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ABSTRACT 

Most of the clustering algorithms are based on Euclidean 

distance as measure of similarity between data objects. Theses 

algorithms also require initial setting of parameters as a prior, 

for example the number of clusters. The Euclidean distance is 

very sensitive to scales of variables involved and independent 

of correlated variables. To conquer these drawbacks a hybrid 

clustering algorithm based on Mahalanobis distance is proposed 

in this paper. The reason for the hybridization is to relieve the 

user from setting the parameters in advance. The experimental 

results of the proposed algorithm have been presented for both 

synthetic and real datasets.   

General Terms 

Data Mining, Clustering, Pattern Recognition, Algorithms. 

Keywords 

Minimum Spanning Tree, Fuzzy, Mahalanobis. 

1. INTRODUCTION 
Categorizing the set of data items into natural groups (clusters) 

is called Clustering. Many algorithms have been proposed for 

clustering. These algorithms are mainly divided into partitional 

and hierarchical algorithms [1, 2]. The most popular partitional 

algorithms are K-Means and Fuzzy C-Means algorithms 

because of their simplicity. But on the other hand these 

algorithms suffer from the drawbacks like, random selection of 

initial cluster centers and number of clusters should be known a 

prior. On the other hand hierarchical clustering algorithms are 

not efficient for bulky datasets. Hierarchical algorithms are 

classified into agglomerative and divisive approaches. These 

algorithms also require the number of clusters as an input 

parameter to terminate the algorithm. To alleviate the burden of 

selecting the input parameters, a graph based divisive algorithm 

based on minimum spanning tree (MST) [3, 4] is used in this 

paper. 

Clustering process starts with creation of distance (similarity) 

matrix. The similarity between the data points is assessed using 

distance measure between the data points. The most common 

measure for similarity is Euclidean distance. The Euclidean 

distance is generally used for low dimensional data sets. It is 

also called as the L2 norm. The Euclidean distance is the usual 

manner in which distance is measured in real world. Euclidean 

distance is easy and fast to implement but it has some 

drawbacks [5]: it is sensitive, if the variables involved in the 

dataset are at different scales and it does not account for the 

relation between the variables. The clustering algorithms using 

Euclidean distance as a similarity measure are subjective to the 

magnitude of variables involved in the dataset. Mahalanobis is 

another distance function [6] that is used for similarity measure, 

if the variables in the data set are correlated and if the 

variability is to be included in the distance metric. The 

covariance matrix provides normalization of the data relative to 

their stretch. Hence data need not be normalized. In this paper, 

a hybrid clustering algorithm using MST based on Mahalanobis 

distance measure is tested.  

2. RELATED WORK 
Cluster analysis is a complicated problem due to the number of 

similarity measures exists and there is no universal solution for 

the entire situation in the domain. Several clustering algorithms 

were developed based on different distance measures for variety 

of cluster shapes [7-11]. But the results of these algorithms 

were contradictory when applied for clustering of other shapes. 

Gustafson-Kessel (GK) clustering algorithm [7] and Gath-Geva 

(GG) clustering algorithm [8] were proposed to discover         

non-spherical clusters. A modified Mahalanobis distance with 

preserved volume was used in GK algorithm. It is based on 

fuzzy clustering algorithm for partitioning the data sets with 

different geometrical shapes. However, if the prior information 

about the cluster is not known, the algorithm will carry the 

singular problem for the inverse covariance matrix. The 

Gaussian distance can only be used for the data with 

multivariate normal distribution in GG algorithm. It was 

pointed out that clustering techniques proposed for well 

separated clusters fails when applied for overlapping clusters 

[12].  

Center-based clustering approaches, like, Fuzzy C-Means 

(FCM) [1], Possibility C-Means (PCM) [13], and Fuzzy 

Possibility         C-Means (FPCM) [14] algorithms, use 

Euclidean distance function to measure the similarity between 

the two data points for hyper-spherical clusters. However, more 

sophisticated approaches rely on a cluster-specific Mahalanobis 

distance, making it possible to find clusters of hyper-ellipsoidal 

shape. This similarity measure will unwind the limitation that 

all clusters have the same size [15]. But on the other hand 

Mahalanobis distance measure reduces the sturdiness of the 

clustering algorithm. The extended versions of FCM, PCM, and 

FPCM, are Fuzzy C-Means based on Alternative Mahalanobis 

distance (FCM-AM) algorithm, the Possibility        C-Means 

based on Alternative Mahalanobis distance (PCM-AM) 

algorithm, the Fuzzy Possibility C-Means based on Alternative 

Mahalanobis distances (FPCM-AM) algorithms [16], 

respectively. These algorithms were based on the local and 

global Mahalanobis distances. 
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3. METHODOLOGY 

3.1 Formal Preliminaries 

Given a set of data objects },...,{ 21 NxxxS  , where  

  lT

iliii xxxx  ,...,, 21  is a feature vector. The goal 

of the clustering algorithm is to organize the data set S into K 

groups, such that the similarity among data objects with in 

cluster and the variation of data objects in different clusters are 

maximized. The techniques used for clustering are based on the 

measures of similarity between data objects. The similarity 

between the objects is measured using distance between the 

data objects. A distance metric is a real-valued function d is 

defined as, SSd : such that for 

distinct Sxx ji ),( ,  

(i) 0),( ji xxd , 

(ii) ),(),( ijji xxdxxd  and 

(iii)  0),( ji xxd . 

The Euclidean distance is the most common distance metric 

used for low dimensional data sets. The Euclidean distance is 

defined as: 

  
2

),( jijieuclidean xxxxd , 

Nji :1,      (1) 

Euclidean measure is helpful in low dimensions, where as for 

high dimensional data and for categorical variables it performs 

poorly [17]. Each attribute is treated as totally different from all 

of the attributes [18]. 

Mahalanobis distance is a well-known statistical distance 

function that can used for similarity measure, if the variables in 

the data set are correlated and if the variability is to be included 

in the distance metric. The covariance matrix provides 

normalization of the data relative to their stretch. Hence data 

need not be normalized [19, 20]. Mahalanobis distance between 

two samples ),( ji xx   is defined as: 

 )()(),(
1_

ji

T

jijisMahalanobi xxxxxxd    

(2) 

Where, 
1

 is the inverse of covariance matrix. The 

Mahalanobis metric is not dependent upon the scales of 

variables. The Mahalanobis distance or its square can be used to 

measure closeness of an object from another object. 

In the case of Σ = Ι, Mahalanobis distance is the same as 

Euclidean distance: 

 )()(),( 1_

ji

T

jijisMahalanobi xxIxxxxd   

  ),(
2

jieuclideanji xxdxx   

3.2 Minimum Spanning Tree Clustering  

Let ),()( EVSG  be the undirected graph to represent the 

given data objects S, where V = S and 

},,|),{( jiSxxxxE jiji  . The weight or edge 

length represents the similarity between the objects. The 

application of MST in clustering was proposed by Zahn [21]. A 

Minimum Spanning Tree (MST) of S is constructed by using 

either Kruskal‟s algorithm [22] or Prim‟s algorithm [23] to 

initiate the clustering procedure.  The weight of any edge in 

MST is greater than the given threshold (δ), then by removing 

such (K-1) edges (inconsistent) from MST results in K number 

of sub trees, called clusters. The clusters produced may contain 

data points vary from a few to very large in number. If data 

points in any cluster are fewer than some threshold then that 

cluster is eliminated from the clustering process. The centers of 

each subtree represent initial representatives of the clusters in 

the splitting stage of the proposed clustering process. Hence the 

number of clusters need not be set initially in this algorithm. 

The resulting clusters are merged based on fuzzy similarity 

measure [24] to find optimal number of clusters. This is 

explained in the next section 

3.3 Fuzzy similarity Merging  
The merging of similar clusters offers an automatic approach 

for cluster validation. The cluster merging method used in this 

paper is based on fuzzy similarity between pair of clusters [24]. 

This similarity is based on compactness or dispersion within the 

cluster and separation between the clusters. The result of this 

merging is optimal partitioning from that of over partitioning. 

The fuzzy dispersion of cluster i is defined as:  

2/1

21
)(














 

 iTx

i

m

i

i

i cx
n

TFDISP    (3) 

Where ii Tn   and i denotes ith row of membership 

matrix . 

The separation or dissimilarity between the clusters is measured 

as: 

jiji CCTTDISM ),(                        (4) 

The merging criterion for merging two similar clusters is based 

on:  

Kji
TTDISM

TFDISPTFDISP
TTSIMI

ji

ji

ji :1,
),(

)()(
),( 




and ji      (5) 

It can be seen that ),( ji TTSIMI is the ratio of compactness 

to the separation between the two clusters. This ratio can be 

used to measure the similarity between the two clusters. Then 

the cluster validity index is calculated for the analysis of 

clustering. This index is calculated as explained in fallowing 

section. 

3.4 Validity Ratio 
Validity Ratio is used to evaluate the clustering results. In this 

paper the validity ratio, this is based on compactness to deal 

with the internal cohesion among the data elements and 
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isolation to measure separation between the clusters [25]. The 

compactness is measured by Intra-cluster distance as fallows: 


 


K

i Cx

i

i

cx
N

Intra
1

21
   (6) 

Where N is the number of data items in the dataset, K is the 

number of clusters, and ci is the centre of cluster.  

The isolation or separation is measured by Inter-cluster 

distance, which is defined as the minimum of the pair wise 

distance between any two cluster centers given by, 

 ,min
2

ji ccInter   

KijandKi :11:1    (7) 

In the evaluation of the proposed clustering algorithm, the 

validity ratio used is as proposed by Ray and Turi [25]: 

Inter

Intra
validity                    (8). 

4. RESULTS 
Experiments were conducted on both artificial and real data sets 

to test the performance of the proposed algorithm. The artificial 

data sets are used in our experiments, since they are easily 

manageable. A 2-D data set Data_B is generated with 163 data 

points containing 3 well separated clusters. Another artificial 

data set, Ruspini [26] was used in the testing of the proposed 

algorithm. Ruspini data set contains 75 data points each with 

2D points and distributed in 4 clusters. The Ruspini data set is a 

simple, well-known example that is commonly used as a 

benchmark dataset in evaluating clustering methods [27].  

The real data sets used in our experiments are collected from 

UCI [28]. The data sets are Iris and Wine datasets. Iris data set 

expresses different categories of iris flowers, having 150 

objects with 4 numeric attributes, namely sepal length, sepal 

width, petal length, and petal width. It has three classes, i.e. 

Setosa, Versicolor and Virginica, each containing 50 objects. It 

is known that two classes Versicolor and Virginica have some 

overlap while the class Setosa is well separated from the other 

two. Thus, we can accept that there are 2 or 3 [29] clusters in 

the Iris data set. The Wine dataset contains 178 observations, 

13 attributes for each observation and distributed into 3 classes. 

The details of both artificial and real datasets are presented in 

table 1.  

The proposed algorithm is tested for both Mahalanobis and 

Euclidean distance measures. The validity ratios determined by 

the proposed algorithm for both the distance metrics are 

compared. The validity ratios measured by the proposed 

algorithm for datasets are as shown in table 2. For Data_B, 

Ruspini the number of clusters produced by the proposed 

algorithm is same as that of actual number of clusters present in 

dataset. 

The optimal number of clusters determined by the proposed 

algorithm for Iris data is 2 as against actual number of clusters 

present in the data set (3), which is acceptable according to 

[29]. Except for Iris data set, the validity ratios for Data_B, 

Ruspini and Wine data sets measured by the proposed 

algorithm using Mahalanobis distance are lower than the 

validity ratios measured by using Euclidean distance. 

Experiments showed that the usage of Euclidean Distance or 

Mahalanobis Distance affects the expected results. The user 

parameters required for the proposed algorithm are fuzziness 

index and the threshold to decide the outlier cluster. Hence this 

algorithm requires minimum user involvement in order to get 

desired output. 

Table 1. Data sets 

Name Data Size 
No of 

Attributes 

Actual no. of 

Clusters 

Data_B 163 2 3 

Ruspini 75 2 4 

Iris 150 4 3 

Wine 178 13 3 

 

   

      (a)              (b) 

Fig. 2. Data distribution in artificial Datasets (a) Data_B 

and (b) Ruspini 

Table 2. Validity Ratios and number of clusters produced 

by proposed algorithm for Mahalanobis and Euclidean 

distance Measures 

Name of 

the Data 

Set 

Validity Ratio 

Mahalanobis 

Measure 

Euclidean 

Measure 

Data_B 0.0085 0.0519 

Ruspini 0.000035 0.0439 

Iris 0.2022 0.0658 

Wine 0.000144 0.0751 

 

5. CONCLUSIONS  
Most of the clustering algorithms are based on Euclidean 

distance as measure of similarity between data objects. These 

algorithms also require initial setting of parameters as a priori, 

for example the number of clusters. The most common measure 

for similarity is Euclidean distance. Euclidean distance is easy 

and fast to implement but it has some drawbacks: it is sensitive, 

if the variables involved in the dataset are at different scales and 

it does not account for the relation between the variables. To 

alleviate the burden of selecting the input parameters, a graph 

based divisive algorithm using minimum spanning tree (MST) 

is proposed in this paper. To overcome drawbacks involved in 

using the Euclidean distance as a similarity measure, 

Mahalanobis distance is used as a distance function in proposed 

algorithm. The results showed that the usage of Euclidean 

Distance or Mahalanobis Distance affects the expected results 

and also the number of clusters need not be set as a prior for the 
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proposed algorithm. On the downside using Mahalanobis 

distance as a similarity measure, is computationally expensive 

because the inverse of the covariance matrix is to be computed 

every time a pattern changes its cluster domain. Our future 

work will focus on this aspect of Mahalanobis distance. 
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