
 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 3– No.6, July  2012 – www.ijais.org 

 

10 

Optimizing Semantic Web Service Composition by using 

Boid Particle Optimization 

Hadjila Fethallah 
Computer Sciences 

Department 
Tlemcen university 

B.P 119 Faculty of Sciences 

Tlemcen Algeria 

Chikh Mohammed Amine 
Computer Sciences 

Department 
Tlemcen university 

B.P 119 Faculty of Sciences 

Tlemcen Algeria 

Merzoug Mohammed 
Computer Sciences 

Department 
Tlemcen university 

B.P 119 Faculty of Sciences 

Tlemcen Algeria 

 

 

ABSTRACT 

The Quality of Service (QoS) is a key factor in Web service 
selection and composition. In this paper, we propose a meta-

heuristic based on renolds‟Boid model, in order to compose a 

sequence of services that optimizes the QOS attributes, and 

conserves the semantic interaction between components, in 

addition to the global constraints required by the user. This 
approach uses multiple moving operators such as the   

cohesion, the alignment, the random velocity, and the social 

exchange of positions. This paper provides also an 

experimentation that evaluates the optimality rates of the 

approach. 

General Terms  

Web Technologies, Combinatorial Optimization. 

Keywords 

Service oriented architecture; boid particle 

optimization;qualiy of service; service 

composition,combinatory optimization;ontologies  

1. INTRODUCTION 
The Web service technology is immerging as a powerful 

vehicle for organizations that participate in Web based 
dynamic collaborations. Several standards, such as SOAP, 

UDDI, WSDL, [1], and BPEL [2], have been created to 

support the effective deployment of web services.  

The Web service composition is one of the most important 

challenges in the service oriented architecture, it consist in 
building a value-added services and web applications by 

integrating and composing existing elementary web services. 

A lot of efforts have been proposed, in order to address this 

problem. Existing approaches advanced in the literature 

include AI planning techniques [3], formal models [4] (finite 
states machines, petri nets,…)  and meta-heuristics[5,6]. The 

majority of them does not address the functional and the non 

functional aspects in the same time.  

With the increasing number of web services with the same 

function on the Internet, a great amount of candidate services  
emerge. How to find a service according to the Qos 

requirements of users has become a hot issue in the service 

oriented architecture. In fact the users, are obliged  to find a 

particular service from the candidate service set (or class), 

making the entire Qos of  composite service best to meet 
users‟ need. Numerous researchers have been studying this 

problem from different perspectives (see the second section) 

In order to explain the QOS aware composition problem, we 

consider the following example: we have a request composed 

of an input concept Ir, and an output concept Or , the user 

must search a composition c that accepts Ir as an input and 
gives Or as an ouput, in addition to that, the solution c must  

preserve the semantic coherence, ie  there are no semantic 

conflicts between the components of the solution, for instance 

the output of S1 „c2‟ must be compatible  with the input of S2 

„c3‟. 

furthermore  c must match  the user‟s request (see the 

functions U2,U3). 

 Moreover c has to maximize the positive Qos Criteria such as  

reliability and availability, and minimize the negative criteria 

such as cost and execution time. In addition to that, we must 
also satisfy the global constraints which are related to the Qos 

attributes (we have R Qos Attributes), for instance, the cost of 

a solution c must be lesser than 1000 Euros.  It is worth noting 

that, this problem is NP Hard[7]. 

 

 

 

 

 

 

Fig 1: The motivating example 

Formally the problem can be described as follows: we have to 

search a composition c=(s1, ..., sn) such that: 

U1(c) is maximized 

U2(c,request) is maximized 

U3(c,request) is maximized 

U4(c) is maximized 

Each global constraint j is fulfilled ( j=1..R)  

U1(c): denotes the aggregated function of the different QOS 

attributes applied on c. 

U2(c,request): denotes the semantic closeness (or 

compatibility) between the composition inputs and the request 

inputs, in our example U2( c,request)=closeness (Ir,C1)  

Ir Or S1 S2 
C1                       C2    C3                      C4 

The composition c 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 3– No.6, July  2012 – www.ijais.org 

 

11 

U3(c,request): denotes the semantic closeness (or 
compatibility) between the composition outputs and the 

request outputs, in our example U3(c,request)=closeness 

(Or,C4)  

U4(c): denotes the semantic coherence of the composition c , 

in our example U4( c)=closeness (C2,C3)  

The function “closeness ” is detailed further. 

The main contribution of this paper is to propose a mono 

objective optimization algorithm that takes into account the 

functional aspects (the functions U2 U3 U4) and the non 

functional aspects (the functions U1 and the global 
constraints) simultaneously. In comparison with our previous 

works [8,9] that consider only the non functional aspects, we 

modify the objective function to handle the functional aspect. 

To tackle this problem, we adopt the Boid particle  

optimization approach (BSO) [10],  

In 1986, Reynolds proposed an automated model of 

coordinated animal motion such as bird flocks and fish 

schools, and called the flocking creatures as boids. Each boid 

can make  three simple steering behaviors which describe how 

an individual boid maneuvers based on the positions and 
velocities its nearby flockmates:  

Separation : each boid tends to avoid crowding with its 

neighbors. 

Alignment : each boid tends to be closer to the average 

heading of its neighbors.  

Cohesion (Fig.3): each boid tends to be closer to the average 

position of its neighbors. 

Our  modified BSO algorithm can explore efficiently a large 

space solutions by using four moving operators : the cohesion 
moving, the alignment moving, the random moving, and the 

social moving.   

These moving operators give the ability to avoid the local 

optimums, but they can increase the execution time  of the 

optimization process.  

Compared with the swarm particle optimization , BSO is  

closer to the biological behavior of the flocks, furthermore it 

is more immune to the local optimums than the SPO  

model[11]. 

The rest of the paper is organized as follows: the section 2 
reports a survey on the composition and the selection 

problem, the third section presents the problem modeling, in 

the fourth section we introduce the developed approach, the 

fifth section shows the obtained results and finally, 

conclusions and future work are described in the last section.  

2. RELATED WORKS 
The field of service selection and composition has received 

considerable attention in recent years. Roughly speaking, We 
distinguish two types of approaches [12]:  

the multi-objective optimization and the mono-objective 

optimization.  (See the figure 1), the majority of them does 

not address the semantic aspect during the selection. 

The multi-objective selection, (also called the skyline based 
optimization) can be handled by using multiple database 

techniques [13]. More specifically we can use the divide and 

conquer algorithm, the bitmap algorithm, the index based 

algorithm (B tree, hash table), and the nearest neighbor 
algorithm (R tree).  

Furthermore,   there are several works which takes into 

account the user preferences to select the top k dominant 

skylines [12,13] some of them uses the fuzzy set theory  to 

model  the preferences and the dominance relationship, the 
others uses the  pareto-dominance concept to rank the web 

services.  

The mono-objective class involves several approaches, 

[14,15,16,17,18, 8,19,20, 21].  

This category can use a global selection pattern [18,15, 
16,22,20,21] or a local selection pattern or a hybrid selection 

pattern[14].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: The selection approaches 

The global selection model focuses on the entire composition 

(ie the n components of the solution), it can get the optimal 

solution, but it has an exponential complexity, nevertheless, 

the local model has only a linear complexity but cannot 

handle the global constraints (it handles only, local 
constraints).  

The third category is a compromise of the two approaches, it 

begins the search with a global optimization, then we continue 

the work with a local one, its temporal complexity is lower 

than the global optimization, in addition to that it can also 
handle the global constraints.  

In [8], the authors adopt a genetic algorithm (global selection) 

to select a near-optimal composition, The obtained results are 

very satisfactory, but the response time is too high.  

Zeng and al [20, 21] employ the mixed linear programming 
techniques [23] to find the optimal selection of component 

services.  

Similar to this approach Ardagna and al, [15, 16] modify the 

linear programming schema to include local constraints. 

Mono Objective 

Selection 

 

Web service 

Selection 

 
Multi  Objective 

Selection 

 
Local  Selection 

 

Global Selection 

 

Hybrid Selection 

 

Meta  heuris tics 

 

Data  Base 

Techniques 

Meta  heuris tics 

 

Linear 

Programming 

 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 3– No.6, July  2012 – www.ijais.org 

 

12 

 Linear programming methods are very strong when the size 
of the problem is small.  but these methods are non scalable, 

because they have an exponential time complexity [23]. 

In this paper we propose a mono-objective approach, and 

more specifically a global selection approach. We have 

chosen the Boid particle optimization, because it is more 
suitable to NP Hard problems. 

In addition to that, the algorithm has only a polynomial 

complexity and a lot of flexibility (the number of groups, the 

number of particles, the topology…).  

3. THE PROBLEM MODELING 

3.1 The QOS Modeling 
Our QOS criteria involve only quantitative non-functional 

properties of web services, [20].  

These properties can include generic QOS attributes such as 
response time, availability, price, reputation etc, as well as 

domain-specific QOS attributes like bandwidth for real time 

streaming web services.  

We use the vector Q = {Q1(s), . .  . , QR(s)} to represent the 

QOS attributes of a service s, where the function Qi(s) 
determines the value of the i-th quality attribute of s.  

The QOS values can be either collected from service 

providers directly (e.g. price), recorded from previous 

execution monitoring (e.g. response time) or from users 

feedbacks or social networks (e.g. reputation) [17].  

The set of QOS attributes involves two subsets: positive and 

negative QOS attributes.  

The values of positive attributes need to be maximized (e.g. 

reliability, availability…), however the value of negative 

attributes need to be minimized (e.g. price, response time). 

 To homogenize these criteria, we convert the negative 

attributes into positive attributes by multiplying their values  

by -1. 

3.2 The aggregation functions 
The web service composition has only four basic models: the 

sequential mode, the parallel mode, the selection mode, and 

the loop mode,  

The QOS value of a composite service depends on the QOS 
values of its components as well as the composition model.  

In this work, we consider only the sequential mode.  

The Other models can be treated by using other Techniques 

[17]. 

The QOS vector for a composite service c is defined as 
QOS‟(c) = {Q‟1(c), . .  Q‟R(c)}. Q‟i(c) represents the estimated 

value of the i-th QOS attribute of c and can be aggregated 

from the expected QOS values of its component services. 

 These functions are shown in the following table[13].  

 

 

 

 

 

Table 1. The aggregation functions 

QOS Criterion Aggregation function 

Response Time Q‟1 (C) =∑n
j=1 Q1(sj)  

Reputation Q‟2 (C) = 1/n * ∑n
j=1 Q2(sj) 

Price Q‟3 (C) =  ∑n
j=1 Q3(sj) 

Reliability Q‟4 (C) = n
j=1 Q4(sj) 

Availability Q‟5 (C) = n
j=1 Q5(sj) 

 
 

3.3 The Global Constraints Modeling 
The Global QOS constraints may be expressed in terms of 

upper and/or lower bounds for the aggregated values of the 

different QOS criteria. As mentioned in the section 3.1, we 
consider only positive QOS criteria. Therefore we have only 

lower bound constraints. 

Let CONS= {cons1, ..consm…, consR }, 0 ≤ m ≤ R, be a 

vector of global constraints (CONS is a vector of real values). 

Let c a concrete composition, in which a concrete web service 
is associated for each stage.  

We say that c is feasible iff QOS‟ (c) ≥ CONS , This means  

that all the global constraints are satisfied. 

3.4 The Objective Function Modeling 
Our objective function F1 contains several parts, each of them 

handles one aspect of the composition problem and must 

maximized. 

)(),(

),()(),(1

4433

2211

cUwrequestcUw

requestcUwcUwrequestcF





 

The sum of the different weights is equal to 1. 

In addition to that, the  solution c must satisfy a set of global 

constraints: 

Q‟ k(c) ≥ Cons( k), ∀ Cons(k )∈ CONS 

The function U1(c) gives a real score, that represents the 

weighted sum of the different QOS values [24]. The score 
computation involves a scaling process of the QOS attributes‟ 

values, to allow a uniform measurement of the multi-

dimensional service qualities. The scaling step is then 

followed by a weighting process which models the user 

priorities. The scaling process of the QOS values gives a score 
comprised between 0 and 1. 

Formally, the minimum and  the maximum aggregated values  

of the k-th QoS attribute of c are computed as follows: 

Qmin(k)*n  (k)Qmin'  )……………………….… (1) 

Qmax(k)*n  (k)Qmax'   

benchmark s / ))((QMin   Qmin(k) ik  is .......(2) 

benchmark s / ))((QMax   Qmax(k) ik  is  



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 3– No.6, July  2012 – www.ijais.org 

 

13 

Where Qmin(k) is the minimum value (e.g. minimum price) 
and Qmax(k) is the maximum value (e.g. maximum price) 

contained in the benchmark of services.  

n denotes the size of the composition c. 

The overall utility of a composite service c is computed as 

follows: 

)(min')(max'

)(min')('

')(
1

1
kQkQ

kQcQ

wcU

kR

k

k















...(3) 

with w‟k ∈ R+ and 



R

k

kw
1

1'   

w‟k are the weights (importance) of Q‟k .  

 

                          1 if inputs(firsts(c ) )≡  inputs(request) 

U2(c,request)=  0.75 if inputs(firsts(c ))   inputs(request) 

                          -100 otherwise// we penalize a solution that  

                          violates the semantic compatibility with   

                           the  request. 

                           1 if outputs(lasts(c ) )≡  outputs(request) 

U3(c,request)=   0.75 if outputs(lasts(c))  outputs(request) 

                           -100 otherwise// we penalize a solution  

                           that violates the semantic compatibility  

                          with the request. 










1

1

4

1))iIComp(c, , i)OComp(c, closeness( *
1-n

1

)(

n

i

cU

 

                                    1  if      C1≡  C2 

closeness(C1,C2)=     0.75 if   C2   C1 

                                   -100 otherwise// we penalize a    

                                  Solution that violates the semantic  

                                  compatibility  with the request. 

firsts(c) gives the atomic services of the first execution stage 

of the workflow c 

lasts(c) gives the atomic services of the flast execution stage 

of the workflow c 

OComp(c,k) denotes the outputs of the kth component of c 

IComp(c,k) denotes the inputs of the kth component of c 

If we have to compare the closeness between a set of 

concepts, instead of a couple of concepts, then we can use the 

algorithm presented in [3]  in order to extend the functions 
U2, U3, Closeness. 

A concrete composition c is optimal if it is feasible and if it 
has the maximum value of the function F1. We notice that the 

selection of the optimal concrete composition is NP hard (we 

must enumerate an exponential number of cases).  

In case to hide the global constraints, we create a penalty 

function P, which promotes the feasible solutions and 
penalizes the non feasible solutions.  

Roughly speaking, P(x) decreases the utility score 

„F1(x,request)‟of the solution that violates the global 

constraints. Several penalty functions are proposed in the 

literature [25,26], (we have static, dynamic, adaptive.. 
functions), for the sake of simplicity we have chosen a static 

function, because the two others  does not give a  significant 

improvement (they only increase the execution time):  

))(()( 2

1

cDcP
R

k

k


  

Where 

Dk(c)=     0 if Q‟k(c) ≥ Cons(k) 

                |Q‟k(c)- Cons(k) | otherwise  

This formula means that a rigorous penalty is applied when 

we have a solution that violates a given constraint.  

Finally the fitness employed by the BSO algorithm is defined 

as follows: 

P(c)request)F1(c,request)F2(c,   

4. THE PROPOSED APPROACH 
BSO [10], is a social discrete algorithm, that uses the 

neighborhood to get a near optimal solution.  

The population has a full mesh topology (each boid can 

communicate with entire swarm).  

For the sake of simplicity, we suppose that the boid‟s position 
is a vector that contains 10 elements, each element denotes a 

service identifier,  (or -1 if the service is absent),  ie our 

composition contains less or equal  than 10 elements. 

(Because our benchmark contains only 10 abstract classes). 

The BSO version is given below: 

1-Initialize the swarm, P(t), of boids such that the position xi ( 

t ) of each particle Pi  P(t) is random within the hyperspace, 

with t = 0. 

2. Evaluate the performance F2(Xi(t),request) of each boid, 

using its current position Xi(t). 

3. Compare the performance of each individual to its best 
performance thus far: 

if F2(Xi(t),request)  > pbesti then 

(a) pbesti = F2(Xi(t),request) 

(b) Xpbesti = Xi(t) 

4. Compare the performance of each boid to the global best 
boid (of the swarm): 

if F2(Xi(t),request)  > gbest then 

(a) gbest = F2(Xi(t),request) 

(b) Xgbest = Xi(t)   



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 3– No.6, July  2012 – www.ijais.org 

 

14 

5. Compute the cohision of the swarm 

))(
))((

1
(

))((

1

tX
tPsize

roundcoh
tPsize

i

i


  

6. Compute the alignment of the swarm 

 

))(
))((

1
(

))((

1

tXpbest
tPsize

roundalign
tPsize

i

i


  

7. Change the position for each boid using: 

Select an abstract class h1 randomly from {1..10} 

Select an abstract class h2 randomly from {1..10} 

Select an abstract class h3 randomly from {1..10} 

Select an abstract class h4 randomly from {1..10} 

(a) Xi(t)[h1] = coh[h1] 

(b) Xi(t)[h2] = align[h2] 

(c) Xi(t)[h3] = xgbest(t)[h3] 

(d) Xi(t)[h4] = random_instance_from_class(h4)  

 

7. Move to the nest iteration:     t = t + l 

8. Go to step 2, and repeat until convergence or 

t=MaxIteration.  

As mentioned above, we have 04 types of moving operators: 

 The first one (a) tends to be closer to the gravity center of the 

swarm.  

The second one (b) tends to be closer to the average best 

position thus far (the gravity center of the different best 

positions (for all particles)).  

The third one (c) tends to be closer to the best global position 

thus far (the best position of the entire swarm). 

 The fourth one (d) models a random moving or velocity (a 

sort of mutation). 

5. THE EXPERIMENTATION 
In case to test the performance of the BPO algorithm we use a 

benchmark inspired from the web service challenge1. 

 in fact we use a subset which contains one request, 158 
services, and an ontology that contains 500 concepts, the 

request accepts several solutions, the smallest solution 

contains at least 03 services (or 03 stages).  

 The space search is very huge, indeed we have 

158!+157!....+1! candidate solutions. 

 The four sub-functions Ui have the same priority, ie w i=0,25. 

In addition to that, the number of QOS attributes R is fixed to 

5. All the QOS properties have the same priority (w‟k=0.2).   

Several parameters have been modified to search the best 

results (in terms of optimality): 

                                                                 
1
 http://www.ws-challenge.org/ 

1-The maximum number of iterations: it [ 100 , 10000],  

2-The population size (the number of particles) ps [ 5 , 

1000] 

3-We suppose also that the optimality is defined as follows: 

rate=(the fitness of the current solution)/(the fitness of optimal 

solution). 

 

 
 

Fig 3: The optimality rates ( with constraints, ps=1000) 

Several simulations have been made with different 

configurations the results are resumed as follows: 

The figure 3 shows 10 simulations, we notice that we can 
reach an optimality rate close to 81% . 

Roughly speaking the BPO algorithm is slower than The SPO, 

but it is more immune to local optimums, than the second one. 

This ability is mainly due to the sophisticated moving 

operators (alignment, mutation and cohesion).  

6.  CONCLUSION 
This paper presented a boid particle optimization approach for 

web service composition. The proposed algorithm shows a 
high ability for handling large spaces. 

Our future research work will be focused on comparing the 

other techniques, mainly we will consider the constraint 

programming algorithms, the harmony search, and the 

stochastic optimization  

We can apply also these algorithms in the multi-objective 

schema and compare the obtained results. 

7. REFERENCES 
[1] F.Curbera, F.Duftler, R. Khalaf, W.Nagy, N. Mukhi, and 

S.Weerawarana .Unraveling . the Web Services Web: An 

Introduction to SOAP, WSDL, and UDDI. IEEE Internet 

Computing, 6(2). (2002). 

[2] G. L. Nemhauser and L. A. Wolsey. Integer and 
Combinatorial Optimization. Wiley-Interscience, New 

York, NY, USA, 1988.  

[3] F. Hadjila, Chikh A, A Belabed  Semantic Web Service 

Composition: a Similarity Measure Based Approach 

Algorithm  In Proceedings of ICIST‟11 Tebessa Algeria 
2011. 

[4] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull,  

andM.Mecella. Automatic composition of transition-

Simulation ID 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 3– No.6, July  2012 – www.ijais.org 

 

15 

based semantic web services with messaging. In 
Proceedings of the 31st VLDB Conference. on Very 

Large Data Bases (VLDB 05), pages 613–624, 

Tronheim, Norway, 2005. ACM. 

[5] Steffen Bleul, ThomasWeise, and Kurt Geihs. Making a 

fast semantic service composition system faster. In 
Proceedings of IEEE Joint Conference (CEC/EEE 2007) 

on E-Commerce Technology (9th CEC‟07) and 

Enterprise Computing, E-Commerce and E-Services (4th 

EEE‟07), 2007, pages 517–520. edings  

[6] Weise T. Steffen B, Kurt G . Web Service Composition 
Systems for the Web Service Challenge – A Detailed 

Review. A technical report number: urn:nbn:de:hebis:34-

2007111919638  university of kassel. 

[7] D. Pisinger. Algorithms for Knapsack Problems. PhD 

thesis, University of Copenhagen, Dept. of Computer 
Science, February 1995. 

[8] F. Hadjila, Chikh A, M. Dali Yahiya QoS-aware Service 

Selection Based on Genetic Algorithm  In Proceedings of 

CIIA‟11 Saida Algeria 2011.  

[9] F. Hadjila, Chikh A, M. Merzoug, Z Kameche QoS-
aware Service Selection Based on swarm particle 

optimization In Proceedings of IEEE ICITES‟12  Sousse 

Tunisia 2012  

[10] Reynolds CW (1987) ‟Flocks, Herds, and Schools: A 

Distributed Behavioral Model‟, Computer Graphics, 
vol.21, no.4, pp.25–34.  

[11] J Kennedy, RC Eberhart, Particle Swarm Optimization, 

Proceedings of the IEEE International Conference on 

Neural Networks, Vol 4, pp 1942–1948, 1995. 

[12] E.Alrifai, T. Risse Selecting Skyline Services for QoS-

based Web Service Composition In Proceedings of the 

WWW 2010, April 26–30, 2010, Raleigh, North 

Carolina, USA. 

[13] Q Yu, A Bouguettaya. Foundations for Efficient Web 
Service Selection Springer Science+Business Media, 

2010. 

[14]  E.Alrifai , T. Risse Combining Global Optimization 

with Local election for Efficient QoS-aware Service 

Composition In WWW09, April 20–24, 2009, Madrid, 
Spain. 

[15] D. Ardagna and B. Pernici. Global and local qos 

constraints guarantee in web service selection. In 

Proceedings of the IEEE International Conference on 

Web Services, pages 805–806, Washington, DC, USA, 
2005. IEEE Computer Society. 

[16] D. Ardagna and B. Pernici. Adaptive service composition 
in flexible processes. IEEE Transactions on Software 

Engineering, 33(6):369–384, 2007. Dustdar, S. and 

Schreiner, W. „A survey on web services composition‟, 

Int. J. Web and Grid Services, Vol. 1, No. 1, pp.1–30. 

(2005). 

[17] J. Cardoso, J. Miller, A. Sheth, and J. Arnold. Quality of 

service for workflows and web service processes. Journal 

of Web Semantics, 1:281–308, 2004. 

[18] M. M. Akbar, E. G. Manning, G. C. Shoja, and S. Khan. 

Heuristic solutions for the multiple-choice multi-
dimension knapsack problem. In  Proceedings of the 

International Conference on Computational Science-Part 

II, pages 659–668, London, UK, 2001. Springer-Verlag. 

[19] T. Yu, Y. Zhang, and K.-J. Lin. Efficient algorithms for 

web services selection with end-to-end qos constraints. 
ACM Transactions on the Web, 1(1), 2007.  

[20] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and 

Q. Z. Sheng. Quality driven web services composition. In 

Proceedings of the International World Wide Web 

Conference, pages 411–421, 2003. 

[21]  L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. 

Kalagnanam, and H. Chang. Qos-aware middleware for 

web services composition. IEEE Transactions on 

Software Engineering, 30(5):311–327, 2004.  [74]. 2nd 

place in 2007 WSC. Online available at http://www.it -
weise.de/documents/files/BWG2007WSC.  

[22] G. L. Nemhauser and L. A. Wolsey. Integer and 

Combinatorial Optimization. Wiley-Interscience, New 

York, NY, USA, 1988.  

[23] I. Maros. Computational Techniques of the Simplex 

Method. Springer, 2003.  

[24] K. . P. Yoon and C.-L. Hwang. Multiple Attribute 

Decision Making: An Introduction (Quantitative 
Applications in the Social Sciences). Sage Publications, 

1995 

[25] J. Adeli, H. and Cheng, N.T. Augmented lagrangian 

genetic algorithm for structural optimization, Journal of 

Aerospace Engineering, 7, 104-118, 1994. 

[26] O Yeniay penalty function methods for constrained 

optimization with genetic algorithms journal of 

Mathematical and Computational Applications, Vol. 10, 

No. 1, pp. 45-56, 2005. 

 

 


