forces

middle-of-the-road consensus. It also requires adequate time

and participant commitment. After estimating the software

size, Effort Estimation is carried out and COCOMO II [3] is

the most accepted method. This method incorporates software

reuse and reengineering and also accounts for requirement

volatility.

However none of the methods discussed above has found

acceptance in the agile community for Size and Effort

estimation due to the difference in philosophy and approach.

3. ESTIMATION BASED ON STORY

POINTS

Story Point [2] is a unit to measure the size of a user Story or

a feature. A point is assigned to each user Story. These Points

are relative in nature, i.e. a Story that is assigned a two-point

value is assumed to take twice the effort than a Story that is

assigned a single point value. A Story Point may be assigned

based on the effort involved, the complexity and the inherent

risk in developing a feature [4]. An estimate of the effort of

developing a user Story requires the developer to have some

experience of estimating, to have access to historical data and

have the freedom to use a trial based estimation approach.

 In order to aid estimation, an expert maybe asked about how

long it will take to achieve a desired goal. The expert [4] may

rely on his/her intuition or previous experience. The benefit of

using expert opinion is that it is not time consuming. But this

method is not beneficial in an agile environment as here

estimates are assigned to user valued functionality which very

likely requires domain skills of multiple people working in the

team. This makes it difficult to find suitable experts in a

variety of disciplines to evaluate the effort. Alternatively, the

user stories can be estimated against a collection of already

estimated stories [4]. There is no need to compare all the

stories against a single baseline or common reference. A Story

can be disaggregated into smaller, easier to estimate blocks.

But there is no safety check when disaggregating a Story. The

likelihood of missing out a task increases with disaggregation.

Summing up estimates of a number of small tasks may further

cause problems. Estimation of the schedule and effort using

Story Points proceed in the following sequence:

3.1 Customer/User Expectation

It is important to know the criteria by which the project will

be evaluated as a success or a failure. Most projects use the

trio of schedule, scope, and resources as principle indicators

of success or failure. For most projects, the product owner’s

conditions of satisfaction are defined by a combination of

schedule, scope, and resource goals [5].

3.2 Estimation of User Stories

Because an estimate represents the cost of developing a user

Story, it is important that each one is estimated correctly. It is

not necessary to estimate all the features together in one shot.

It is only necessary to have an estimate of each new feature

that has possibility of being selected for inclusion in the

upcoming release.

3.3 Select an Iteration Length

The next goal is to determine the length of the Iteration [5]. It

should be selected in order to encourage the team members to

work at a consistent pace throughout the Iteration. The

selection of Iteration length is guided by various factors that

include the length of the entire Release Plan, the amount of

uncertainty, the ease of feedback, volatility of priorities,

iteration overhead and so on. Majority of Agile teams settle

on Iteration lengths varying from one to four weeks [5]. The

length of the Iteration can vary across projects and

development teams. If the duration is too long, there is a

tendency to relax at the start which eventually leads to panic

and long working hours towards the end of the Iteration.

Extremely short Iterations leave no time for recovery. There is

a need to choose an Iteration length that smoothes out these

variations.

3.4 Estimate Velocity

In order to estimate the effort based on Story Points, the

concept of “Velocity” is used. It is a measure of the team’s

progress rate. It is calculated by adding all the Story Points

assigned to each user Story completed by the team in the

current iteration. The addition of the Story Points of all the

desired features gives the total size estimate of the project.

Dividing the total size by the team Velocity gives the

estimated number of Iterations, as shown in Figure 1.Velocity

can be estimated using three approaches which include

techniques that rely on historical data, executing iteration and

forecasting [5].

3.4.1 Estimation of Velocity based on historical

data

Before computing Velocity on the basis of historical data it

needs to be ascertained if the technology, the domain, the

development team, the working environment and the tools

used for development in the current project are the same as

the earlier one. Any significant changes in the above factors

will reduce the usefulness of this approach [6]. To reduce the

risk of estimation, a larger range is used with the historical

approach. The team’s average Velocity is computed over the

course of the prior Release. The actual value obtained is

converted into a range using the cone of uncertainty shown in

Figure 2. The actual value of the average Velocity is

multiplied by 60%-160% to get the upper and the lower

bounds.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.7, August 2012 – www.ijais.org

9

3.4.2 Execute an Iteration
The second approach to estimate Velocity is to run a couple of

Iterations and then estimate Velocity from the observations

[6]. Once the team has run more than three Iterations, the

Range computed from the observed values can be used.

Alternatively, the cone of uncertainty can be used [6]. The

average Velocity of all the Iterations is calculated and this

value is converted into a range. If the team has run a single

Iteration, the “initial product definition” milestone is

considered and the corresponding range is used. If two

Iterations are completed, the range corresponding to

“approved product definition” milestone is used and so on.

3.4.3 Forecasting

In some cases historical data may be unavailable and it may

not be feasible to run an Iteration to observe the Velocity. In

cases like these the Velocity needs to be forecast. It begins by

estimating the number of hours each person is available to

work for the project on a daily basis. Project participants do

not spend 100% of their time working on the project [6]. They

have additional responsibilities which include answering e-

mails, telephone calls; attending company meetings and so on.

Using these factors one can assume that each team member

will spend 55% to 80% of their time on project related

activity. These parameters can be used to estimate the amount

of time each individual may dedicate to the project each day.

Based on this, the total number of hours that will be spent on

the project in Iteration can be determined. This is done by

multiplying the number of hours available each day by the

number of people in the team and the number of days in the

Iteration. For instance, four people each working six hours a

day is 24 hours per day. In ten-day Iteration, they put in about

240 hours towards the project. The next step is to select

stories randomly and expand them into constituent tasks. This

is iterated until enough number of tasks is obtained to fill the

number of hours available in the Iteration, that is they should

not exceed the capacity of the individuals in the team. This

gives the Velocity which is then converted into a range using

the cone of uncertainty shown in Figure2. The two techniques

in 3.4.1 and 3.4.2 rely on Story Point values provided for

estimation. These values can be fine tuned at any given time

as and when the customer requirements change. However

problems arise when the features planned to be completed in

one Iteration spills over onto the next. Calculation of Velocity

becomes difficult in this situation.

3.5 Prioritize User Stories

It is not possible to incorporate all the desired features within

the time allocated. Hence there is a need to prioritize the

development of user stories [7]. Prioritizing user stories is

guided by factors such as the financial value of the Story, the

cost involved in developing the Story, the amount and

significance of the knowledge created by developing the Story

and the amount of risk mitigated by developing the user Story

[7].

Project

schedule

Accepted

software

Detailed design

specification

Requirement

specification

Initial product

definition
Product design

specification

Approved product

definition

 x

 1.6x

 1.25x

 0.6x

 0.8x

 0.85x

 1.15x

 0.9x

 1.1x

Fig 2: The Cone of Uncertainty

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.7, August 2012 – www.ijais.org

10

3.6 Estimation of Delivery Date
In order to estimate the delivery date, the length of the

selected Iteration is used to estimate the duration which is

mapped onto the calendar time, and gives the project

schedule. When planning a Release, an appropriate Iteration

length must be chosen [8]. With Iteration plan, a team takes a

more detailed look at the requirements of a user Story that

3.7 Estimation of Delivery Date
In order to estimate the delivery date, the length of the

selectedneeds to be implemented in the current Iteration.

Iteration planning can be Velocity driven or commitment

driven. In Velocity driven Iteration planning, the team

collaboratively adjusts priorities [8]. They identify the target

Velocity for the upcoming Iteration. The team then selects an

Iteration goal which consists of the user stories to be

estimated. These user stories are further split into tasks and

each task is individually estimated. In the commitment driven

Iteration planning, adjusting priorities and identifying an

Iteration goal are same as in the Velocity driven approach.

Stories are selected one at a time. After each Story is split into

tasks the team decides whether or not they can commit to

delivering that Story during the Iteration [9]. After obtaining

an estimate of the team’s Velocity and the number of

Iterations involved, project delivery can be planned to meet

the desired customer’s expectations. Estimation can be done

more accurately by involving the entire team, planning at

different levels and re-planning whenever required [9].

4. CONCLUSION
The objective of Agile development methodology is to find

answer to the question as to which features should be

developed with which resources and in what timeline. An

Agile approach to software development helps in finding an

answer because plans are made at different levels and re-

planning occurs frequently. Story Points are estimates of the

size of the work to be performed. Velocity is a measure of a

team’s rate of progress per Iteration. There are methods based

on Historical data, Executing an Iteration and Forecasting that

can be used to estimate Velocity. Regardless of the approach

used, estimates of Velocity need to be given in a range aided

by the cone of uncertainty. The estimated Velocity may not be

100% accurate. There may be hidden factors that trigger delay

in the deployment of the software. The Cone of Uncertainty

reflects this vagueness inherent in the estimate and poses

challenges in accurate estimation of a project following Agile

Methodology.

5. ACKNOWLEDGEMENT
Our thanks to Vinay Krishna of Cegedim Software, Bangalore

who provided valuable inputs and suggestions and to

management of EPCET for providing encouragement and

assistance.

6. REFERENCES
[1] LINDSTROM, L. & JEFFRIES, R., 2004 Extreme

Programming and Agile Software Development

Methodologies. Information Systems Management, 21,

41-52.

[2] IFPUG: FSM Method: ISO/IEC 20926:2009, Software and

systems engineering - Software measurement - IFPUG

functional size measurement method

[3]Robert E Park, “Software Size Measurement: A

Framework for Counting Source Statements”, Technical

Report CMU/ SEI-92-TR-020, Software Engineering

Institute, pp. 1-242

[4] Peter Hill, 2010 “Practical Software Project Estimation- A

Toolkit for Estimating Software Development Effort and

Duration” Mc Graw Hill Education,

[5] Mike Cohn “Agile Estimating and Planning” Prentice Hall

1st edition, 2005

[6] K. McDaid, D. Greer, F. Keenan, P. Prior, P. Taylor, G.

Coleman, 2006 “Managing Uncertainty in Agile Release

Planning”, 18th Int. Conference on Software Engineering

and Knowledge Engineering (SEKE’06), pp. 138-143,.

[7] K. Logue, K. McDaid, D. Greer, 2007, “Allowing for Task

Uncertainties and Dependencies in Agile Release

Planning”, 4th Proceedings of the Software Measurement

European Forum, pp 275-284.

[8] MOLØKKEN, K. & JØRGENSEN, M. 2003, A Review

of Software Surveys on Software Effort Estimation,

Proceedings of the 2003 International Symposium on

Empirical Software Engineering. WILLIAMS, L. (2003)

the XP Programmer: The Few-Minutes Programmer.

IEEE Software, 20, 16-20.

[9] KEUNG, J., JEFFERY, R. & KITCHENHAM, B. 2004,

The Challenge of Introducing a New Software Cost

Estimation Technology into a Small Software

Organization, Proceedings of the Australian Software

Engineering Conference. Australia.

DESIRED

FEATURES

ESTIMATE

SIZE

ESTIMATE

DURATION SCHEDULE

Fig 1: Relating size and velocity

