

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.6, July 2012 – www.ijais.org

29

Efficient Mutual Exclusion Algorithm

Aasim khurshid

GPGC Mandian Abbotabad,
Higher Education Department,

KPK,Pakistan

Aamir Khan
COMSATS Institute of

Information Technology,
WahCantt, Pakistan

Farman Ullah
COMSATS Institute of

Information Technology,
WahCantt Pakistan

ABSTRACT

This paper presents an algorithm that can solve the problem in

single processing, multiprocessing and distributed systems

efficiently with minimal changes. For distributed systems we

introduce message passing service while keeping rest of the

mechanism same works faster than many other algorithms for

distributed systems. Due to this multiple processes can

execute in different critical sections concurrently.

Performance of the algorithm is analyzed in terms of memory

and time.

General Terms
Operating Systems, Algorithms, Distributed systems.

Keywords
Mutual exclusion, Synchronization, Distributed systems,

Operating systems, Algorithms, concurrency.

1. INTRODUCTION
A system having n numbers of processes say P0, P1, P2……

Pn be assumed. All processes are contending to access some

shared data. A code segment called Critical Section is owned

by each process, in which it can access and manipulate shared

data e.g. changing common variables, update tables, writing to

files etc. The significant attribute is that only one process be

allowed to use its critical section at any point of time. The

problem of critical section is to design a protocol that to

cooperate these processes can use. The code segment that

employs this request is called Entry section possibly followed

by an exit section having code to exit from critical section

may involve updating of some common data structure of the

algorithm that can be used to allow other process to enter into

their CS. The remaining code which is not associated to

critical section of the process is organized in remainder

Section.

The general structure of a process is given in figure below

Figure 1: General structure of a typical process

Critical section problem solution must conform to these three

basic requirements.

1.1 Mutual Exclusion:
Only one process at any instant of time can be allowed to

execute in its critical section i.e. when one process say Pi is

executing in its CS than other processes are to execute in

their critical sections.

1.2 Progress:

When no process is executing in its critical section than only

those processes which are not executing in their remainder

section are allowed to compete in the decision to enter into

their critical sections and this selection should not be delayed

indefinitely.

1.3 Bounded waiting:

 When a process made request to enter into its CS than there

should be a limit on number of process that are allowed to

enter into their critical section before this process’s request is

approved.

We assume that each process is executing at non zero speed.

Yet no assumption regarding relative speed of the processes is

possible.

2. RELATED WORK

2.1 Peterson’s Solution:
Peterson Solution is one of the classic software based solution

to critical problem for two processes. This may not work

correctly on modern machine architecture because of the way

they perform machine language instructions such as Test and

Set. However, gist behind illustrating it here is that Peterson’s

solution is very handy to understand the complexities

involved in designing software based solution to critical

section problem.

Now for the solution consider the two processes share two

variables:

int turn;

Boolean flag[1]

The integer variable turn specify whose turn it is to enter the

critical section. The flag array is used to indicate if a process

is ready to enter the critical section. flag[i]=true entails that

process Pi is ready to enter into its critical section.

Considering these the algorithm is as below

 do {

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

 Critical Section

flag[i] = FALSE;

Remainder Section

 } while (TRUE);

2.1.1 Proof of Correctness:

Now we prove that algorithm satisfies all the three

requirements of CS problem solution namely mutual

exclusion, progress and bounded waiting.

To prove mutual exclusion, note that a process Pi can enter

into its CS if flag[i]=true and turn=0 , and process Pj can enter

into its CS if flag[j]=true and turn=1, and both Pi and Pj can

enter into their CS at same time when Pi=Pj=true and turn to

be 0 and 1 at the same time, as one variable could not have

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.6, July 2012 – www.ijais.org

30

two values at the same time so there is no possibility that both

Pi and Pj can enter into their CS simultaneously, which refers

Mutual exclusion is preserved.

To prove progress and bounded waiting, note that Pi can be

prevented only if it stuck in the while loop with the condition

flag[j]=true and turn=j; this loop is the only one possible. If Pj

is not ready to enter into its CS then flag[j]=false, then Pi

enters its critical section. If Pj has its flag true and turn=i or

turn=j, Pi will enter if turn=i and Pj will enter if turn=j, into

their CSs. However once Pj exits critical section it will reset

flag[j]=false, allowing Pi to enter into its CS. If Pj sets flag[j]

to true than it must set turn=i, since Pi does not change the

value of turn while executing in while loop, so Pi will enter

into its critical section which shows progress after at most one

entry of Pj which proves Bounded waiting.[6]

2.2 Synchronization Hardware:
Hardware instructions can be the choice to effectively solve

the critical section problem which makes the task of

programming easier as well as improves system efficiency.

Uni-processor environment is the one in which disabling

interrupts while a shared variable is being modified solve the

CS problem. Disabling interrupts on multiprocessor systems

can be time-consuming due to the need of message passing to

all the processors which ultimately delays CS entry and

decreases system efficiency. Therefore many machines come

with special hardware instructions that allow us either to test

and modify the content of a word, or to swap the contents of

two words, atomically. These special instructions can be used

in a relatively simple manner to solve the CS problem. This

instruction is executed atomically.

TestAndSet instruction is executed atomically and its

definition is as below.

boolean TestAndSet (boolean &target)

{

boolean rv = target;

target = true;

return rv;

}

Shared data in this algorithm is

Boolean lock (initialize to false)

And structure for process should be like this as below.

do

 {

while (TestAndSet(lock)) ;

critical section

lock = false;

remainder section

}

This solution for critical section meets all the three

requirements of critical section.

2.3 Semaphores:
Semaphores are used for the solution of problems of more

complexity. A Semaphore S is an integer variable and two

atomic operations:

• Wait

• Signal

can be used to access semaphore.

The conventional definition of wait and signal operations are:-

wait (S) {

while S≤ 0 do no-op;

S--;

}

signal (S) {

S++;

}

The value of S can be modified in the operations wait and

signal must be executed inextricably.

Semaphores can be used to solve the CS problem for n

processes.

Shared data

 Semaphore mutex; (integer variable initially mutex=1)

2.3.1 Process Structure:
For this algorithm each process has the following structure

do {

wait(mutex);

critical section

signal (mutex);

remainder section

} while (1);

2.3.2 Implementation:

The wait operation of semaphore is described as

void wait (semaphore S) {

S.value--;

if (S.value < 0) {

add this process to Semaphore List;

block();

}//end of If Block

}//End of Wait Function

The signal operation of semaphore can now be

described as:

void signal (semaphore S) {

S.value++;

if (S.value <= 0) {

remove a process P from S.L;

wakeup (P);

} // End of IF Block

} // End of Signal Function

The significant characteristic of the semaphore is that they

execute atomically. The CS problem is to make sure that no

two or more processes can execute wait and signal operations

at the same time at the same semaphore. Existing solutions for

single processing environment is to disable interrupts. By

disabling interrupts it is sure that instructions from different

processes are not interleaved and only the current process will

be running until scheduler gets control back.

This solution can be implemented in multiprocessing

environment as to disable interrupt on every processor

otherwise instructions from different processes running on

different processors may get interleaved. But this solution is

not feasible as it is difficult to disable interrupts on different

processors and doing this can diminish the performance of the

system as whole. Therefore multiprocessing systems should

implement some other mechanism to perform these operations

atomically such as spin lock [5].

Problems with semaphores:

Semaphore implementation using waiting queue experiences

sometime a problem of deadlock and starvation. For instance

how it suffers from deadlock consider two semaphores X and

Y and two processes Pi and Pj, now

They have instructions like.

Pi Pj

wait(X) wait(Y)

wait(Y) wait(X)

. .

. .

. .

Signal(X) Signal(Y)

Signal(Y) Signal(X)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.6, July 2012 – www.ijais.org

31

Suppose that Pi executes wait(X) and then Pj executes

wait(Y), when Pi wait(Y) it must wait Pj to execute signal(Y)

and conversely when Pj executes wait(X) it must wait for Pi

to execute signal(X). When such situation is reached that both

processes are waiting for each other to complete which they

can complete only when other completes first is the deadlock

state.

Starvation is indefinite blocking of set of processes. When

semaphores adds and removes processes in LIFO order than

there of possibility of starvation of some of process and these

process may not manage to get permission to get into their

critical sections.

2.4 Bakery Algorithm:
Leslie Lamport a computer scientist proposed a computer

algorithm named Lamport's bakery algorithm, which provides

very simple solution to critical section problem. In computers

multiple threads may try to access simultaneously the same

resources. If two or more threads try to write into the same

memory location at the same time than there is fair chance of

integrity violation to occur, or before one thread finished

writing into some memory location another thread reads that

memory location. Lamport's bakery algorithm is a mutual

exclusion algorithms proposed to eliminate the concurrent

access of multiple threads to enter into their critical section at

same instant of time in order to prevent data corruption.

Bakery algorithm is use to solve critical section problem for n

processes. Before entering into critical section each process

receives a number in increasing order. Process with the

smallest number enters the critical section. If two processes Pi

and Pj receives the same number than process names will be

used to serve the request, i.e. if i<j than Pi will be served first

otherwise Pj.

The algorithm uses the following shared data:

boolean choosing[n];

int number[n];

number[n] is the integer array of n length that stores the

identification number given by the algorithm when process

wants to enter into critical section initialized to 0. Choosing[n]

is the Boolean array of length n initialized to false.

Considering this shared data the algorithm is as below.

do {

1. choosing[i] = true;

2. number[i] = max(number[0], number[1], …,

number [n – 1])+1;

3. choosing[i] = false;

for (j = 0; j < n; j++) {

4. while (choosing[j]) ;

5. while ((number[j] != 0) && (number[j,j] <

number[i,i])) ;

}

Critical Section

6. number[i] = 0;

Remainder section

} while (1);

The algorithm satisfies all the three properties of critical

section problem. Proof is as below.

2.4.1 Safety:

Safety or mutual exclusion is that only one process will enter

into its critical section at one point of time. Process Pi in its

start will turn choosing[i]=true, means it wants to enter into its

critical section. It can enter into its critical section when 4 and

5 conditions get false. Which states that it has to wait until all

other processes having choosing[j]=true and number[j] not

equal to zero and this number[j] either less than number[i] or

if this identification number equal than check process names.

There is a chance that two processes Pi and Pj receives the

same ticket number than it will check the process id which

definitely could not be the same for two processes, which

means no two processes can get into their critical section at

one point of time. So safety is preserved.

2.4.2 Progress:

After execution in critical section process Pi sets its number

[0] and choosing[i]=false to allow other processes to critical

section. When no process is in its critical section and some

processes wants to enter into its critical section than clearly a

process having the smallest ticket number will be allowed to

enter into its critical section which implies progress is

preserved.

2.4.3 Bounded waiting:

Processes which want to enter into their critical sections .i.e.

desire to access some shared data receives ticket number in

increasing order. A bound exists which is it will be allowed to

enter its critical section after at maximum the number of

processes which made request before this process. The

algorithm follows first come first serve order which preserves

the bounded waiting requirement of the critical section

problem.

3. Proposed Algorithm
 The core algorithm receives requests from processes and

gives them mutual exclusive access to some shared data. To

achieve this job processes need to be organized in some

identical fashion as they have to perform some tasks in

common, for instance request CS in the start and while exiting

notify the main algorithm by some mean that it made its way

out of its CS. For this process organization is as below.

3.1 Process organization
 There can be number of processes in the system. The general

structure of the process is as

do {

start section

critical section

exit section

remainder section

} while(true)

In the start section process will have a code that makes

request to enter into critical section and to do code which is

required to enter into its critical section. In our case the start

section of the code is just to make a request for its CS. No

shared variables are needed to set in the start section.

In the critical section when the algorithm allows this process

to execute in its CS. In this section the process may access

and manipulate the shared data.

When a process makes its exit from critical section it has to

reset a shared variable flag=true; which means other process

may enter into its own CS now on. Queuing module is

continuously watching this variable so that it can allow other

process to make progress.

Process executing in remainder section is either done up with

its critical section or it don’t want to enter into its CS. A

process executing in this section is not allowed to make

request for its CS.

3.2 Algorithm Description

 The algorithm is designed to solve the critical section

problem for n processes. When a process enters the system it

receives an identity number from identity generation module.

When a process make request to enter into its critical section

it will wait for 5 milliseconds to get response from the main

module if it didn’t get any it will change its state to waiting

and will wait in the waiting queue. Through this we can allow

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.6, July 2012 – www.ijais.org

32

the scheduler to take another process from the ready queue to

use CPU time. In contrast if it gets response within this time

(called GRACE period) it will make its entry to critical

section. This grace period can be changed considering on the

process flow and average context switching time overhead.

The core algorithm is continuously receiving processes who

want to enter into their critical sections, storing them in the

Queue. In parallel Queuing module removing a process from

the top of the queue and allowing it access to enter into its

critical section to use shared data.

When a process completes its execution in the critical section

it reset a shared Boolean variable to False and when the value

of this variable get false queuing module allows another

process to enter into its critical section.

The general form of algorithm is like

Shared data:

Boolean flag (= false initially)

int ID[] (array of length n)

Algorithm Program

/********************* Thread1*****************/

Add-To_Waiting-Queue()

{

While(Request)

{

Queue.Add-this-ID;

}//end of loop

}// end of function

/********************* Thread2*****************/

Allow-To-CS()

{

While(Queue not Empty){

Flag=false;

Queue.allow(process on top);

while(flag==false);

}//end of loop

}//end of function

/***************Process exit section*****************/

Critical section;

Flag=true; //exit section

Remainder section;

3.3 Correctness Proof
Correctness proof for n processes solution is organized as

Mutual exclusion, Progress and bounded waiting.

3.3.1 Mutual exclusion

 Clearly algorithm takes a process from the queue and allows

it to enter into its critical section. When a process is allowed

to enter into its CS algorithm resets the shared variable

falg=false. Which means processes should have to wait

outside their critical section as a process is already executing

in its CS. Through this only one process at a time is allowed

to enter into its CS at any point of time. If time expires or

process exits its critical section it updates a shared variable

flag to True. Only than a new process is allowed to enter

when the value of the flag gets false.

3.3.2 Progress

Algorithm continuously investigates the shared variable flag

in Thread2 whenever it resets by any means the new process

is allowed which makes progress. While flag=false this thread

is in busy waiting in the same statement whenever the flag

variable is rest to true in the process’s exit section this

condition gets false and the algorithm moves to the next

iteration in the loop and if queue not empty it allows another

process to its CS which illustrate progress.

3.3.3 Bounded waiting

 Algorithm is fair it works on first come first serve basis so

the bound is the process Pi is allowed to enter into its CS on

its turn i.e. after the total number of processes which made

request before it. So bounded waiting is preserved. When a

new process wants to enter into its critical section it sends

request and when a request is received it adds this request to

the end of the queue. When all the other processes that made

request before this process are done up with their critical

section it gets permission to enter into its CS.

3.4 Block Diagram:
The block diagram of the system is presented in this section.

The block diagram demonstrates the major components of the

system and the flow of the system. It also shows how

processes are coming and receiving identities as well as how

they get permission when they make request for the critical

section.

The block diagram of the complete process is as below.

Figure 2: Block Diagram

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.6, July 2012 – www.ijais.org

33

4. RESULTS AND DISCUSSION

4.1 NOPR Vs Time
Average results for the comparison of Bakery and the

proposed algorithm are simulated in figure 5.6. This shows

the overall comparison of time taken for both the algorithms

at different loads starting from number of processes to be 10

to 100000. Graph illustrates the comparison at many different

points which evidence the improved efficiency of the

proposed algorithm.

0
10000
20000
30000
40000
50000
60000
70000

Bakery Algorithm Proposed Algorithm

Figure 3: Comparison graph

4.2 Space Complexity
Space cannot be ignored while evaluating an algorithm;

therefore it is considered important for the algorithm to utilize

space well and does not burden the system by the algorithm’s

data structure.

The algorithm is using two shared variables, i.e. an array of

integer type called ID[]and a Boolean variable flag. ID[] is

used to allocate identification to all the processes in the

system making request for critical sections, as all the

processes needs identification to be unique so the size of this

array is equal to the number of processes requesting CSs.

The variable flag is a single variable which is used for

checking that if some process is in its critical section or not. If

some process is not in critical section it turns to true and if

some is in it is false, which forces mutual exclusive access.

The proposed algorithm is using less space in this regard as

many others for instance bakery algorithm is using a Boolean

array for this purpose which increases the need of space for

the algorithm’s data structure specially when the number of

process requests for CSs are extensively large in number.

Proposed algorithm uses almost half space than bakery

algorithm as whole.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.6, July 2012 – www.ijais.org

34

0

5000

10000

15000

20000

25000

0 2000 4000 6000 8000 10000 12000

Bakery Algorithm Proposed Algorithm

Figure 4 Memory Comparison

Space complexity for the algorithms is given below for

number of processes to be N.

Bakery algorithm= 2N;

Proposed Algorithm=N+1;

Where

 N is positive integer representing number of processes

requesting CS at any point of time.

Table 5.1 show the number of memory units required for the

number of processes making request for CSs mentioned in the

first column. Second and third column shows the memory

required for the bakery algorithm and proposed algorithm

respectively.

Table 1: Memory Utilization
No of Process(es) Bakery Algorithm (Memory Units) Proposed Algorithm (Memory Units)

1 2 2

10 20 11

20 40 21

50 100 51

100 200 101

500 1000 501

1000 2000 1001

5000 10000 5001

10000 20000 10001

50000 100000 50001

100000 200000 100001

This clears the fact that proposed algorithm is taking almost

the same memory units as the number of processes making

requests for the critical section.

5. Distributed Systems Algorithm
In distributed systems, the proposed algorithm serves as

centralized algorithm. The algorithm works in central and all

the sites sends request to this central site through message

passing. Assumptions are that for any two processes pi and pj,

the messages sent from pi to pj are received in the same order

in which they are sent. Furthermore, we assume that every

message is eventually received. We assume that every process

can send message directly to every other process. For

generality we consider every site has one process.

5.1 Working
All the processes which want to enter into their CS sends

request to the central site which they know by sending a

message. Message contains the site ID. The central site

receives that request and adds this to the end of the end of the

queue. Whereas in parallel it removes a process ID from the

queue and allows the process on top the entry authority to its

critical section.

When site completes its execution in critical section it sends

finish message to the central site which means it is no more in

critical section. Than the algorithm removes another process

ID from the queue and sends it ok message mean that it can

enter into its CS.

The core algorithm works in similar for distributed systems

while message passing system is introduced as in distributed

systems sites can be at remote locations.

6. CONCLUSION
In this paper the performance of mutual exclusion algorithms

is investigated. An algorithm is proposed that performs

efficiently while satisfying all the necessary requirements of

mutual exclusion algorithms.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 3– No.6, July 2012 – www.ijais.org

35

The proposed algorithm is evaluated in consideration of time

and memory. It is clear from the results that isolating the

receiving request module from the authorization module

which allows the processes to execute in their critical sections,

and parallel running of these two modules increases the

efficiency of the algorithm.

The busy waiting time variable that makes the algorithm

efficient in terms of time. Keeping in focus on memory it is

clear from the results that the algorithm limits the shared data

structure used by the algorithm and taking almost the memory

than its antecedent. The queuing implementation allows the

algorithm to be used in single processing, multi-processing

and distributed environment with minimal change.

7. REFERENCES
[1] E.W. Dijkstra; Solution of a Problem in Concurrent

Programming Control, Communication ACM, vol. 8, no.

9, Sept. 1965

[2] Ricart G. and Agrawala A.: An Optimal Algorithm for

Mutual Exclusion in Computer Networks.

Communications of the ACM, vol. 24, no. 1,pp. 9-17,

Jan. 1981

[3] D . Agrawal , A . El Abbadi , " An efficient solution to

the distributed mutual exclusion problem " , in proc. 8th

ACM Symposium on Principles of Distributed

Computing , pp. 193-200 , 1989 .

[4] Leslie Lamport; Time , Clocks and Ordering of Events in

a Distributed System. Communications of the ACM, vol.

21, no. 1,pp. 558-565, July. 1978

[5] Md. Abdur Razzaque Choong Seon Hong, “Multi-Token

Distributed Mutual Exclusion Algorithm,” in 22nd IEEE

International Conference on Advanced Information

Networking and Applications, 1550-445X/08, AINA,

2008, pp. 963–970.

[6] A S Silberschatz, P.B.Galvin, G Gangne, Operating

System Concepts, USA, John Wiley & Sons, 2005,

ISBN: 0-471-69466-5.

[7] Sandeep Lodha and Ajay Kshemkalyani, “A Fair

Distributed Mutual Exclusion Algorithm,” IEEE

Transactions On Parallel And Distributed Systems, Vol.

11, No. 6, June 2000,pp. 537-549

[8] Y.-I. Chang, “A Simulation Study on Distributed Mutual

Exclusion,”. J. Parallel and Distributed Computing, vol.

33, pp. 107-121,1996

[9] O. Carvalho and G. Roucairol, ªOn Mutual Exclusion in

Computer Networks, Technical Correspondence,º

Comm. ACM, vol. 26, no. 2, pp. 146-147, Feb. 1983.

[10] Ricciuti, Mike (July 20, 2007). "Next version of

Windows: Call it 7". CNET News. Available online at

http://www.news.com/2100-1016_3-6197943.html.

[11] Nash, Mike (October 28, 2008). "Windows 7 Unveiled

Today at PDC 2008". Windows Team Blog. Microsoft.

Available online at

http://windowsteamblog.com/blogs/windows7/archive/20

08/10/28/windows-7-unveiled-today-at-pdc-2008.aspx.

Retrieved November 11, 2008.

[12] Sadegh Firoozandeh and Abolfazl Toroghi Haghighat,”
Reducing Coordinator Failures in Centralized Algorithm

to Guarantee Mutual Exclusion Using a Backup Site” in

Second IEEE International Conference on Future

Networks, 2010,pp. 124-128

[13] J. M. Helary , N. Plouzeau , M. Raynal , " A distributed

algorithm for mutual exclusion in an arbitrary network,

volume 31 of Computer Journal,pp. 289-295, 1988.

