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ABSTRACT 

Decision tree induction is a simple but powerful learning and 

classification model. Decision tree learning offers tools for 

discovery of relationships, patterns and knowledge from data 

in databases. The volume of data in databases is growing to 

quite large sizes, both in the number of attributes and 

instances. Decision tree learning from a very large set of 

records in a database is quite complex task and is usually a 

very slow process, which is often beyond the capabilities of 

existing computers. There are various issues and problems 

related to decision trees. To handle these issues various 

approaches have been proposed in the past by different 

researchers. This paper is an attempt to summarize the 

proposed approaches, tools etc. for decision tree learning with 

emphasis on optimization of constructed trees and handling 

large datasets.  

Keywords: Decision Tree, Optimization. 

1. INTRODUCTION 

Decision tree induction is a simple yet powerful learning and 

classification model. Decision tree learning offers tools for 

discovery of relationships, patterns and knowledge from data 

in databases. The volume of data in databases is growing to 

quite large sizes, both in the number of attributes and 

instances. Decision tree learning using a very large set of 

records in a database is quite complex task and is usually a 

very slow process, which is often beyond the capabilities of 

existing computers. There are various issues related to 

decision trees and training data sets. To handle these issues 

various approaches have been proposed in the past by 

different researchers. This paper summarizes these proposed 

approaches to handle various issues related to decision tree 

learning and issues related to handling problems with data. 

The emphasis is given on issues which help to optimise the 

process of decision tree learning.  

A decision tree is a classifier in the form of tree structure that 

contains decision nodes and leaves. It assigns a class value to 

an instance. In tree construction process, partitioning of 

attributes is according to splitting criteria that implements 

better use of available attributes and also implies 

computational efficiency in classification. The tree 

construction takes polynomial time concerning the number of 

attributes and inputs, as no backtracking is required [1]-[7]. 

Some of the important approaches and issues are been 

introduced in this paper. The issues are: 

1. Decision tree learning algorithm and various splitting 

 criteria such as gain, gini index, twoing rule etc. 

2. Pruning techniques-these includes the techniques for 

 pruning overfitted decision tree technique. Some prominent 

 methods includes error based pruning, cost complexity 

 pruning and reduced error pruning.  

3. Decision tree learners- decision tree learning algorithms 

 such as CHAID, ID3, C4.5 and CART. 

4. Data preprocessing- Data preprocessing includes t

 echniques for feature subset selection, data sampling, 

 outlier detection and handling missing data. This topic is 

 generalized and is not restricted to techniques for 

 decision tree. 

5. Soft computing approach for decision tree learning & 

 optimization these include use of neural networks, 

 Evolutionary techniques and Fuzzy logic. 

6. Handling large data set approaches such as parallel, 

 distributed, scalable and Meta decision tree. 

7. Surveys on decision tree learning. 

8. Decision tree learning softwares available and some of 

 the commonly used benchmark datasets.  

9. Other issues like incremental induction of decision tree 

 and oblique decision trees. 

10. Applications of decision trees in various areas.  

 Decision tree algorithms construct trees by recursively 

partitioning a training set. A training set consists of set of 

attributes and a class label. An attribute can have real, 

Boolean or ordinal values. A decision node states a test to be 

carried on a particular attribute value of an instance. A branch 

is present for each probable output of the test. Thus, a tree is 

traversed from the root to a leaf of the decision tree to identify 

the class of the instance. The specified class at the leaf is the 

classification by the decision tree. The classification accuracy, 

defined as the percentage of correctly classified instances in 

the test data, specifies the performance of decision tree. The 

generalized decision tree algorithm is explained here. 

1.1 The Tree Construction Algorithm 

The tree construction algorithms use a divide and conquer 

approach to construct a decision tree. It evolves a decision 

tree for a given training set T consisting of set of training 

instances. An instance denotes values for a set of attributes 

and a class. Let the classes be denoted by {C1, C2, …, Cn}. 

Initially, the class frequency is computed for instances in 

training set T. If all instances belong to same class, node K 

with that class is constructed. However, if set T contains 

instances belonging to more than one class, the test for 

selecting attribute for splitting is executed and the attribute 
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satisfying splitting criteria is chosen for the test at the node. 

The training set T is then partitioned into k exclusive subsets 

{T1, T2, …, Tk  } on the basis of this test and the algorithm is 

recursively applied on each nonempty partition. The algorithm 

for construction of a decision tree is given below.  

Construct (T) 

1. Calculate freq (Ci, T). 

2. If (all instances belong to same class), return leaf. 

3. For every attribute A test for splitting criteria. 

 Attribute satisfying test is test node K. 

4. Recur Construct (Ti) on each partition Ti. 

 Add those nodes as children of node K. 

5. Stop. 

2. Selecting the Best Attribute for Splitting 

The selection of test attribute at each node in the decision tree 

is an important process. Various approaches have been 

proposed to select the best possible attribute. The approaches 

are categorized by Ben-Bassat [6] as use of information 

theory, distance measure and dependence measure. Some of 

the approaches are discussed below. 

2.1 Using Information Theory 

Last and Maimon [7] expressed that objective of process of 

data classification is to maximize the information gain as it 

leads to increase in classification accuracy. Quinlan [2] used 

information gain and gain ratio in decision tree algorithm. The 

gain is defined as the information obtained from a message 

based on its probability P. For any set of instances T, the 

probability that an instance belongs to class Ci is given as  

ifreq (C ,T)
P

|T|
                                (1) 

Where |T| is number of instances in set T and freq (Ci,T) 

denotes the number of instances in T that belong to class Ci.. 

Now, the average information contained in set T regarding 

class association of instances, called entropy of set T, and is 

calculated in bits as  

k

i 2 i

i=1

info(T) = P log  (P ) bits.
    

          (2) 

Where k is the number of classes in set T. The test X 

performed at a node on the preferred attribute provides 

subsets T1, T2, …, Tk . The information by this partitioning 

process is calculated as the sum over these subsets, is given as 

 

          (3)  

 

The reduction in entropy due to partioning of T with test X on 

the preferred attribute, denoted as Gain (X), is calculated as 

     xGain X   info T info T                  (4) 

  The attribute which provides maximum information gain is 

selected. The problem with above approach for selection of 

test attribute at a node is that it is biased towards attributes 

with many values as compared to attributes with less values 

and it leads to large decision trees that poorly generalize the 

problem. This problem can be eliminated using normalization 

of gain criterion and use of gain ratio. The gain ratio 

calculates ratio of information generated by partioning T and 

is expressed as  

        gain ratio (X) = gain (X)   split info(X) 
     (5) 

The split info(X) calculates information gained by splitting 

training set T into k subsets on test X. 

k

2

i =1

| | | |
 info(X) = - log

| | | |

i iT T
split

T T

 
  

 
             (6) 

The attribute on which test obtains maximum gain ratio is 

selected. This approach has problem that it tends to favour 

attributes for which split info(X) is very small. Another 

problem is that gain ratio can be calculated only when the 

split info(X) is nonzero. To overcome this problem, Quinlan 

suggested computing information gain over all attributes and 

considering attributes with information gain which is at least 

as large as average of information gain over all attributes. The 

use of gain ratio provides better accuracy and complexity of 

classifier. 

Jun et al. [8] suggested a modification in above entropy 

calculation where the base of the logarithm is the number of 

successors to the node and have shown that this approach can 

handle huge amount of data efficiently.  

2.2  Using Distance Measure  

A classification and regression tree uses gini index as impurity 

measure for selecting attribute that is based on distance 

measure. These attribute evaluation criteria computes 

separability, deviation or discrimination between classes [9]. 

For a data set T, gini index is defined as 

   
2

1

( ) 1
n

i

i

gini T p


                                            (7) 

Where pi indicates the relative frequency of class i in the data 

set T. The attribute with the largest reduction in impurity is 

used for splitting the node's records. After splitting T into two 

subsets T1 and T2 with sizes N1 and N2 respectively then the 

gini index of the split data is defined as  

 
1 2

1 2
( ) ( ) ( )

split

N N
gini T gini T gini T

N N
              (8) 

Breiman et al. [9] identified that the gini index has a problem 

in handling large number of classes. In such a case, binary 

criterion called twoing index is used which is based on 

dividing the multiple classes into two super classes and then 

calculating the best split on the attribute based on these super 

classes. Murthy et al. [10] explained this twoing rule as 

follows. In the beginning the set is the complete training set T, 

is divided into two non-overlapping subsets, TL and TR by 

hyperplane H. The impurity measure at the start checks if TL 

and TR are homogeneous and belongs to the same category 

and in that case return minimum zero impurity. The value to 

be computed is defined as  

X
i

1

| |
info (T) = info(T )

| |

k
i

i

T

T


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Where |TL| and |TR| represents the number of instances on the 

left and right of a split at node T, and the number of instances 

at node T are represented by n. The number of instances in 

category i on the left and right of the split are represented by 

Li and Ri respectively. 

Mantras [11] introduced distance based attribute selection 

measure. The attribute selected with this criterion is in 

partition, a partition which is closest to the correct partition of 

the subset of training set related to the node. Chandra et al. 

[12] proposed a novel node splitting criteria called as distinct 

class based splitting measure (DCSM) for decision tree 

induction. It is motivated by concept of gini index. The 

measure gives importance to the number of distinct classes in 

a partition. The DCSM criterion is combination of the product 

of two terms. The first term handles the number of diverse 

classes in every child partition. With increase in number of 

different classes in a partition the first term increases. 

Consequently these purer partitions are favored. The second 

term decreases when there are more instances of a particular 

class as against the total number of instances in that partition. 

As a result amalgamation favors purer partitions. 

Rounds [13] presented attribute selection criteria based on the 

Kolmogorov-Smirnov distance that keeps an optimal 

classification decision at each node. Utgoff and Clouse [14] 

used the same Kolmogorov-Smirnov distance measure with 

improvements to take care of attribute with multiclass and 

missing attribute values. Martin [15] has done empirical 

comparative analysis of splitting methods like distance, 

orthogonality, a Beta function and two chi-squared tests. 

Buntine and Niblett [16] recommended alternative 

investigational methods and presented additional results for 

splitting rules for decision tree induction. 

3. Decision Tree Pruning 

Decision trees are often large and complex and as a result they 

may become inaccurate and incomprehensible. The causes of 

overfitting in decision trees are the noisy data, unavailability 

of training samples for one or more classes and insufficient 

training instances to represent the target function. Decision 

tree pruning removes one or more subtrees from a decision 

tree. It makes overfitting trees more accurate in classifying 

unseen data.  

Various methods have been proposed for decision tree 

pruning. These methods selectively replace a subtree with a 

leaf, if it does not reduce classification accuracy over pruning 

data set. Pruning may increase the number of classification 

errors on the training set but it improves classification 

accuracy on unseen data.  

Pruning techniques can be divided into two groups. The 

techniques in first group approximately compute the 

probability of misclassification of a subtree and then make 

pruning decision using an independent test set called pruning 

data set. In second group, iterative grow and prune method is 

used during the construction of a tree. Some important 

pruning methods are reviewed here briefly.  

3.1  Cost Complexity Pruning  

Cost complexity pruning [9] is used in the CART system. 

Starting with initial unpruned tree that is constructed from 

complete training set, this algorithm constructs a chain of 

progressively smaller pruned trees by replacing one or more 

subtress best possible leaves. The method prunes those 

subtrees that give the lowest increase in error for the training 

data. The cost complexity of a tree is defined as ratio of 

number of correctly classified instances to misclassified 

instances in training data plus number of leaves in that tree 

multiplied by some parameter α. [17] - [19]. 

3.2 Reduced-Error Pruning 

The reduced error pruning proposed by Quinlan [19] is a 

bottom-up approach in which the non-leaf subtrees are 

replaced with best possible leaf nodes if these replacements 

reduce the classification error on the pruning data set.The 

process continues towards the root node until the pruning 

decreases error. The process assures smallest and most 

accurate decision trees with respect to the test data [17]-[20]. 

3.3 Critical Value Pruning  

Mingers [20] proposed critical value pruning, which uses the 

information gathered during tree construction. It sets a 

threshold called a critical value to select a node for pruning. 

Various measures such as gain, info gain etc. can be used to 

select the best attribute at the test node. If the value of 

selection criterion is smaller than this threshold value the 

subtree is replaced with a best possible leaf. However, if the 

subtree contains at least one node having value greater than 

the threshold, the subtree cannot be pruned [17], [18]. 

3.4 Minimum Error Pruning  

Niblett and Bratko [17] proposed Minimum-error pruning, 

which is a bottom-up approach. To get error estimates of a 

subtree to be pruned, the errors for its children are estimated. 

The dynamic error of the node is calculated as weighted sum 

of static errors of its children. If dynamic error of t is less than 

its static error, t will be pruned and will be replaced with best 

possible leaf.  

3.5 Pessimistic Error Pruning  

Pessimistic error pruning, a top down approach proposed by 

Quinlan [19] uses error rate estimates to make decisions 

concerning pruning the subtrees similar to cost complexity 

pruning. It calculates classification errors on training data and 

does not require separate pruning set. Since the classification 

errors estimated from training set cannot provide best pruning 

results for unseen data, this pruning technique assumes that 

each leaf classifies a certain fraction of instances with error. 

To reflect these errors, it adds a continuity correction for 

binomial distribution to the derived training error of a subtree. 

However, as the corrected misclassification estimation by a 

subtree is expected to be optimistic, the algorithm calculates 

standard error. Quinlan recommends pruning a subtree if its 

corrected estimate of error is lower than that for the node by at 

least one standard error [18], [20]. 

3.6 Error-Based Pruning  

Error-based pruning is the default pruning method for the 

well-known C4.5 decision tree algorithm [2]. Instead of using 

a pruning set it uses error estimates. The method assumes that 

the errors are binomially distributed and calculates error 
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estimates from the training data. The number of instances 

covered by the leaf of the tree are used to estimate errors.  

A bottom-up approach [18] is used for error-based pruning. If 

the number of predicted errors for the leaf is not greater than 

the sum of the predicted errors for the leaf nodes of that 

subtree then subtree is replaced with that leaf. 

3.7 Minimum description length pruning  

Mehata et al. [21] and Quinlan and Rivest [22] utilized MDL 

principle for decision tree pruning. The principle of minimum 

description length used here states that a classifier that 

compresses the data is a preferable inducer. The MDL pruning 

method selects decision tree with less number of bits required 

to represent it. The size of the decision tree is measured as 

number of bits required for encoding the decision tree. The 

method searches for decision tree that maximally compresses 

the data [18].  

3.8 Optimal Pruning 

Optimal pruning algorithm constructs smaller pruned trees 

with maximum classification accuracy on training data. 

Breiman et al. [9] first suggested a dynamic programming 

solution for optimal pruning algorithm. Bohanec and Bratko 

[23] introduced an optimal pruning algorithm called OPT 

which gives better solution. Almuallim [24] proposed an 

enhancement to OPT called OPT-2. It is also based on 

dynamic programming and has flexibility in various aspects 

and is easy to implement.  

3.9 Improvements to Pruning Algorithms 

Matti Kääriäinen [25] analyzed reduced error pruning and 

proposed a new method for obtaining generalization of error 

bounds for pruning the decision trees. Error-based pruning has 

been blamed for the general effect of under-pruning. Hall et 

al. [26] proved that if the certainty factor value CF is 

appropriately set for the data set, error-based pruning 

constructs trees that are essentially steady in size, in spite of 

the amount of training data. The CF calculates the upper limit 

of the probability of an error at a leaf. Oates and Jenson [27] 

presented improvements to reduced error pruning to handle 

problems with large data sets. Macek and Lhotsk [28] 

presented a technique for pruning of decision trees based on 

the complexity measure of a tree and its error rate. The 

technique utilizes the Gaussian complexity averages of a 

decision tree to compute the error rate of classification. Frank 

[29] enhanced performance of standard decision tree pruning 

algorithm. The performance is enhanced with statistical 

significance of observations. Bradford et al. [30] proposed 

pruning decision trees with misclassification cost with respect 

to loss. Scott [31] proposed algorithms for size-based 

penalties and subadditive penalties.  

Bradley and Lovell [32] proposed a pruning technique that is 

sensitive to the relative costs of data misclassification. They 

implemented two cost-sensitive pruning algorithms, by 

extending pessimistic error pruning and minimum error 

pruning technique. Cai1 et al. [33] proposed cost-sensitive 

decision tree pruning CC4.5 to deal with misclassification 

cost in the decision tree. It provides three cost-sensitive 

pruning methods to handle with misclassification cost in the 

decision tree. Mansour [34] proposed pessimistic decision tree 

pruning based on tree size. A graphical frontier-based pruning 

(FBP) algorithm is proposed by Huo et al. [35] which 

provides a full spectrum of information while pruning the tree. 

The FBP algorithm starts from leaf nodes and proceeds 

towards root node with local greedy approach. The authors 

further proposed combination of FBP and cross validation 

method.  

In decision tree learning pre-pruning handles noise and post-

pruning handles the problem of overfitting. Faurnkranz [36] 

proposed two algorithms to combine pruning and post pruning 

operations. A method for pruning of oblique decision trees 

was proposed by Shah and Sastry [37]. 

3.10 Comparison of Pruning Methods 

The empirical comparative analysis is one of the important 

methods to compare the performance of various available 

algorithms. Quinlan [19] examined and empirically compared 

tree cost complexity pruning, reduced error pruning and 

pessimistic pruning on some data sets. These methods have 

demonstrated significant improvement in terms of size of the 

tree. Cost complexity pruning tends to produce smaller trees 

than reduced error pruning or pessimistic error pruning where 

as in case of classification accuracy, reduced error pruning is 

somewhat superior to Cost complexity pruning.  

Floriana et al. [18] presented comparative analysis six well-

known pruning methods. Each method has been critically 

reviewed and its performance has been tested. The paper 

provides study of theoretical foundations, computational 

complexity and strengths and weaknesses of the pruning 

methods. According to this analysis, reduced-error pruning 

outperforms other methods. In addition, MEP, CVP and EBP 

tend to under prune whereas reduced-error pruning tends to 

over prune.  

Similarly, Mingers [19] analyzed five pruning methods with 

four different splitting criteria. The author has provided the 

analysis based on size and accuracy of the tree. This work 

showed that minimum-error pruning is extremely sensitive to 

the number of classes in the data and is the least accurate 

method. Pessimistic error pruning is bad on certain datasets 

and needs to be handled with care. Critical value, cost 

complexity, and reduced-error pruning methods produced 

trees with low error rates on all the data sets with consistency. 

He further clarified that there is no evidence of relation 

between splitting criteria and pruning method. Windeatt [17] 

presented empirical comparison of pruning methods for 

ensemble classifiers. It has been proved that error based 

pruning performs best for ensemble classifiers. From above 

studies we can conclude that reduced error pruning and cost 

complexity pruning methods are the promising pruning 

methods as compared to other available methods. 

4. Decision Tree Learners 

Researchers have developed various decision tree algorithms 

over a period of time with enhancement in performance and 

ability to handle various types of data. Some important 

algorithms are discussed below.  

CHAID: CHAID (CHi-squared Automatic Interaction 

Detector) is an initial decision tree learning algorithm, which 

is an extension of the AID (Automatic Interaction Detector) 

and THAID (Theta Automatic Interaction Detector) 

procedures. It works on principal of adjusted significance 

testing. It was developed by Kass [38] in 1980. CHAID is 

easy to interpret and can be used for classification and 

detection of interaction between variables. After detection of 

interaction between variables it selects the best attribute for 

splitting the node, such that each child node is made of a 
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collection of homogeneous values of the selected attribute. 

The method can handle missing values. It does not imply any 

pruning method. 

ID3: ID3 (Iterative Dichotomiser 3) decision tree algorithm is 

developed by Quinlan [39]. It is based on Occam’s razor, 

which states that simplest hypothesis should be adopted. Here 

Occam’s razor is incorporated through use of information 

entropy. ID3 uses information gain as splitting criteria. 

Information gain decides how effectively the attribute 

separates training instances according to their class. ID3 does 

not use pruning method. It cannot handle numeric attributes 

and missing attribute values. When training data contains 

noise the performance of the algorithm is degraded. 

C4.5: The C4.5 algorithm [8] is improvement over ID3 

algorithm. The algorithm uses information gain as splitting 

criteria. It can accept data with categorical or numerical 

values. To handle continuous values it generates threshold and 

then divides attributes with values above the threshold and 

values equal to or below the threshold. The default pruning 

method is error-based pruning. As missing attribute values are 

not utilized in gain calculations the algorithm can easily 

handle missing values. 

CART: Classification and regression tree (CART) proposed 

by Breiman et al. [9] constructs binary trees. The word binary 

implies that a node in a decision tree can only be split into two 

groups. CART uses gini index as impurity measure for 

selecting attribute. The attribute with the largest reduction in 

impurity is used for splitting the node's records. It can accept 

data with categorical or numerical values and also handle 

missing attribute values. It uses cost-complexity pruning. It 

can also generate regression trees.  

5. Data Pre-Processing  

The knowledge discovery process consists of an iterative 

sequence of subtasks such as selection of data subset handling 

noise and missing data etc. Data pre-processing techniques 

used in decision trees are discussed here. 

5.1 Feature Subset Selection 

The real-world applications provide us numerous attributes 

that can be used for learning. When given data set contains 

large number of attributes the classification performance of 

inductive method may degrade. The solution is to use a 

quality subset of those attributes. Feature selection improves 

performance of learning algorithms by finding a minimal 

subset of relevant features. Feature selection removes 

irrelevant, noisy and repeated features and keeps the most 

relevant features.  

Ron Kohavi [40] proposed the use of a search with 

probabilistic estimates for probing a space. The method 

results in accurate and comprehensible trees. Caruana and 

Freitag [41] proposed a caching system with hill climbing in 

attribute space for feature subset selection and found that hill 

climbing in attribute space can get significant improvement in 

classification performance. Mark Last et al. [42] proposed an 

algorithm that computes fuzzy information gain as quality 

measure. The resulting tree size is reduced. Wu and Flach [43] 

proposed merging of heuristic measures and exhaustive search 

method to get optimal subset. Goodman-Kruskal measure and 

Fisher’s exact test are used to rank the feature. 

Huan et al. [44] proposed a monotonic measure, which is 

accurate and fast. The proposed method reduces error rate. 

Grabczewski and Jankowski [45] proposed two feature 

selection algorithms that are based on separability of spilt 

value criteria and verified that they are good alternatives to 

the available most popular methods with respect to 

classification accuracy. Bins and Draper [46] proposed three-

stage algorithm for large data sets. The algorithm is 

combination of the relief algorithm to remove irrelevance, K-

means to remove redundancy and a standard combinatorial 

feature selection algorithm.  

Several authors have proposed evolutionary computation 

based methods for feature selection. Guerra-Salcedo et al. [47] 

proposed hybrid genetic feature selection approach that is fast 

and accurate. Landry et al. [48] proposed a feature selection 

technique based on the genetic programming. Bala et al. 

proposed [49] use of genetic algorithms for evaluations of 

features. 

 Filter and wrapper approaches are also used for feature subset 

selection. Filters remove irrelevant features from data set. 

Filters work independently of any induction and it takes place 

before induction process. The filter approach does not 

consider the effect of subset selection on performance of 

induction algorithm.  

The Wrapper approach uses a statistical re-sampling 

technique such as cross validation along with the induction 

algorithm. The induction algorithm with some objective 

function is used to evaluate the selected feature subset. 

Legrand and Nicolas [50] proposed a hybrid technique that 

combines filter and wrapper approaches with principle of 

preferences aggregation. Hall and Smith [51] proposed a 

correlation based filter approach to select feature subset. Duch 

et al. [52] proposed inexpensive filters based on information 

theory. Hall [53] proposed faster and accurate filter algorithm 

useful for continuous and discrete domains. Yuan et al. [54] 

proposed a two-stage feature selection algorithm of filter and 

wrapper approach to get benefit of both approaches. Initially 

the filter approach eliminates irrelevant features and then the 

wrapper approach eliminates redundant features. Lanzi [55] 

proposed genetic algorithm with filter that is faster than 

standard genetic algorithm for feature selection. 

5.2  Outlier Detection  

The problem of outlier detection and noise elimination is an 

important issue in data analysis. The removal of outliers 

improves data quality and hence classification performance. 

Several researchers have proposed various approaches for data 

cleaning. These include use of MDL principle, neural 

networks, filters, Occam's razor and some other methods. The 

approaches are discussed below. 

John George [56] proposed a method that removes a 

misclassified training instance from training data and rebuilds 

tree on filtered data, the process is repeated till all such 

instances are removed from training data. Misclassified 

instances are identified using tree classifier as a filter. The 

classifier built on clean data improves prediction accuracy.  

Arning  et al.  [57] proposed framework for the problem of 

outlier detection.  Similar to human beings, it observes all 

instances for similarity with data sets and it treats dissimilar 

data set as an exception. A dissimilarity function is used to 

find out an outlier.  

Guyon et al [58] proposed training of convolutional neural 

networks with local connections and shared weights. The 

neural network is trained with minimizing mean-square-error 
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cost function with backpropogation algorithm. Unclean data is 

applied as input and several increasing strict levels of cleaning 

are forced. The classification error is used as an objective 

function.  

Gamberger and Lavrac [59] proposed conditions for Occam's 

razor applicability in noise elimination. The Occam's principle 

states that when there are many hypotheses, one should 

choose simplest hypothesis that is correct for all the training 

instances or maximum training instances. This hypothesis is 

expected to capture the information inbuilt in the problem and 

provide accurate classification accuracy on unseen data.  

Knorr and Ng [60] proposed unified outlier detection system. 

Subsequently, they [61] proposed and analyzed some 

algorithms for detecting distance-based outliers. Tax and Duin 

[62] proposed outlier detection that is based on the instability 

of the output of simple classifiers on new objects.  

Broadly and Friedl [63] introduced a method for detecting 

mislabeled instances. The approach is to employ a set of 

learning algorithms to build classifiers that act as a filter for 

the training data. The method is based on the technique of 

removing outliers in regression analysis [64]. An outlier in 

this case is an instance that comes from a different probability 

distribution.  

Gamberger et al. [65] proposed saturation filter. It is based on 

principle that detection and removal of noisy instances from 

training data to induce less complex and more accurate 

hypothesis. The removal of noisy instances from training data 

reduces the complexity and the Less Complex Correct 

Hypothesis (CLCH) value. The saturation filter checks the 

saturation of training data with use of CLCH value. A source 

of all possible correct instances in a given problem domain is 

called target concept. A good representation of target concept 

in the inducted hypothesis is called target theory. The 

saturated training data set can be employed for induction of 

stable target theory.  

Schwarm and Wolfman [66] proposed Bayesian methods for 

data cleaning; the method detects errors and corrects errors 

using Bayesian methods. The Bayesian methods utilizes   

dependencies between attributes in participated manner and 

uses expert knowledge of the relationships between the 

attributes. Ramaswamy et al. [67] proposed algorithm for 

distance-based outliers that is based on the distance of a point 

from its nearest neighbor. The solution ranks each point based 

on its distance to its nearest neighbor.  The higher points in 

this ranking indicate outliers. 

Raman and Hellerstein [68] proposed an interactive 

framework for data cleaning that integrates transformation 

and discrepancy detection. This framework progressively 

constructs transformations by adding or undoing transforms, 

in an instinctive, graphical manner using a spreadsheet-like 

interface. The effect of a transform on instances is available 

immediately on screen. In the background, the system 

continues to infer the structure of the data in terms of user-

defined domains and uses appropriate algorithms to check it 

for outliers. The proposed frame structure progressively 

constructs a transformation as outliers are found, and cleans 

the data without scripting complex programs or enduring long 

delays. 

Kubika and Moore [69] presented system for learning explicit 

noise. The system detects corrupted fields and uses non-

corrupted fields for consequent modeling and analysis. 

Verbaeten and Assche [70] proposed three ensemble based 

methods for noise elimination in classification problems. The 

first one is base classification algorithm in which ILP 

extension of C4.5 is used. This extension uses logical queries 

as test values instead of attribute values at test nodes. The 

second filter technique proposed is voting filter removes 

outlier if all or majority of classifiers misclassify the instance. 

The last technique is boosting filters in this method Adaboost 

is used and after n number of rounds instances with highest 

weighs are removed. Loureiro et al [71] proposed a method 

that applies hierarchical clustering methods for outlier 

detection. Xiong et al. [72] proposed a hyperclique-based 

noise removal system to provide superior quality association 

patterns. The hyperclique pattern contains items those are 

strongly correlated to each other. The existence of an item in 

one matter strongly indicates the existence of every other item 

that belongs to the same hyperclique pattern. The h-

confidence threshold designates the strength of this 

association. The higher the threshold, the stronger is the 

relationship. The system discovers all hyperclique patterns for 

a given h-confidence threshold and removes any objects that 

are not belonging to any hyperclique pattern. 

Seung Kim et al. proposed [73] fast outlier detection for very 

large log data S. Hido et al. [74] proposed statistical outlier 

detection using density ratio estimation. 

5.3 Data Sampling 

Sampling is the process of taking a subset of instances that 

represents the entire population. The representativeness is the 

primary concern in statistical sampling. Sampling is done 

since it is impossible to test every single individual in the 

population. It is also desirable to save time, resources and 

effort while conducting the research. The sample must have 

sufficient size to justify statistical analysis. George John and 

Pat Langley [75] experimented on static and dynamic 

sampling and found that dynamic sampling is robust as 

compared to static sampling. Jenson and Oates [5] 

experimented on data sampling and proved that as size of the 

training dataset increases, size of tree also increases where as 

classification accuracy does not increase significantly. Foster 

et al. [76] concluded that progressive sampling can be 

remarkably efficient. Patil and Bichkar [77] proposed use of 

evolutionary decision tree with sampled data to optimise the 

problem and found that the proposed method builds trees that 

are accurate and relatively smaller in size.  

5.4 Handling Missing Attribute Values  

Missing attribute values is one of the important and common 

problems in the real world data sets. While collecting data 

some attribute values from a tuple are lost. It creates problem 

for training as well as testing, because it reduces classification 

accuracy. Several researchers have addressed the problem of 

handing missing attribute values.  Little and Rubin [78] 

divided the methods for handling missing data into three 

categories; the categories are ignoring and discarding data, 

parameter estimation, and imputation. Imputation is procedure 

of substituting missing values of attributes with some 

plausible values. Imputation is further divided as case 

substitution, mean or mode imputation, hot and cold deck and 

prediction model. Batista [79] experimented k-nearest 

neighbour imputation and found that it performs better than 

mean or mode imputation method of C4.5 algorithm. 

Friedman et al. [80] suggested ignoring every tuple with 

missing attribute values from training instances. Authors 
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found that it may result in loss of bias information due to 

ignoring.  

Quinlan experimented on problem of missing attribute values 

[81] and concluded that ignoring cases with missing values 

hampers the classification accuracy and depends on attribute 

to attribute. Quinlan substituted missing values with most 

common test outcomes and found that it performs well in 

some cases but poorly in others.  

Kuligowski and Barros [82] proposed a use of a back 

propagation neural network for estimation of missing data by 

using concurrent rainfall data from neighboring gauges. 

Brockmeier et al [83] experimented empirical comparative 

analysis of deletion and imputation Techniques. 

Abebe et al. [84] proposed a use of a fuzzy-rule-based model 

for substitution in missing rainfall data using data from 

neighboring stations. The authors have provided empirical 

comparative analysis of results using the fuzzy-rule-based 

model and results using an ANN model and a traditional 

statistical model. The fuzzy-rule-based model performs 

slightly better.  

Sinharay et al. [85] experimented on the use of multiple 

imputations for the analysis of missing data. Khalil et al. [86] 

proposed cyclic federation of data intended for budding ANN 

models to estimate missing values in monthly surplus 

datasets. Bhattacharya et al. [87] used ANN models to 

substitute the missing values of wave data. Fessant and 

Midenet [88] proposed use of a self-organizing map (SOM) 

for imputation of data along with the multilayer perceptron 

(MLP) and hot deck methods.  

Musil et al. [89] provided empirical comparative analysis on 

list wise deletion, mean substitution, simple regression, 

regression with an error term and the EM algorithm. Junninen 

et al. [90] experimented on univariate linear, spline and 

nearest-neighbor interpolation algorithm, multivariate 

regularized expectation–maximization algorithm, nearest-

neighbor, self-organizing map, multilayer perceptron (MLP) 

as well as hybrid methods.  

M. Subasi, et al. [91] proposed new imputation method for 

incomplete binary data. Amman Mohammad Kalteh & Peder 

Hjorth [92] experimented on imputation of missing values 

with self organizing map, multilayer perceptron, multivariate 

nearest neighbor, regularized expectation maximization 

algorithm and multiple imputation for precipitation runoff 

process data set. Rhian M. et al. [93] proposed a method for 

increasing the robustness of multiple imputations. 

Patil and Bichkar [94] proposed multiple imputation of 

missing data with genetic algorithm based techniques. 

Authors proposed to use the domain values of an attribute as 

pool of solution for categorical data. The method improves the 

classification accuracy of training data. 

6. Class Distribution 

The classifier performance is affected by varying class 

distribution of the training instances. The experiments by 

Gary Mitchell Weiss [95] specify that the naturally happening 

class distribution is not all the time best for learning. A 

balanced class distribution should be preferred to make a 

robust classifier. To reduce learning cost it is essential to 

control the quantity of training data used for learning. Gary 

Mitchell Weiss proposed a budget-sensitive progressive-

sampling algorithm for selecting training instances in such 

circumstances. The proposed algorithm formes a class 

distribution that performs fairly well for near optimal 

learning. 

7. Use of Soft Computing Approaches to 

Decision Tree Algorithm 

Decision tree algorithm requires enhancement pertaining to 

different problems. The problems and use of soft computing 

techniques as a solution are discussed here.  

7.1 Use of Evolutionary Techniques 

A decision trees is called optimal if it correctly classifies the 

data set and has minimal number of nodes. The decision tree 

algorithms use local greedy search method by means of 

information gain as target function to split the data set. The 

decision trees generated by these methods are efficient with 

classification accuracy but they often experience the 

disadvantage of excessive complexity. Construction of 

optimal decision tree is identified as NP-Complete problem 

[3]. This fact leads the use of genetic algorithms that provide 

global search through space in many directions 

simultaneously. The genetic algorithm is used to handle 

combinatorial optimization problems. Different authors have 

proposed a use of methodologies that integrates genetic 

algorithms and decision tree learning in order to evolve 

optimal decision trees. Although the methods are different the 

goal is to obtain optimal decision trees.  

A. Papagelis and D. Kalles [96] proposed GATree, a 

genetically evolved decision trees. The genetic algorithms use 

binary string as initial populations but GATree uses binary 

decision trees as initial populations. A binary decision tree 

that includes one decision node with two different leaves. 

Initially to construct such initial trees a random attribute is 

selected,  if that attribute is nominal valued one of its possible 

values is randomly selected and in case of continuous 

attributes an integer value from its minimum to maximum 

range is randomly selected. Thus the size of the search space 

is reduced. Two arbitrary nodes from population of subtrees 

are selected and nodes of those subtrees are swapped to 

perform crossover operation. In view of the fact that a 

predicted class value depends just on leaves, the crossover 

operator does not affect the decision trees consistency. An 

arbitrary node of a preferred tree is selected and it substitutes 

the node’s test-value with a new arbitrary chosen value to 

perform mutation. In case if the arbitrary node is a leaf, it 

substitutes the installed class with a new arbitrary chosen 

class. Validation is performed after crossover and mutation to 

get final decision tree. The fitness function for evaluation is 

percentage of correctly classified instances on the test data set 

by the decision tree. The results show compact and equally 

accurate decision trees as compared to standard decision tree 

algorithms.  

Similarly Z. Fu proposed GAIT [97] algorithm. The algorithm 

constructs a set of different decision trees from different 

subsets of the original data set by using a decision tree 

algorithm C4.5, on small samples of the data. The genetic 

algorithm uses these trees as its initial populations. The 

selection operation selects decision trees from pool by random 

selection mechanism. The crossover operation exchanges 

subtrees between the parent trees whereas  mutation 

exchanges subtrees or leaf inside the same tree. The fitness 

criterion for evaluation is the classification accuracy. The 

validation on fitness function is performed after crossover and 
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mutation to get final decision tree that are smaller in size. 

Similar approaches are proposed and experimented in [98], 

[99]. 

7.2 Use of Neural Networks 

Neural networks can be used to enhance the decision tree 

learning. Zhou and Jiang [106] proposed a variation of C4.5 

decision tree algorithm named NeC4.5 that utilizes neural 

network ensemble to preprocess the training data for decision 

tree construction. The training set may contain noise and thus 

the classification accuracy of the data set is reduced.  

The algorithm trains a neural network ensemble and the 

trained ensemble is used to produce a new training set. It 

substitutes the preferred class labels of the original training 

tuples with the output from the trained ensemble. Some extra 

training tuples produced by the trained ensemble are also 

added to the new training set. The new training set is used for 

training C4.5. The processed training data by neural network 

improves classification accuracy of the decision tree classifier.  

7.3 Fuzzy Decision Tree 

The fuzzy decision tree provides elevated comprehensibility 

and the elegant performance of fuzzy systems. Fuzzy sets and 

fuzzy logic permits the modelling of language related 

uncertainties. In addition to this, it provides a symbolic 

outline for knowledge comprehensibility, the capability to 

represent fine knowledge details and the ability in dealing 

with problems of noise and inexact data.  

The tree construction procedure for fuzzy decision tree is 

similar to decision tree construction algorithm. The splitting 

criteria are based on fuzzy boundaries but the procedures for 

inference are dissimilar in fuzzy decision tree. The fuzzy 

decision trees [101] have fuzzy decisions at each branching 

point. It makes calculating the best split difficult to some 

extent if the attributes are continuous valued or multivalued. 

Constructing smaller fuzzy decision trees is valuable as they 

contain more information in internal nodes.  

The enhancements to the fuzzy decision tree algorithms are as 

follows. Zeidler and Schlosser [102] proposed use of 

membership function to discretize the attributes for handling 

continuous valued attributes. Janikow [103] optimized the 

fuzzy component of a fuzzy decision tree using a genetic 

algorithm. Myung Won Kim et al. [104] proposed an 

algorithm that determines an appropriate set of membership 

functions for each attribute. The algorithm uses histogram 

analysis with application of the genetic algorithm to tune the 

initial set of membership functions. A fuzzy decision tree with 

given set of membership functions is constructed. Fajfer and 

Janikow [105] described bottom-up fuzzy partitioning in 

fuzzy decision trees, a complement of top down technique. 

The proposed algorithm is useful to partition continuous 

valued attributes into fuzzy sets. Guetova et al. [106] 

proposed Incremental fuzzy decision trees. The algorithm gets 

equivalent results to non-incremental methods. 

8. Handling Large Data Set 

Handling large size data on currently available computing 

systems is a challenging task. Approaches like parallel, 

scalable and Meta decision tree are disused here in brief.  

8.1 Parallel and Distributed Decision Tree 

Algorithms 

Parallelization is a renowned, conventional means to speed up 

classification tasks with large amounts of data and complex 

programs. In the data mining applications, the size of dataset 

is growing that leads us to find out computationally efficient, 

parallel and scalable algorithms with the objective to get 

optimal accuracy in a reasonable amount of time with parallel 

processors. The algorithms work in parallel using multiple 

processors to construct a single reliable model. 

Kazuto et al. [107] explained two methods for parallelizing 

decision tree algorithm, intra-node and the inter-node 

parallelization. Intra-node parallelization practices the parallel 

processing in single node and Inter-node parallelization 

practices the parallel processing among multiple nodes. Intra-

node parallelism is further classified in record parallelism, 

attribute parallelism and their combination. Authors have 

implemented and experimented these four types of 

parallelizing methods with four kinds of test data. The 

performance analysis from these experiments states that there 

is a relation between the characteristics of data and the 

parallelizing methods. The combination of various 

parallelizing approaches is the most effectual parallel method 

 Kufrin [108] proposed a framework for decision tree 

construction on shared and distributed memory 

multiprocessor. The method builds parallel decision trees that 

overcome limitation of serial decision tree on large-scale 

training data. Narlikar [109] proposed parallel structure of a 

decision tree-based classifier for memory-resident datasets on 

SMP. The structure uses two types of divide-and-conquer 

parallelism, intra-node parallelization and the inter-node 

parallelization with lightweight Pthreads. Experimental 

verification on large datasets signifies that the space and time 

performance of the tree construction algorithm scales with the 

data size and number of processors.  

Joshi et al. [110] proposed ScalparC, a scalable parallel 

classification algorithm for mining large datasets with 

decision trees using MPI on Cray T3D system. This 

implementation confirms scalability and efficiency of 

ScalparC for wide range of training set and wide range of 

processors. Hall et al. [111] presented combining decision 

trees learned in parallel. The proposed algorithm builds 

decision trees with n disjoint data subsets of a complete 

dataset in parallel and after that converts them into rules to 

combine into a single rule set. The experiments on two 

datasets illustrate that there is enhancement of around 40% in 

quantity of rules generated by decision tree. Zaki et al. [112] 

proposed parallel algorithm for building decision tree on 

shared memory multiprocessors and it was verified that it 

achieves good speedup. Srivastava et al. [113] presented two 

parallel formulations for decision tree induction as 

synchronous tree induction and partitioned tree induction. 

Authors proposed a hybrid method that implements the high-

quality features of these formulations. The experimental 

results illustrate the high speedups and scalability in 

processing. 
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Kazuto et al. [114] proposed a parallel decision tree algorithm 

on a PC cluster. Plain parallelization of decision tree is not 

efficient due to load imbalance. The proposed algorithm is a 

better parallel algorithm with data redistribution. The parallel 

algorithm’s performance on benchmark data demonstrate that 

it provides an improvement in speed of 3.5 times, in the best 

case and equal performance even in the worst case. 

Jin and Agrawal [115] proposed parallel decision tree 

construction with memory and communication efficiency. The 

approach achieves very low communication volume; no need 

to sort the training records, during the execution and 

combining shared memory and distributed memory 

parallelization. Jin et al. [116] proposed use of SMP machines 

with a chain of techniques that includes full replication, full 

locking, fixed locking, optimized full locking and cache-

sensitive locking for parallelization of data mining algorithms. 

The results state that among full replication, optimized full 

locking and cache sensitive locking, there is no clear 

conqueror. Any of these three techniques can outperform 

other technique depending upon machine and dataset. These 

techniques perform considerably better than the other two 

techniques. In decision tree construction, combining different 

techniques is found to be critical for obtaining high 

performance. Li Wenlong et al. [117] proposed parallel 

decision tree algorithm based on combination. 

Similarly distributed decision trees learning algorithms are 

proposed.  Jie Ouyang et al. [118] proposed Chi-Square test 

based decision trees induction in distributed environment. 

Kanishka Bhaduri et al. [119] proposed distributed decision-

tree induction in peer-to-peer systems. Bin Liu et al. [120] 

proposed data mining in distributed data environment.  

8.2 Scalable Decision Trees  

Advances in technologies create a large volume of data. The 

large amount of knowledge in this data can be utilized to 

improve decision-making process of an organization. 

Scalability is one of the important issues in decision tree 

learning, a brief review of scalability handled by researchers 

is presented here.  

SLIQ [121] a fast scalable decision tree classifier adopts the 

presorting scheme in the growing phase of the tree that 

eliminates the sorting of data at each node of decision tree. 

The training data are sorted just once for each numeric 

attribute at beginning of tree growth phase. In this method a 

separate list for each attribute of the training data and a 

separate list for the class labels of each instance is created. An 

entry in an attribute list has two columns, first contains an 

attribute value and the second contains an index into the class 

list. An entry of the class list also has two columns, first one 

contains a class label and the second contains a reference to a 

leaf node of the decision tree. As every leaf node represents a 

partition of the training data on the path from the node to the 

root, the class list identifies the partition to which an instance 

belongs. The presorting process combined with a breadth first 

tree growing strategy enables SLIQ to scale for disk resident 

large data sets and can handle both numerical and categorical 

data. SLIQ uses gini index as splitting criteria, uses a new 

tree-pruning algorithm that is inexpensive and results in 

compact and accurate trees. 

Shafer et al. [122] proposed SPRINT that provides scalability, 

parallelism and removes memory restriction. It achieves 

parallelism by its design, which allows multiple processors to 

work together. In this algorithm list are created as are created 

in SLIQUE. Initially an attribute list for each attribute in the 

data set is created. The entries in these lists called attribute 

records that consists an attribute value, a class label and the 

index of the record. Initial lists for continuous attributes are 

sorted by attribute value. If the complete data does not fit in 

memory, attribute lists are kept on disk. Thus memory 

restrictions are solved. The initial lists formed from the 

training set are linked with the root of the classification tree. 

As the algorithm executes the tree is grown and nodes are 

split to create new children, the attribute lists for each node 

are partitioned and associated with the children. The order of 

the records in the list is maintained while partition and thus 

partitioned lists never require resorting. The algorithm uses 

gini index as splitting criteria. The results demonstrate good 

scale up and speedup on large data set. The size up 

performance is also good because the communication costs 

for exchanging split points and count matrices does not 

change as the training set size is increased.  

Gehrke et al. [123] proposed a framework called Rainforest 

that provides approach for implementing scalability in 

decision tree algorithms with large data sets. Rainforest makes 

refinement to some initial steps of decision tree construction 

algorithm. Algorithm creates only one attribute list for all 

categorical attributes jointly. It creates the histograms for 

splitting information and thus avoids additional scan. The 

refinement is made up to this step, afterwards remaining part 

conventional decision tree algorithm proceeds.  

The improvements claimed are as follows. The best splitting 

criteria available can be exploited for classification in a 

scalable manner. The algorithm claims performance 

improvements of greater than a factor of five over the Sprint 

algorithm, which is the known fastest scalable classification 

algorithm. Alsabti et al. proposed CLOUDS [124] a decision 

tree classifier for large datasets. The proposed algorithm 

samples for splitting points on numeric attributes followed by 

estimate procedure to narrow search space of best split. 

CLOUDS reduces computational and I/O complexity as 

compared to benchmark classifiers with quality in terms of 

accuracy and tree size. Gehrke et al. proposed [125] BOAT an 

approach for optimistic decision tree construction. It uses 

small subset of data for initial decision tree construction and 

refines it to construct final tree. With only two scans of 

training data it can construct several levels of decision tree 

and thus it is claimed to be faster by factor three. It can handle 

insertion and deletion of data in dynamic databases and thus it 

is first scalable incremental decision tree approach.  

8.3 Meta Decision Trees 

Meta learning [132] technique integrates distinct learning 

processes. Several meta-learning methods are been proposed 

for integrating autonomously learned classifiers in a parallel 

or distributed computing environment.  

The process of constructing meta classifiers can be divided 

into two sub-processes. First process is to build a diverse set 

of base-level classifiers and second process is to combine 

predictions by base-level classifiers. Several approaches can 

be used to generate base-level classifiers to single data set. 

The approaches are using different learning algorithms or 

using a single learning algorithms. Voting, stacking and 

cascading are combining techniques. Meta decision tree 

combines multiple base level decision tree classifiers. The 

Meta decision tree leaf points the base level classifier, 

whereas ordinary decision tree leaves specify classification. 

http://dl.acm.org/author_page.cfm?id=81317491726&coll=DL&dl=ACM&trk=0&cfid=79071820&cftoken=37203042
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Todorovski and Dzeroski [127], [128] modified C4.5 to 

develop algorithm MLC4.5 for learning Meta decision tree. 

Todorovski and Dzeroski compared meta decision trees with 

ensemble learning methods bagging and boosting and found 

to perform better [129]. The important issues, approaches and 

applications of meta-learning are discussed in [136], [137].  

9. Surveys 

The work on literature review of decision trees and related 

issues is reviewed here. Murthy [3] in his paper covered 

multi-disciplinary existing work on decision trees. The basics 

and terminologies of decision trees construction, details of 

tree construction methods are reviewed. The paper provides 

summarized existing surveys and also discusses work on 

determining splits at tree nodes, various pruning techniques. 

The other sections on several different topics relevant to tree 

construction such as sample size and dimensionality, work on 

improving greedy induction, incorporating costs, estimating 

probabilities from decision trees are provided. The work also 

compares tree based data exploration to alternative methods 

such as multivariate statistical methods and neural networks. 

At the end some recent, real-world applications of decision 

trees are discussed.  

Safavian and Landgrebe [132] presented a survey of available 

design approaches for decision tree classifier. The paper 

provides potential advantages of decision tree classifier over 

single-state classifiers. The observations concerning the 

relation between decision trees and neural networks are also 

presented. This review also presents the different issues in 

decision tree classifiers along with the probable lacunas of 

each method.  

Rokach and Maimon [133] analyzed various issues in decision 

tree construction. The survey of basics of decision trees, 

decision tree complexity metrics, algorithmic framework for 

decision trees, details of various splitting criteria, pruning 

methods are presented. In addition the issues like missing 

attribute values, misclassification cost, various decision tree 

inducers, handling large database with decision trees are 

presented.  

10. Other Issues 

Induction of incremental decision trees and oblique decision 

trees are some of the important issues in decision tree learning 

and these issues are discussed here.  

10.1 Incremental Tree Induction 

The normal decision tree-learning algorithm builds decision 

tree on currently available training set. If new training cases 

are offered, the previously built decision trees are not useful 

and we have to execute the decision tree algorithm once again 

from scratch to add new cases in decision tree. Utgoff [134] 

developed incremental decision tree learning algorithm. The 

incremental decision tree algorithm adds new training 

instances to current decision tree without reconstruction of the 

decision tree. The results produced are equivalent to the 

standard decision tree learning algorithms.  

Reynolds and Shehri [135] proposed use of cultural algorithm 

based evolutionary programming to direct incremental 

decision tree learning. The proposed algorithm constructs a 

tree with minimum number of nodes and uses of few variables 

for its construction. It is found that evolutionary approaches 

enhance the quality of built trees over incremental tree 

approach ITI in certain cases.  

10.2 Oblique Decision Tree 

The Oblique decision tree is proposed for applications where 

the instances have numeric attribute values. The oblique 

classifier builds decision trees that contain linear 

combinations of one or more attributes at each internal node. 

Most of the decision tree induction algorithms generate tests 

at each internal node that involve a single attribute of the data 

at each internal node the trees. These tests are equivalent to 

hyperplanes that are parallel to one of the axes in the attribute 

domain and the resulting trees are called as axis-parallel trees. 

The oblique decision tree partitions the space of examples 

with both oblique and axis-parallel hyperplanes. The oblique 

hyperplanes are more complicated than finding axis-parallel 

Sr. No. Data Set No. of Instances No. of Attributes Description  

1 Annealing  798 38 Annealing process data 

2 Australian 690 14 Credit card data 

3 Balance scale  625 5 Weight and Distance data 

4 Breast  286 9 Breast cancer data 

5 Breast W 699 10 Breast cancer data 

6 Pima Indians  768 9 Pima Indians Diabetes test data 

7 German  1000 20 Credit data 

8 Glass 214 10 Glass identification data 

9 Heart 270 13 Heart dieses data 

10 Hepatitis  155 19 Hepatitis data 

11 Horse Colic 368 27 Horse Colic data 

12 Iris 150 4 Iris plants data 

13 Kr-vs-kp  3196 36 Chess data 

14 Labor  57 16 Labor negotiation, agreements  

15 Mushroom 8124 22 Physical characteristic of mushroom  

16 Segment  2310 19 Hand segmented image data 

17 Tic-tac-toe 958 9 Tic-tac-toe games data 

 

Table1: Commonly used benchmark datasets in decision tree research 
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partitions, demanding greater computational effort.  

Murthy et al. [136] extended the work of Breiman et al. 

[9] and developed OC1 a randomized algorithm for inducing 

oblique decision tree. The use of randomized hill-climbing 

algorithm in OC1 is more efficient than other existing 

randomized methods. The algorithm C4.5 uses goodness 

measure, which should be maximum, while OC1 uses 

impurity that should be minimum. The available impurity 

measures in OC1 are information gain, gini index, twoing 

rule, max minority, sum minority and sum of variations. 

These measures can be used as per the need of the application. 

Twoing rule is the default impurity measure. OC1 uses the 

reciprocal of twoing value as a goodness measure hence tries 

to minimize it and uses cost complexity pruning as default 

pruning method. Setiono and Liu [137] proposed simple 

method to generate oblique decision trees. Iyengar [138] 

proposed a new method of constructing oblique decision trees. 

The method can be integrated with ease into available 

decision tree tools. In this method the normal decision trees 

are pruned. The pruned decision trees are used to learn high-

quality candidate oblique vectors. Then the learned oblique 

vectors are fed back to the decision tree algorithm. The 

resulting trees are accurate and compact. Cantu-Paz and 

Kamath [139] proposed evolutionary methods for inducing 

Oblique decision trees. The empirical results show that the 

EAs quickly obtain competitive classifiers and improved scale 

up than traditional methods to size of dataset used in training. 

11. Decision Tree Learning Softwares And 

Commonly Used Dataset 

Various decision tree softwares are available for researchers 

working in data mining. Some of the prominent softwares 

employed for analysis of data and some of the commonly used 

data sets for decision tree learning are discussed below.  

WEKA–WEKA (Waikato Environment for Knowledge 

Analysis) workbench is set of different data mining tools 

developed by machine learning group at [140] University of 

Waikato, New Zealand. WEKA versions supporting windows, 

Linux and MAC operating systems are available. It provides 

various associations, classification and clustering algorithms, 

in addition to that it provides pre-processors like filters and 

attribute selection algorithms. In case of decision tree learning 

WEKA provides J48 i.e. C4.5 implementation in java, Simple 

CART and Random Forest Tree are some of the prominent 

tree classifiers. In J48 we can construct trees with EBP, REP 

and unpruned trees. The input data file is in .arff (attribute 

relation file format) format. The source code is available to 

the user.  

C4.5- Version C4.5.8 developed by Quinlan [2] supports Unix 

based operating systems only. The package consists of 

programs for decision tree generator, the rule generator, the 

decision tree interpreter and the production rule interpreter. 

The decision tree generator expects two input files with 

extentions .name and .data file as input files. The .name file 

provides information about attributes and classes. The .data 

file contains actual attribute values with their class. The 

source code of C4.5 is available to the user. 

OC1- OC1 is an oblique decision tree classifier by Murthy 

[136]. Various splitting criteria are also available with this 

package. The OC1 software can also be used to create both 

standard axis-parallel decision trees and oblique trees. The 

source code is available to the user. 

GATree- GATree is evolutionary decision tree by Papagelis 

and Kalles [96]. GATree works on windows operating system. 

The evaluation version of GATree is available on request to 

the authors. Here we can set various parameters like 

generations, populations, crossover and mutation probability 

etc. to generate decision trees.  

Commonly Used Data Sets  

Researchers have used various benchmark datasets from 

University of California machine learning repository, UCI 

Repository [141]. Some of the most commonly used datasets 

by researchers are explained in Table 1 with number of 

records and attributes in each data set and description of data. 

Some of the data sets may not be available at present. 

12. The Applications of Decision Trees in 

Various Areas 

The decision tree algorithm has applications in all walks 

of life. The application areas are listed below  

Business: Virine and Rapley [142] proposed use of decision 

trees in visualization of probabilistic business models. Yang et 

al. [143] proposed use of decision tree in customer 

relationship management. Zhang et al. [144] proposed use of 

decision tree in credit scoring for credit card users. 

E-Commerce: A good online catalog is essential for the 

success of an e-commerce web site, Sung et al. [145] 

mentioned use of decision tree for construction of online 

catalog topologies. 

Energy Modelling: Energy modelling for buildings is one of 

the important tasks in building design. Zhun et al. [146] 

proposed decision tree method for building energy demand 

modelling. 

Image Processing: Macarthur et al. [147] proposed use of 

decision tree in content-based image retrieval. Park et al. 

[148] proposed perceptual grouping of 3-D features in aerial 

image using decision tree classifier. 

Intrusion Detection: Sinclair et al. [149] proposed decision 

trees with genetic algorithms to automatically generate rules 

for an intrusion detection expert system. Abbes et al. [150] 

proposed protocol analysis in intrusion detection using 

decision tree.  

Medical Research: Medical research and practice are the 

important areas of application for decision tree techniques. 

Stasis et al. [151] proposed decision trees algorithms for heart 

sound diagnosis. Lenic et al. [152] focused on decision tree 

methods that can support physicians in medical diagnosing in 

case of mitral valve prolapse. Kokol et al. [153] introduced 

decision trees as part of intelligent systems that help 

physicians. Dong et al. [154] proposed evaluating skin 

condition using a decision tree. Kennedy and Adams [155] 

proposed decision tree to help out in selecting a brain 

computer interface device for patients who are cognitively 

intact but unable to move or communicate. Hui and GaiLiping 

[156] proposed analysis of complex diseases by statistical 

estimation of diagnosis with genetic markers based on 

decision tree analysis. 

Intelligent Vehicles: The job of finding the lane boundaries 

of the road is important task in development of intelligent 

vehicles. Gonzalez and Ozguner [157] proposed lane 

detection for intelligent vehicles by using decision tree. 
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Object Recognition: Freixenet et al. [158] proposed use of 

decision trees for color feature selection in object recognition 

for outdoor scenes. 

Reliability Engineering: Claudio and Rocco [159] proposed 

approximate reliability expressions for network reliability 

using a decision tree approach. Assaf and Dugan [160] 

proposed method that establishes a dynamic reliability model 

and generates a diagnostic model using decision trees for a 

system.  

Remote Sensing: Remote sensing is a strong application area 

for pattern recognition work with decision trees. Simard et al. 

[161] proposed decision tree-based classification for land 

cover categories in remote sensing. Palaniappan et al. [162] 

proposed binary tree with genetic algorithm for land cover 

classification.  

Space Application: The portfolio allocation problem is 

pervasive to all research activities. The use of past experience 

in this area with help of decision trees is recommended. 

Manvi et al. [163] suggested use of decision trees in NASA 

space missions. 

Speech Recognition: Amit and Murua [164] proposed speech 

recognition using randomized decision trees. Bahl et al. [165] 

proposed a tree-based statistical language model for natural 

language speech recognition, which predicts the next word 

spoken, based on previous word spoken. Yamagishi et al. 

[166] proposed decision trees for speech synthesis. 

Software Development: Selby and Porter [167] proposed 

decision trees for software resource analysis. Khoshgoftaar et 

al. [168] proposed decision trees for software quality 

classification. 

Steganalysis: Geetha et al. [169] proposed evolving decision 

tree based system for audio stego anomalies.  

Text Processing: Diao et al. [170] introduced decision trees 

for text categorization.  

Traffic and Road Detection: Wu et al. [171] proposed use of 

decision tree in analysing, predicting and guiding the traffic 

flow. Jeong and Nedevschi [172] proposed intelligent road 

region detection based on decision tree in highway and rural 

way environments.  

Video Processing: Jaser et al. [173] proposed automatic 

sports video classification with decision tree. Cen and 

Cosman [174] explained decision trees for error concealment 

in video decoding. 

Web Applications: Bonchi et al. [175] proposed decision 

trees for intelligent web caching. Chen et al. [176] presented a 

decision tree learning approach to diagnosing failures in large 

Internet sites. 
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