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ABSTRACT 

This paper presents an algorithm that can solve the problem in 

single processing, multiprocessing and distributed systems 

efficiently with minimal changes. For distributed systems we 

introduce message passing service while keeping rest of the 

mechanism same works faster than many other algorithms for 

distributed systems. Due to this multiple processes can 

execute in different critical sections concurrently. 

Performance of the algorithm is analyzed in terms of memory 

and time.  
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1. INTRODUCTION 
A system having n numbers of processes say P0, P1, P2…… 

Pn be assumed. All processes are contending to access some 

shared data. A code segment called Critical Section is owned 

by each process, in which it can access and manipulate shared 

data e.g. changing common variables, update tables, writing to 

files etc. The significant attribute is that only one process be 

allowed to use its critical section at any point of time. The 

problem of critical section is to design a protocol that to 

cooperate these processes can use. The code segment that 

employs this request is called Entry section possibly followed 

by an exit section having code to exit from critical section 

may involve updating of some common data structure of the 

algorithm that can be used to allow other process to enter into 

their CS. The remaining code which is not associated to 

critical section of the process is organized in remainder 

Section. 

The general structure of a process is given in figure below 

 
Figure 1: General structure of a typical process 

Critical section problem solution must conform to these three 

basic requirements. 

1.1 Mutual Exclusion:     
Only one process at any instant of time can be allowed to 

execute in its critical section i.e. when one process say Pi is 

executing in its CS than other processes are  to execute in 

their critical sections.  

1.2 Progress:  

When no process is executing in its critical section than only 

those processes which are not executing in their remainder 

section are allowed to compete in the decision to enter into 

their critical sections and this selection should not be delayed 

indefinitely. 

1.3 Bounded waiting: 

 When a process made request to enter into its CS than there 

should be a limit on number of process that are allowed to 

enter into their critical section before this process’s request is 

approved. 

We assume that each process is executing at non zero speed. 

Yet no assumption regarding relative speed of the processes is 

possible. 

2. RELATED WORK 

2.1 Peterson’s Solution:  
Peterson Solution is one of the classic software based solution 

to critical problem for two processes. This may not work 

correctly on modern machine architecture because of the way 

they perform machine language instructions such as Test and 

Set. However, gist behind illustrating it here is that Peterson’s 

solution is very handy to understand the complexities 

involved in designing software based solution to critical 

section problem. 

Now for the solution consider the two processes share two 

variables: 

int turn;  

Boolean flag[1] 

The integer variable turn specify whose turn it is to enter the 

critical section. The flag array is used to indicate if a process 

is ready to enter the critical section. flag[i]=true entails that 

process Pi is ready to enter into its critical section. 

Considering these the algorithm is as below  

                      do { 

flag[i] = TRUE; 

turn = j; 

while (flag[j] && turn == j); 

                       Critical Section  

flag[i] = FALSE; 

Remainder Section  

         } while (TRUE); 
 

2.1.1 Proof of Correctness: 

Now we prove that algorithm satisfies all the three 

requirements of CS problem solution namely mutual 

exclusion, progress and bounded waiting.  

To prove mutual exclusion, note that a process Pi can enter 

into its CS if flag[i]=true and turn=0 , and process Pj can enter 

into its CS if flag[j]=true and turn=1, and both Pi and Pj can 

enter into their CS at same time when Pi=Pj=true and turn to 

be 0 and 1 at the same time, as one variable could not have 
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two values at the same time so there is no possibility that both 

Pi and Pj can enter into their CS simultaneously, which refers 

Mutual exclusion is preserved. 

To prove progress and bounded waiting, note that Pi can be 

prevented only if it stuck in the while loop with the condition 

flag[j]=true and turn=j; this loop is the only one possible. If Pj 

is not ready to enter into its CS then flag[j]=false, then Pi 

enters its critical section. If Pj has its flag true and turn=i or 

turn=j, Pi will enter if turn=i and Pj will enter if turn=j, into 

their CSs. However once Pj exits critical section it will reset 

flag[j]=false, allowing Pi to enter into its CS. If Pj sets flag[j] 

to true than it must set turn=i, since Pi does not change the 

value of turn while executing in while loop, so Pi will enter 

into its critical section which shows progress after at most one 

entry of Pj which proves Bounded waiting.[6]   

2.2 Synchronization Hardware: 
Hardware instructions can be the choice to effectively solve 

the critical section problem which makes the task of 

programming easier as well as improves system efficiency. 

Uni-processor environment is the one in which disabling 

interrupts while a shared variable is being modified solve the 

CS problem. Disabling interrupts on multiprocessor systems 

can be time-consuming due to the need of message passing to 

all the processors which ultimately delays CS entry and 

decreases system efficiency. Therefore many machines come 

with special hardware instructions that allow us either to test 

and modify the content of a word, or to swap the contents of 

two words, atomically. These special instructions can be used 

in a relatively simple manner to solve the CS problem.  This 

instruction is executed atomically. 

TestAndSet instruction is executed atomically and its 

definition is as below. 

boolean TestAndSet (boolean &target) 

{ 

boolean rv = target; 

target = true; 

return rv; 

} 

Shared data in this algorithm is 

Boolean lock (initialize to false) 

And structure for process should be like this as below. 

do 

 { 

while (TestAndSet(lock)) ; 

critical section 

lock = false; 

remainder section  

} 

This solution for critical section meets all the three 

requirements of critical section. 

2.3 Semaphores:   
Semaphores are used for the solution of problems of more 

complexity. A Semaphore S is an integer variable and two 

atomic operations: 

• Wait  

• Signal 

can be used to access semaphore. 

The conventional definition of wait and signal operations are:- 

 

wait (S) {  

while S≤ 0 do no-op; 

S--; 

} 

signal (S) {  

S++; 

} 

 

The value of S can be modified in the operations wait and 

signal must be executed inextricably. 

Semaphores can be used to solve the CS problem for n 

processes. 

Shared data 

 Semaphore mutex; (integer variable initially mutex=1) 

2.3.1 Process Structure:  
For this algorithm each process has the following structure 

do { 

wait(mutex); 

critical section  

signal (mutex); 

remainder section 

} while (1); 

2.3.2 Implementation: 

The wait operation of semaphore is described as 

void wait (semaphore S) { 

S.value--; 

if (S.value < 0) { 

add this process to Semaphore List; 

block(); 

}//end of If Block 

}//End of Wait Function 

The signal operation of semaphore can now be 

described as: 

void signal (semaphore S) { 

S.value++; 

if (S.value <= 0) { 

remove a process P from S.L; 

wakeup (P); 

} // End of IF Block 

} // End of Signal Function 

The significant characteristic of the semaphore is that they 

execute atomically. The CS problem is to make sure that no 

two or more processes can execute wait and signal operations 

at the same time at the same semaphore. Existing solutions for 

single processing environment is to disable interrupts. By 

disabling interrupts it is sure that instructions from different 

processes are not interleaved and only the current process will 

be running until scheduler gets control back. 

This solution can be implemented in multiprocessing 

environment as to disable interrupt on every processor 

otherwise instructions from different processes running on 

different processors may get interleaved. But this solution is 

not feasible as it is difficult to disable interrupts on different 

processors and doing this can diminish the performance of the 

system as whole.  Therefore multiprocessing systems should 

implement some other mechanism to perform these operations 

atomically such as spin lock [5]. 

Problems with semaphores:  

Semaphore implementation using waiting queue experiences 

sometime a problem of deadlock and starvation. For instance 

how it suffers from deadlock consider two semaphores X and 

Y and two processes Pi and Pj, now   

They have instructions like. 

Pi                                                                                 Pj 

wait(X)      wait(Y) 

wait(Y)      wait(X) 

.            . 

.             . 

.                            . 

Signal(X)    Signal(Y) 

Signal(Y)    Signal(X) 
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Suppose that Pi executes wait(X) and then Pj executes 

wait(Y), when Pi wait(Y) it must wait Pj to execute signal(Y) 

and conversely when Pj executes wait(X) it must wait for Pi 

to execute signal(X). When such situation is reached that both 

processes are waiting for each other to complete which they 

can complete only when other completes first is the deadlock 

state. 

Starvation is indefinite blocking of set of processes. When 

semaphores adds and removes processes in LIFO order than 

there of possibility of starvation of some of process and these 

process may not manage to get permission to get into their 

critical sections.  

2.4 Bakery Algorithm: 
Leslie Lamport a computer scientist proposed a computer 

algorithm named Lamport's bakery algorithm, which provides 

very simple solution to critical section problem. In computers 

multiple threads may try to access simultaneously the same 

resources. If two or more threads try to write into the same 

memory location at the same time than there is fair chance of 

integrity violation to occur, or before one thread  finished 

writing into some memory location another thread reads that 

memory location. Lamport's bakery algorithm is a mutual 

exclusion algorithms proposed to eliminate the concurrent 

access of multiple threads to enter into their critical section at 

same instant of time in order to prevent data corruption. 

Bakery algorithm is use to solve critical section problem for n 

processes. Before entering into critical section each process 

receives a number in increasing order. Process with the 

smallest number enters the critical section. If two processes Pi 

and Pj receives the same number than process names will be 

used to serve the request, i.e. if i<j than Pi will be served first 

otherwise Pj. 

The algorithm uses the following shared data: 

boolean choosing[n]; 

int number[n]; 

number[n] is the integer array of n length that stores the 

identification number given by the algorithm when process 

wants to enter into critical section initialized to 0. Choosing[n] 

is the Boolean array of length n initialized to false. 

Considering this shared data the algorithm is as below. 

do { 

1. choosing[i] = true; 

2. number[i] = max(number[0], number[1], …, 

number [n – 1])+1; 

3. choosing[i] = false; 

for (j = 0; j < n; j++) { 

4. while (choosing[j])  ; 

5. while ((number[j] != 0) && (number[j,j] < 

number[i,i]))  ; 

} 

Critical Section 

6. number[i] = 0; 

Remainder section 

} while (1); 

The algorithm satisfies all the three properties of critical 

section problem. Proof is as below. 

2.4.1 Safety: 

Safety or mutual exclusion is that only one process will enter 

into its critical section at one point of time. Process Pi in its 

start will turn choosing[i]=true, means it wants to enter into its 

critical section. It can enter into its critical section when 4 and 

5 conditions get false. Which states that it has to wait until all 

other processes having choosing[j]=true and number[j] not 

equal to zero and this number[j] either less than number[i] or 

if this identification number equal than check process names. 

There is a chance that two processes Pi and Pj receives the 

same ticket number than it will check the process id which 

definitely could not be the same for two processes, which 

means no two processes can get into their critical section at 

one point of time. So safety is preserved. 

2.4.2 Progress: 

After execution in critical section process Pi sets its number 

[0] and choosing[i]=false to allow other processes to critical 

section. When no process is in its critical section and some 

processes wants to enter into its critical section than clearly a 

process having the smallest ticket number will be allowed to 

enter into its critical section which implies progress is 

preserved. 

2.4.3 Bounded waiting:  

Processes which want to enter into their critical sections .i.e. 

desire to access some shared data receives ticket number in 

increasing order. A bound exists which is it will be allowed to 

enter its critical section after at maximum the number of 

processes which made request before this process. The 

algorithm follows first come first serve order which preserves 

the bounded waiting requirement of the critical section 

problem. 

3.  Proposed Algorithm 
 The core algorithm receives requests from processes and 

gives them mutual exclusive access to some shared data. To 

achieve this job processes need to be organized in some 

identical fashion as they have to perform some tasks in 

common, for instance request CS in the start and while exiting 

notify the main algorithm by some mean that it made its way 

out of its CS. For this process organization is as below. 

3.1 Process organization 
 There can be number of processes in the system. The general 

structure of the process is as 

do  {  

start section 

critical section 

exit section 

remainder section 

} while(true) 

In the start section process will have a code that makes 

request to enter into critical section and to do code which is 

required to enter into its critical section. In our case the start 

section of the code is just to make a request for its CS. No 

shared variables are needed to set in the start section. 

In the critical section when the algorithm allows this process 

to execute in its CS. In this section the process may access 

and manipulate the shared data. 

When a process makes its exit from critical section it has to 

reset a shared variable flag=true; which means other process 

may enter into its own CS now on. Queuing module is 

continuously watching this variable so that it can allow other 

process to make progress. 

Process executing in remainder section is either done up with 

its critical section or it don’t want to enter into its CS. A 

process executing in this section is not allowed to make 

request for its CS. 

3.2 Algorithm Description 

 The algorithm is designed to solve the critical section 

problem for n processes. When a process enters the system it 

receives an identity number from identity generation module. 

When a process make request to enter into its critical section 

it will wait for 5 milliseconds to get response from the main 

module if it didn’t get any it will change its state to waiting 

and will wait in the waiting queue. Through this we can allow 
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the scheduler to take another process from the ready queue to 

use CPU time. In contrast if it gets response within this time 

(called GRACE period) it will make its entry to critical 

section. This grace period can be changed considering on the 

process flow and average context switching time overhead.   

The core algorithm is continuously receiving processes who 

want to enter into their critical sections, storing them in the 

Queue. In parallel Queuing module removing a process from 

the top of the queue and allowing it access to enter into its 

critical section to use shared data. 

When a process completes its execution in the critical section 

it reset a shared Boolean variable to False and when the value 

of this variable get false queuing module allows another 

process to enter into its critical section. 

The general form of algorithm is like 

Shared data:  

Boolean flag  (=  false initially) 

int ID[ ] (array of length n) 

Algorithm Program 

/********************* Thread1*****************/ 

Add-To_Waiting-Queue() 

{ 

While(Request) 

{ 

Queue.Add-this-ID; 

}//end of loop 

}// end of function 

/********************* Thread2*****************/ 

Allow-To-CS() 

{ 

While(Queue not Empty){ 

Flag=false; 

Queue.allow(process on top); 

while(flag==false); 

}//end of loop 

}//end of function 

/***************Process exit section*****************/ 

Critical section; 

Flag=true; //exit section 

Remainder section; 

3.3  Correctness Proof 
Correctness proof for n processes solution is organized as 

Mutual exclusion, Progress and bounded waiting. 

3.3.1 Mutual exclusion 

 Clearly algorithm takes a process from the queue and allows 

it to enter into its critical section. When a process is allowed 

to enter into its CS algorithm resets the shared variable 

falg=false. Which means processes should have to wait 

outside their critical section as a process is already executing 

in its CS. Through this only one process at a time is allowed 

to enter into its CS at any point of time. If time expires or 

process exits its critical section it updates a shared variable 

flag to True. Only than a new process is allowed to enter 

when the value of the flag gets false. 

3.3.2 Progress  

Algorithm continuously investigates the shared variable flag 

in Thread2 whenever it resets by any means the new process 

is allowed which makes progress. While flag=false this thread 

is in busy waiting in the same statement whenever the flag 

variable is rest to true in the process’s exit section this 

condition gets false and the algorithm moves to the next 

iteration in the loop and if queue not empty it allows another 

process to its CS which illustrate progress. 

3.3.3 Bounded waiting 

 Algorithm is fair it works on first come first serve basis so 

the bound is the process Pi is allowed to enter into its CS on 

its turn i.e. after the total number of processes which made 

request before it. So bounded waiting is preserved. When a 

new process wants to enter into its critical section it sends 

request and when a request is received it adds this request to 

the end of the queue. When all the other processes that made 

request before this process are done up with their critical 

section it gets permission to enter into its CS. 

3.4  Block Diagram:  
The block diagram of the system is presented in this section. 

The block diagram demonstrates the major components of the 

system and the flow of the system. It also shows how 

processes are coming and receiving identities as well as how 

they get permission when they make request for the critical 

section. 

The block diagram of the complete process is as below. 

 

Figure 2:  Block Diagram 
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4.  RESULTS AND DISCUSSION 

4.1 NOPR Vs Time  
Average results for the comparison of Bakery and the 

proposed algorithm are simulated in figure 5.6. This shows 

the overall comparison of time taken for both the algorithms 

at different loads starting from number of processes to be 10 

to 100000. Graph illustrates the comparison at many different 

points which evidence the improved efficiency of the 

proposed algorithm. 

0
10000
20000
30000
40000
50000
60000
70000

Bakery Algorithm Proposed Algorithm

 
Figure 3: Comparison graph 

4.2 Space Complexity 
Space cannot be ignored while evaluating an algorithm; 

therefore it is considered important for the algorithm to utilize 

space well and does not burden the system by the algorithm’s 

data structure. 

The algorithm is using two shared variables, i.e. an array of 

integer type called ID[]and a Boolean variable flag. ID[] is 

used to allocate identification to all the processes in the 

system making request for critical sections, as all the 

processes needs identification to be unique so the size of this 

array is equal to the number of processes requesting CSs.  

The variable flag is a single variable which is used for 

checking that if some process is in its critical section or not. If 

some process is not in critical section it turns to true and if 

some is in it is false, which forces mutual exclusive access. 

The proposed algorithm is using less space in this regard as 

many others for instance bakery algorithm is using a Boolean 

array for this purpose which increases the need of space for 

the algorithm’s data structure specially when the number of 

process requests for CSs are extensively large in number. 

Proposed algorithm uses almost half space than bakery 

algorithm as whole. 
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Figure 4 Memory Comparison

 

Space complexity for the algorithms is given below for 

number of processes to be N. 

Bakery algorithm= 2N; 

Proposed Algorithm=N+1; 

Where 

 N is positive integer representing number of processes 

requesting CS at any point of time. 

Table 5.1 show the number of memory units required for the 

number of processes making request for CSs mentioned in the 

first column. Second and third column shows the memory 

required for the bakery algorithm and proposed algorithm 

respectively. 

 

 

 

Table 1: Memory Utilization 
No of Process(es) Bakery Algorithm (Memory Units) Proposed Algorithm (Memory Units) 

1 2 2 

10 20 11 

20 40 21 

50 100 51 

100 200 101 

500 1000 501 

1000 2000 1001 

5000 10000 5001 

10000 20000 10001 

50000 100000 50001 

100000 200000 100001 

 

This clears the fact that proposed algorithm is taking almost 

the same memory units as the number of processes making 

requests for the critical section. 

5.  Distributed Systems Algorithm 
In distributed systems, the proposed algorithm serves as 

centralized algorithm. The algorithm works in central and all 

the sites sends request to this central site through message 

passing. Assumptions are that for any two processes pi and pj, 

the messages sent from pi to pj are received in the same order 

in which they are sent. Furthermore, we assume that every 

message is eventually received. We assume that every process 

can send message directly to every other process. For 

generality we consider every site has one process. 

5.1 Working 
All the processes which want to enter into their CS sends 

request to the central site which they know by sending a 

message. Message contains the site ID. The central site 

receives that request and adds this to the end of the end of the 

queue. Whereas in parallel it removes a process ID from the 

queue and allows the process on top the entry authority to its 

critical section. 

When site completes its execution in critical section it sends 

finish message to the central site which means it is no more in 

critical section. Than the algorithm removes another process 

ID from the queue and sends it ok message mean that it can 

enter into its CS. 

The core algorithm works in similar for distributed systems 

while message passing system is introduced as in distributed 

systems sites can be at remote locations. 

6. CONCLUSION 
In this paper the performance of mutual exclusion algorithms 

is investigated. An algorithm is proposed that performs 

efficiently while satisfying all the necessary requirements of 

mutual exclusion algorithms. 
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The proposed algorithm is evaluated in consideration of time 

and memory. It is clear from the results that isolating the 

receiving request module from the authorization module 

which allows the processes to execute in their critical sections, 

and parallel running of these two modules increases the 

efficiency of the algorithm. 

The busy waiting time variable that makes the algorithm 

efficient in terms of time. Keeping in focus on memory it is 

clear from the results that the algorithm limits the shared data 

structure used by the algorithm and taking almost the memory 

than its antecedent. The queuing implementation allows the 

algorithm to be used in single processing, multi-processing 

and distributed environment with minimal change. 
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