

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

13

Issues in Optimization of Decision Tree Learning:

A Survey

Dipak V. Patil

 Department of Computer Engineering
Sandip Institute of Technology and Research Centre,

Nashik, M.S., India.

R. S. Bichkar
Department of Electronics & Tele. Engg.
G.H. Raisoni College of Engineering and

Management, Pune, M.S., India.

ABSTRACT

Decision tree induction is a simple but powerful learning and

classification model. Decision tree learning offers tools for

discovery of relationships, patterns and knowledge from data

in databases. The volume of data in databases is growing to

quite large sizes, both in the number of attributes and

instances. Decision tree learning from a very large set of

records in a database is quite complex task and is usually a

very slow process, which is often beyond the capabilities of

existing computers. There are various issues and problems

related to decision trees. To handle these issues various

approaches have been proposed in the past by different

researchers. This paper is an attempt to summarize the

proposed approaches, tools etc. for decision tree learning with

emphasis on optimization of constructed trees and handling

large datasets.

Keywords: Decision Tree, Optimization.

1. INTRODUCTION

Decision tree induction is a simple yet powerful learning and

classification model. Decision tree learning offers tools for

discovery of relationships, patterns and knowledge from data

in databases. The volume of data in databases is growing to

quite large sizes, both in the number of attributes and

instances. Decision tree learning using a very large set of

records in a database is quite complex task and is usually a

very slow process, which is often beyond the capabilities of

existing computers. There are various issues related to

decision trees and training data sets. To handle these issues

various approaches have been proposed in the past by

different researchers. This paper summarizes these proposed

approaches to handle various issues related to decision tree

learning and issues related to handling problems with data.

The emphasis is given on issues which help to optimise the

process of decision tree learning.

A decision tree is a classifier in the form of tree structure that

contains decision nodes and leaves. It assigns a class value to

an instance. In tree construction process, partitioning of

attributes is according to splitting criteria that implements

better use of available attributes and also implies

computational efficiency in classification. The tree

construction takes polynomial time concerning the number of

attributes and inputs, as no backtracking is required [1]-[7].

Some of the important approaches and issues are been

introduced in this paper. The issues are:

1. Decision tree learning algorithm and various splitting

 criteria such as gain, gini index, twoing rule etc.

2. Pruning techniques-these includes the techniques for

 pruning overfitted decision tree technique. Some prominent

 methods includes error based pruning, cost complexity

 pruning and reduced error pruning.

3. Decision tree learners- decision tree learning algorithms

 such as CHAID, ID3, C4.5 and CART.

4. Data preprocessing- Data preprocessing includes t

 echniques for feature subset selection, data sampling,

 outlier detection and handling missing data. This topic is

 generalized and is not restricted to techniques for

 decision tree.

5. Soft computing approach for decision tree learning &

 optimization these include use of neural networks,

 Evolutionary techniques and Fuzzy logic.

6. Handling large data set approaches such as parallel,

 distributed, scalable and Meta decision tree.

7. Surveys on decision tree learning.

8. Decision tree learning softwares available and some of

 the commonly used benchmark datasets.

9. Other issues like incremental induction of decision tree

 and oblique decision trees.

10. Applications of decision trees in various areas.

 Decision tree algorithms construct trees by recursively

partitioning a training set. A training set consists of set of

attributes and a class label. An attribute can have real,

Boolean or ordinal values. A decision node states a test to be

carried on a particular attribute value of an instance. A branch

is present for each probable output of the test. Thus, a tree is

traversed from the root to a leaf of the decision tree to identify

the class of the instance. The specified class at the leaf is the

classification by the decision tree. The classification accuracy,

defined as the percentage of correctly classified instances in

the test data, specifies the performance of decision tree. The

generalized decision tree algorithm is explained here.

1.1 The Tree Construction Algorithm

The tree construction algorithms use a divide and conquer

approach to construct a decision tree. It evolves a decision

tree for a given training set T consisting of set of training

instances. An instance denotes values for a set of attributes

and a class. Let the classes be denoted by {C1, C2, …, Cn}.

Initially, the class frequency is computed for instances in

training set T. If all instances belong to same class, node K

with that class is constructed. However, if set T contains

instances belonging to more than one class, the test for

selecting attribute for splitting is executed and the attribute

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

14

satisfying splitting criteria is chosen for the test at the node.

The training set T is then partitioned into k exclusive subsets

{T1, T2, …, Tk } on the basis of this test and the algorithm is

recursively applied on each nonempty partition. The algorithm

for construction of a decision tree is given below.

Construct (T)

1. Calculate freq (Ci, T).

2. If (all instances belong to same class), return leaf.

3. For every attribute A test for splitting criteria.

 Attribute satisfying test is test node K.

4. Recur Construct (Ti) on each partition Ti.

 Add those nodes as children of node K.

5. Stop.

2. Selecting the Best Attribute for Splitting

The selection of test attribute at each node in the decision tree

is an important process. Various approaches have been

proposed to select the best possible attribute. The approaches

are categorized by Ben-Bassat [6] as use of information

theory, distance measure and dependence measure. Some of

the approaches are discussed below.

2.1 Using Information Theory

Last and Maimon [7] expressed that objective of process of

data classification is to maximize the information gain as it

leads to increase in classification accuracy. Quinlan [2] used

information gain and gain ratio in decision tree algorithm. The

gain is defined as the information obtained from a message

based on its probability P. For any set of instances T, the

probability that an instance belongs to class Ci is given as

ifreq (C ,T)
P

|T|
 (1)

Where |T| is number of instances in set T and freq (Ci,T)

denotes the number of instances in T that belong to class Ci..

Now, the average information contained in set T regarding

class association of instances, called entropy of set T, and is

calculated in bits as

k

i 2 i

i=1

info(T) = P log (P) bits.

 (2)

Where k is the number of classes in set T. The test X

performed at a node on the preferred attribute provides

subsets T1, T2, …, Tk . The information by this partitioning

process is calculated as the sum over these subsets, is given as

 (3)

The reduction in entropy due to partioning of T with test X on

the preferred attribute, denoted as Gain (X), is calculated as

     xGain X info T info T  (4)

 The attribute which provides maximum information gain is

selected. The problem with above approach for selection of

test attribute at a node is that it is biased towards attributes

with many values as compared to attributes with less values

and it leads to large decision trees that poorly generalize the

problem. This problem can be eliminated using normalization

of gain criterion and use of gain ratio. The gain ratio

calculates ratio of information generated by partioning T and

is expressed as

 gain ratio (X) = gain (X) split info(X)
 (5)

The split info(X) calculates information gained by splitting

training set T into k subsets on test X.

k

2

i =1

| | | |
 info(X) = - log

| | | |

i iT T
split

T T

 
  

 
 (6)

The attribute on which test obtains maximum gain ratio is

selected. This approach has problem that it tends to favour

attributes for which split info(X) is very small. Another

problem is that gain ratio can be calculated only when the

split info(X) is nonzero. To overcome this problem, Quinlan

suggested computing information gain over all attributes and

considering attributes with information gain which is at least

as large as average of information gain over all attributes. The

use of gain ratio provides better accuracy and complexity of

classifier.

Jun et al. [8] suggested a modification in above entropy

calculation where the base of the logarithm is the number of

successors to the node and have shown that this approach can

handle huge amount of data efficiently.

2.2 Using Distance Measure

A classification and regression tree uses gini index as impurity

measure for selecting attribute that is based on distance

measure. These attribute evaluation criteria computes

separability, deviation or discrimination between classes [9].

For a data set T, gini index is defined as

2

1

() 1
n

i

i

gini T p


  (7)

Where pi indicates the relative frequency of class i in the data

set T. The attribute with the largest reduction in impurity is

used for splitting the node's records. After splitting T into two

subsets T1 and T2 with sizes N1 and N2 respectively then the

gini index of the split data is defined as

1 2

1 2
() () ()

split

N N
gini T gini T gini T

N N
 (8)

Breiman et al. [9] identified that the gini index has a problem

in handling large number of classes. In such a case, binary

criterion called twoing index is used which is based on

dividing the multiple classes into two super classes and then

calculating the best split on the attribute based on these super

classes. Murthy et al. [10] explained this twoing rule as

follows. In the beginning the set is the complete training set T,

is divided into two non-overlapping subsets, TL and TR by

hyperplane H. The impurity measure at the start checks if TL

and TR are homogeneous and belongs to the same category

and in that case return minimum zero impurity. The value to

be computed is defined as

X
i

1

| |
info (T) = info(T)

| |

k
i

i

T

T



International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

15

2

| |.| | 2

| | | |n
1

(| |)i iL R

L R

k
L RT T

T T

i

Twoingvalue


  (9)

Where |TL| and |TR| represents the number of instances on the

left and right of a split at node T, and the number of instances

at node T are represented by n. The number of instances in

category i on the left and right of the split are represented by

Li and Ri respectively.

Mantras [11] introduced distance based attribute selection

measure. The attribute selected with this criterion is in

partition, a partition which is closest to the correct partition of

the subset of training set related to the node. Chandra et al.

[12] proposed a novel node splitting criteria called as distinct

class based splitting measure (DCSM) for decision tree

induction. It is motivated by concept of gini index. The

measure gives importance to the number of distinct classes in

a partition. The DCSM criterion is combination of the product

of two terms. The first term handles the number of diverse

classes in every child partition. With increase in number of

different classes in a partition the first term increases.

Consequently these purer partitions are favored. The second

term decreases when there are more instances of a particular

class as against the total number of instances in that partition.

As a result amalgamation favors purer partitions.

Rounds [13] presented attribute selection criteria based on the

Kolmogorov-Smirnov distance that keeps an optimal

classification decision at each node. Utgoff and Clouse [14]

used the same Kolmogorov-Smirnov distance measure with

improvements to take care of attribute with multiclass and

missing attribute values. Martin [15] has done empirical

comparative analysis of splitting methods like distance,

orthogonality, a Beta function and two chi-squared tests.

Buntine and Niblett [16] recommended alternative

investigational methods and presented additional results for

splitting rules for decision tree induction.

3. Decision Tree Pruning

Decision trees are often large and complex and as a result they

may become inaccurate and incomprehensible. The causes of

overfitting in decision trees are the noisy data, unavailability

of training samples for one or more classes and insufficient

training instances to represent the target function. Decision

tree pruning removes one or more subtrees from a decision

tree. It makes overfitting trees more accurate in classifying

unseen data.

Various methods have been proposed for decision tree

pruning. These methods selectively replace a subtree with a

leaf, if it does not reduce classification accuracy over pruning

data set. Pruning may increase the number of classification

errors on the training set but it improves classification

accuracy on unseen data.

Pruning techniques can be divided into two groups. The

techniques in first group approximately compute the

probability of misclassification of a subtree and then make

pruning decision using an independent test set called pruning

data set. In second group, iterative grow and prune method is

used during the construction of a tree. Some important

pruning methods are reviewed here briefly.

3.1 Cost Complexity Pruning

Cost complexity pruning [9] is used in the CART system.

Starting with initial unpruned tree that is constructed from

complete training set, this algorithm constructs a chain of

progressively smaller pruned trees by replacing one or more

subtress best possible leaves. The method prunes those

subtrees that give the lowest increase in error for the training

data. The cost complexity of a tree is defined as ratio of

number of correctly classified instances to misclassified

instances in training data plus number of leaves in that tree

multiplied by some parameter α. [17] - [19].

3.2 Reduced-Error Pruning

The reduced error pruning proposed by Quinlan [19] is a

bottom-up approach in which the non-leaf subtrees are

replaced with best possible leaf nodes if these replacements

reduce the classification error on the pruning data set.The

process continues towards the root node until the pruning

decreases error. The process assures smallest and most

accurate decision trees with respect to the test data [17]-[20].

3.3 Critical Value Pruning

Mingers [20] proposed critical value pruning, which uses the

information gathered during tree construction. It sets a

threshold called a critical value to select a node for pruning.

Various measures such as gain, info gain etc. can be used to

select the best attribute at the test node. If the value of

selection criterion is smaller than this threshold value the

subtree is replaced with a best possible leaf. However, if the

subtree contains at least one node having value greater than

the threshold, the subtree cannot be pruned [17], [18].

3.4 Minimum Error Pruning

Niblett and Bratko [17] proposed Minimum-error pruning,

which is a bottom-up approach. To get error estimates of a

subtree to be pruned, the errors for its children are estimated.

The dynamic error of the node is calculated as weighted sum

of static errors of its children. If dynamic error of t is less than

its static error, t will be pruned and will be replaced with best

possible leaf.

3.5 Pessimistic Error Pruning

Pessimistic error pruning, a top down approach proposed by

Quinlan [19] uses error rate estimates to make decisions

concerning pruning the subtrees similar to cost complexity

pruning. It calculates classification errors on training data and

does not require separate pruning set. Since the classification

errors estimated from training set cannot provide best pruning

results for unseen data, this pruning technique assumes that

each leaf classifies a certain fraction of instances with error.

To reflect these errors, it adds a continuity correction for

binomial distribution to the derived training error of a subtree.

However, as the corrected misclassification estimation by a

subtree is expected to be optimistic, the algorithm calculates

standard error. Quinlan recommends pruning a subtree if its

corrected estimate of error is lower than that for the node by at

least one standard error [18], [20].

3.6 Error-Based Pruning

Error-based pruning is the default pruning method for the

well-known C4.5 decision tree algorithm [2]. Instead of using

a pruning set it uses error estimates. The method assumes that

the errors are binomially distributed and calculates error

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

16

estimates from the training data. The number of instances

covered by the leaf of the tree are used to estimate errors.

A bottom-up approach [18] is used for error-based pruning. If

the number of predicted errors for the leaf is not greater than

the sum of the predicted errors for the leaf nodes of that

subtree then subtree is replaced with that leaf.

3.7 Minimum description length pruning

Mehata et al. [21] and Quinlan and Rivest [22] utilized MDL

principle for decision tree pruning. The principle of minimum

description length used here states that a classifier that

compresses the data is a preferable inducer. The MDL pruning

method selects decision tree with less number of bits required

to represent it. The size of the decision tree is measured as

number of bits required for encoding the decision tree. The

method searches for decision tree that maximally compresses

the data [18].

3.8 Optimal Pruning

Optimal pruning algorithm constructs smaller pruned trees

with maximum classification accuracy on training data.

Breiman et al. [9] first suggested a dynamic programming

solution for optimal pruning algorithm. Bohanec and Bratko

[23] introduced an optimal pruning algorithm called OPT

which gives better solution. Almuallim [24] proposed an

enhancement to OPT called OPT-2. It is also based on

dynamic programming and has flexibility in various aspects

and is easy to implement.

3.9 Improvements to Pruning Algorithms

Matti Kääriäinen [25] analyzed reduced error pruning and

proposed a new method for obtaining generalization of error

bounds for pruning the decision trees. Error-based pruning has

been blamed for the general effect of under-pruning. Hall et

al. [26] proved that if the certainty factor value CF is

appropriately set for the data set, error-based pruning

constructs trees that are essentially steady in size, in spite of

the amount of training data. The CF calculates the upper limit

of the probability of an error at a leaf. Oates and Jenson [27]

presented improvements to reduced error pruning to handle

problems with large data sets. Macek and Lhotsk [28]

presented a technique for pruning of decision trees based on

the complexity measure of a tree and its error rate. The

technique utilizes the Gaussian complexity averages of a

decision tree to compute the error rate of classification. Frank

[29] enhanced performance of standard decision tree pruning

algorithm. The performance is enhanced with statistical

significance of observations. Bradford et al. [30] proposed

pruning decision trees with misclassification cost with respect

to loss. Scott [31] proposed algorithms for size-based

penalties and subadditive penalties.

Bradley and Lovell [32] proposed a pruning technique that is

sensitive to the relative costs of data misclassification. They

implemented two cost-sensitive pruning algorithms, by

extending pessimistic error pruning and minimum error

pruning technique. Cai1 et al. [33] proposed cost-sensitive

decision tree pruning CC4.5 to deal with misclassification

cost in the decision tree. It provides three cost-sensitive

pruning methods to handle with misclassification cost in the

decision tree. Mansour [34] proposed pessimistic decision tree

pruning based on tree size. A graphical frontier-based pruning

(FBP) algorithm is proposed by Huo et al. [35] which

provides a full spectrum of information while pruning the tree.

The FBP algorithm starts from leaf nodes and proceeds

towards root node with local greedy approach. The authors

further proposed combination of FBP and cross validation

method.

In decision tree learning pre-pruning handles noise and post-

pruning handles the problem of overfitting. Faurnkranz [36]

proposed two algorithms to combine pruning and post pruning

operations. A method for pruning of oblique decision trees

was proposed by Shah and Sastry [37].

3.10 Comparison of Pruning Methods

The empirical comparative analysis is one of the important

methods to compare the performance of various available

algorithms. Quinlan [19] examined and empirically compared

tree cost complexity pruning, reduced error pruning and

pessimistic pruning on some data sets. These methods have

demonstrated significant improvement in terms of size of the

tree. Cost complexity pruning tends to produce smaller trees

than reduced error pruning or pessimistic error pruning where

as in case of classification accuracy, reduced error pruning is

somewhat superior to Cost complexity pruning.

Floriana et al. [18] presented comparative analysis six well-

known pruning methods. Each method has been critically

reviewed and its performance has been tested. The paper

provides study of theoretical foundations, computational

complexity and strengths and weaknesses of the pruning

methods. According to this analysis, reduced-error pruning

outperforms other methods. In addition, MEP, CVP and EBP

tend to under prune whereas reduced-error pruning tends to

over prune.

Similarly, Mingers [19] analyzed five pruning methods with

four different splitting criteria. The author has provided the

analysis based on size and accuracy of the tree. This work

showed that minimum-error pruning is extremely sensitive to

the number of classes in the data and is the least accurate

method. Pessimistic error pruning is bad on certain datasets

and needs to be handled with care. Critical value, cost

complexity, and reduced-error pruning methods produced

trees with low error rates on all the data sets with consistency.

He further clarified that there is no evidence of relation

between splitting criteria and pruning method. Windeatt [17]

presented empirical comparison of pruning methods for

ensemble classifiers. It has been proved that error based

pruning performs best for ensemble classifiers. From above

studies we can conclude that reduced error pruning and cost

complexity pruning methods are the promising pruning

methods as compared to other available methods.

4. Decision Tree Learners

Researchers have developed various decision tree algorithms

over a period of time with enhancement in performance and

ability to handle various types of data. Some important

algorithms are discussed below.

CHAID: CHAID (CHi-squared Automatic Interaction

Detector) is an initial decision tree learning algorithm, which

is an extension of the AID (Automatic Interaction Detector)

and THAID (Theta Automatic Interaction Detector)

procedures. It works on principal of adjusted significance

testing. It was developed by Kass [38] in 1980. CHAID is

easy to interpret and can be used for classification and

detection of interaction between variables. After detection of

interaction between variables it selects the best attribute for

splitting the node, such that each child node is made of a

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

17

collection of homogeneous values of the selected attribute.

The method can handle missing values. It does not imply any

pruning method.

ID3: ID3 (Iterative Dichotomiser 3) decision tree algorithm is

developed by Quinlan [39]. It is based on Occam’s razor,

which states that simplest hypothesis should be adopted. Here

Occam’s razor is incorporated through use of information

entropy. ID3 uses information gain as splitting criteria.

Information gain decides how effectively the attribute

separates training instances according to their class. ID3 does

not use pruning method. It cannot handle numeric attributes

and missing attribute values. When training data contains

noise the performance of the algorithm is degraded.

C4.5: The C4.5 algorithm [8] is improvement over ID3

algorithm. The algorithm uses information gain as splitting

criteria. It can accept data with categorical or numerical

values. To handle continuous values it generates threshold and

then divides attributes with values above the threshold and

values equal to or below the threshold. The default pruning

method is error-based pruning. As missing attribute values are

not utilized in gain calculations the algorithm can easily

handle missing values.

CART: Classification and regression tree (CART) proposed

by Breiman et al. [9] constructs binary trees. The word binary

implies that a node in a decision tree can only be split into two

groups. CART uses gini index as impurity measure for

selecting attribute. The attribute with the largest reduction in

impurity is used for splitting the node's records. It can accept

data with categorical or numerical values and also handle

missing attribute values. It uses cost-complexity pruning. It

can also generate regression trees.

5. Data Pre-Processing

The knowledge discovery process consists of an iterative

sequence of subtasks such as selection of data subset handling

noise and missing data etc. Data pre-processing techniques

used in decision trees are discussed here.

5.1 Feature Subset Selection

The real-world applications provide us numerous attributes

that can be used for learning. When given data set contains

large number of attributes the classification performance of

inductive method may degrade. The solution is to use a

quality subset of those attributes. Feature selection improves

performance of learning algorithms by finding a minimal

subset of relevant features. Feature selection removes

irrelevant, noisy and repeated features and keeps the most

relevant features.

Ron Kohavi [40] proposed the use of a search with

probabilistic estimates for probing a space. The method

results in accurate and comprehensible trees. Caruana and

Freitag [41] proposed a caching system with hill climbing in

attribute space for feature subset selection and found that hill

climbing in attribute space can get significant improvement in

classification performance. Mark Last et al. [42] proposed an

algorithm that computes fuzzy information gain as quality

measure. The resulting tree size is reduced. Wu and Flach [43]

proposed merging of heuristic measures and exhaustive search

method to get optimal subset. Goodman-Kruskal measure and

Fisher’s exact test are used to rank the feature.

Huan et al. [44] proposed a monotonic measure, which is

accurate and fast. The proposed method reduces error rate.

Grabczewski and Jankowski [45] proposed two feature

selection algorithms that are based on separability of spilt

value criteria and verified that they are good alternatives to

the available most popular methods with respect to

classification accuracy. Bins and Draper [46] proposed three-

stage algorithm for large data sets. The algorithm is

combination of the relief algorithm to remove irrelevance, K-

means to remove redundancy and a standard combinatorial

feature selection algorithm.

Several authors have proposed evolutionary computation

based methods for feature selection. Guerra-Salcedo et al. [47]

proposed hybrid genetic feature selection approach that is fast

and accurate. Landry et al. [48] proposed a feature selection

technique based on the genetic programming. Bala et al.

proposed [49] use of genetic algorithms for evaluations of

features.

 Filter and wrapper approaches are also used for feature subset

selection. Filters remove irrelevant features from data set.

Filters work independently of any induction and it takes place

before induction process. The filter approach does not

consider the effect of subset selection on performance of

induction algorithm.

The Wrapper approach uses a statistical re-sampling

technique such as cross validation along with the induction

algorithm. The induction algorithm with some objective

function is used to evaluate the selected feature subset.

Legrand and Nicolas [50] proposed a hybrid technique that

combines filter and wrapper approaches with principle of

preferences aggregation. Hall and Smith [51] proposed a

correlation based filter approach to select feature subset. Duch

et al. [52] proposed inexpensive filters based on information

theory. Hall [53] proposed faster and accurate filter algorithm

useful for continuous and discrete domains. Yuan et al. [54]

proposed a two-stage feature selection algorithm of filter and

wrapper approach to get benefit of both approaches. Initially

the filter approach eliminates irrelevant features and then the

wrapper approach eliminates redundant features. Lanzi [55]

proposed genetic algorithm with filter that is faster than

standard genetic algorithm for feature selection.

5.2 Outlier Detection

The problem of outlier detection and noise elimination is an

important issue in data analysis. The removal of outliers

improves data quality and hence classification performance.

Several researchers have proposed various approaches for data

cleaning. These include use of MDL principle, neural

networks, filters, Occam's razor and some other methods. The

approaches are discussed below.

John George [56] proposed a method that removes a

misclassified training instance from training data and rebuilds

tree on filtered data, the process is repeated till all such

instances are removed from training data. Misclassified

instances are identified using tree classifier as a filter. The

classifier built on clean data improves prediction accuracy.

Arning et al. [57] proposed framework for the problem of

outlier detection. Similar to human beings, it observes all

instances for similarity with data sets and it treats dissimilar

data set as an exception. A dissimilarity function is used to

find out an outlier.

Guyon et al [58] proposed training of convolutional neural

networks with local connections and shared weights. The

neural network is trained with minimizing mean-square-error

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

18

cost function with backpropogation algorithm. Unclean data is

applied as input and several increasing strict levels of cleaning

are forced. The classification error is used as an objective

function.

Gamberger and Lavrac [59] proposed conditions for Occam's

razor applicability in noise elimination. The Occam's principle

states that when there are many hypotheses, one should

choose simplest hypothesis that is correct for all the training

instances or maximum training instances. This hypothesis is

expected to capture the information inbuilt in the problem and

provide accurate classification accuracy on unseen data.

Knorr and Ng [60] proposed unified outlier detection system.

Subsequently, they [61] proposed and analyzed some

algorithms for detecting distance-based outliers. Tax and Duin

[62] proposed outlier detection that is based on the instability

of the output of simple classifiers on new objects.

Broadly and Friedl [63] introduced a method for detecting

mislabeled instances. The approach is to employ a set of

learning algorithms to build classifiers that act as a filter for

the training data. The method is based on the technique of

removing outliers in regression analysis [64]. An outlier in

this case is an instance that comes from a different probability

distribution.

Gamberger et al. [65] proposed saturation filter. It is based on

principle that detection and removal of noisy instances from

training data to induce less complex and more accurate

hypothesis. The removal of noisy instances from training data

reduces the complexity and the Less Complex Correct

Hypothesis (CLCH) value. The saturation filter checks the

saturation of training data with use of CLCH value. A source

of all possible correct instances in a given problem domain is

called target concept. A good representation of target concept

in the inducted hypothesis is called target theory. The

saturated training data set can be employed for induction of

stable target theory.

Schwarm and Wolfman [66] proposed Bayesian methods for

data cleaning; the method detects errors and corrects errors

using Bayesian methods. The Bayesian methods utilizes

dependencies between attributes in participated manner and

uses expert knowledge of the relationships between the

attributes. Ramaswamy et al. [67] proposed algorithm for

distance-based outliers that is based on the distance of a point

from its nearest neighbor. The solution ranks each point based

on its distance to its nearest neighbor. The higher points in

this ranking indicate outliers.

Raman and Hellerstein [68] proposed an interactive

framework for data cleaning that integrates transformation

and discrepancy detection. This framework progressively

constructs transformations by adding or undoing transforms,

in an instinctive, graphical manner using a spreadsheet-like

interface. The effect of a transform on instances is available

immediately on screen. In the background, the system

continues to infer the structure of the data in terms of user-

defined domains and uses appropriate algorithms to check it

for outliers. The proposed frame structure progressively

constructs a transformation as outliers are found, and cleans

the data without scripting complex programs or enduring long

delays.

Kubika and Moore [69] presented system for learning explicit

noise. The system detects corrupted fields and uses non-

corrupted fields for consequent modeling and analysis.

Verbaeten and Assche [70] proposed three ensemble based

methods for noise elimination in classification problems. The

first one is base classification algorithm in which ILP

extension of C4.5 is used. This extension uses logical queries

as test values instead of attribute values at test nodes. The

second filter technique proposed is voting filter removes

outlier if all or majority of classifiers misclassify the instance.

The last technique is boosting filters in this method Adaboost

is used and after n number of rounds instances with highest

weighs are removed. Loureiro et al [71] proposed a method

that applies hierarchical clustering methods for outlier

detection. Xiong et al. [72] proposed a hyperclique-based

noise removal system to provide superior quality association

patterns. The hyperclique pattern contains items those are

strongly correlated to each other. The existence of an item in

one matter strongly indicates the existence of every other item

that belongs to the same hyperclique pattern. The h-

confidence threshold designates the strength of this

association. The higher the threshold, the stronger is the

relationship. The system discovers all hyperclique patterns for

a given h-confidence threshold and removes any objects that

are not belonging to any hyperclique pattern.

Seung Kim et al. proposed [73] fast outlier detection for very

large log data S. Hido et al. [74] proposed statistical outlier

detection using density ratio estimation.

5.3 Data Sampling

Sampling is the process of taking a subset of instances that

represents the entire population. The representativeness is the

primary concern in statistical sampling. Sampling is done

since it is impossible to test every single individual in the

population. It is also desirable to save time, resources and

effort while conducting the research. The sample must have

sufficient size to justify statistical analysis. George John and

Pat Langley [75] experimented on static and dynamic

sampling and found that dynamic sampling is robust as

compared to static sampling. Jenson and Oates [5]

experimented on data sampling and proved that as size of the

training dataset increases, size of tree also increases where as

classification accuracy does not increase significantly. Foster

et al. [76] concluded that progressive sampling can be

remarkably efficient. Patil and Bichkar [77] proposed use of

evolutionary decision tree with sampled data to optimise the

problem and found that the proposed method builds trees that

are accurate and relatively smaller in size.

5.4 Handling Missing Attribute Values

Missing attribute values is one of the important and common

problems in the real world data sets. While collecting data

some attribute values from a tuple are lost. It creates problem

for training as well as testing, because it reduces classification

accuracy. Several researchers have addressed the problem of

handing missing attribute values. Little and Rubin [78]

divided the methods for handling missing data into three

categories; the categories are ignoring and discarding data,

parameter estimation, and imputation. Imputation is procedure

of substituting missing values of attributes with some

plausible values. Imputation is further divided as case

substitution, mean or mode imputation, hot and cold deck and

prediction model. Batista [79] experimented k-nearest

neighbour imputation and found that it performs better than

mean or mode imputation method of C4.5 algorithm.

Friedman et al. [80] suggested ignoring every tuple with

missing attribute values from training instances. Authors

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

19

found that it may result in loss of bias information due to

ignoring.

Quinlan experimented on problem of missing attribute values

[81] and concluded that ignoring cases with missing values

hampers the classification accuracy and depends on attribute

to attribute. Quinlan substituted missing values with most

common test outcomes and found that it performs well in

some cases but poorly in others.

Kuligowski and Barros [82] proposed a use of a back

propagation neural network for estimation of missing data by

using concurrent rainfall data from neighboring gauges.

Brockmeier et al [83] experimented empirical comparative

analysis of deletion and imputation Techniques.

Abebe et al. [84] proposed a use of a fuzzy-rule-based model

for substitution in missing rainfall data using data from

neighboring stations. The authors have provided empirical

comparative analysis of results using the fuzzy-rule-based

model and results using an ANN model and a traditional

statistical model. The fuzzy-rule-based model performs

slightly better.

Sinharay et al. [85] experimented on the use of multiple

imputations for the analysis of missing data. Khalil et al. [86]

proposed cyclic federation of data intended for budding ANN

models to estimate missing values in monthly surplus

datasets. Bhattacharya et al. [87] used ANN models to

substitute the missing values of wave data. Fessant and

Midenet [88] proposed use of a self-organizing map (SOM)

for imputation of data along with the multilayer perceptron

(MLP) and hot deck methods.

Musil et al. [89] provided empirical comparative analysis on

list wise deletion, mean substitution, simple regression,

regression with an error term and the EM algorithm. Junninen

et al. [90] experimented on univariate linear, spline and

nearest-neighbor interpolation algorithm, multivariate

regularized expectation–maximization algorithm, nearest-

neighbor, self-organizing map, multilayer perceptron (MLP)

as well as hybrid methods.

M. Subasi, et al. [91] proposed new imputation method for

incomplete binary data. Amman Mohammad Kalteh & Peder

Hjorth [92] experimented on imputation of missing values

with self organizing map, multilayer perceptron, multivariate

nearest neighbor, regularized expectation maximization

algorithm and multiple imputation for precipitation runoff

process data set. Rhian M. et al. [93] proposed a method for

increasing the robustness of multiple imputations.

Patil and Bichkar [94] proposed multiple imputation of

missing data with genetic algorithm based techniques.

Authors proposed to use the domain values of an attribute as

pool of solution for categorical data. The method improves the

classification accuracy of training data.

6. Class Distribution

The classifier performance is affected by varying class

distribution of the training instances. The experiments by

Gary Mitchell Weiss [95] specify that the naturally happening

class distribution is not all the time best for learning. A

balanced class distribution should be preferred to make a

robust classifier. To reduce learning cost it is essential to

control the quantity of training data used for learning. Gary

Mitchell Weiss proposed a budget-sensitive progressive-

sampling algorithm for selecting training instances in such

circumstances. The proposed algorithm formes a class

distribution that performs fairly well for near optimal

learning.

7. Use of Soft Computing Approaches to

Decision Tree Algorithm

Decision tree algorithm requires enhancement pertaining to

different problems. The problems and use of soft computing

techniques as a solution are discussed here.

7.1 Use of Evolutionary Techniques

A decision trees is called optimal if it correctly classifies the

data set and has minimal number of nodes. The decision tree

algorithms use local greedy search method by means of

information gain as target function to split the data set. The

decision trees generated by these methods are efficient with

classification accuracy but they often experience the

disadvantage of excessive complexity. Construction of

optimal decision tree is identified as NP-Complete problem

[3]. This fact leads the use of genetic algorithms that provide

global search through space in many directions

simultaneously. The genetic algorithm is used to handle

combinatorial optimization problems. Different authors have

proposed a use of methodologies that integrates genetic

algorithms and decision tree learning in order to evolve

optimal decision trees. Although the methods are different the

goal is to obtain optimal decision trees.

A. Papagelis and D. Kalles [96] proposed GATree, a

genetically evolved decision trees. The genetic algorithms use

binary string as initial populations but GATree uses binary

decision trees as initial populations. A binary decision tree

that includes one decision node with two different leaves.

Initially to construct such initial trees a random attribute is

selected, if that attribute is nominal valued one of its possible

values is randomly selected and in case of continuous

attributes an integer value from its minimum to maximum

range is randomly selected. Thus the size of the search space

is reduced. Two arbitrary nodes from population of subtrees

are selected and nodes of those subtrees are swapped to

perform crossover operation. In view of the fact that a

predicted class value depends just on leaves, the crossover

operator does not affect the decision trees consistency. An

arbitrary node of a preferred tree is selected and it substitutes

the node’s test-value with a new arbitrary chosen value to

perform mutation. In case if the arbitrary node is a leaf, it

substitutes the installed class with a new arbitrary chosen

class. Validation is performed after crossover and mutation to

get final decision tree. The fitness function for evaluation is

percentage of correctly classified instances on the test data set

by the decision tree. The results show compact and equally

accurate decision trees as compared to standard decision tree

algorithms.

Similarly Z. Fu proposed GAIT [97] algorithm. The algorithm

constructs a set of different decision trees from different

subsets of the original data set by using a decision tree

algorithm C4.5, on small samples of the data. The genetic

algorithm uses these trees as its initial populations. The

selection operation selects decision trees from pool by random

selection mechanism. The crossover operation exchanges

subtrees between the parent trees whereas mutation

exchanges subtrees or leaf inside the same tree. The fitness

criterion for evaluation is the classification accuracy. The

validation on fitness function is performed after crossover and

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

20

mutation to get final decision tree that are smaller in size.

Similar approaches are proposed and experimented in [98],

[99].

7.2 Use of Neural Networks

Neural networks can be used to enhance the decision tree

learning. Zhou and Jiang [106] proposed a variation of C4.5

decision tree algorithm named NeC4.5 that utilizes neural

network ensemble to preprocess the training data for decision

tree construction. The training set may contain noise and thus

the classification accuracy of the data set is reduced.

The algorithm trains a neural network ensemble and the

trained ensemble is used to produce a new training set. It

substitutes the preferred class labels of the original training

tuples with the output from the trained ensemble. Some extra

training tuples produced by the trained ensemble are also

added to the new training set. The new training set is used for

training C4.5. The processed training data by neural network

improves classification accuracy of the decision tree classifier.

7.3 Fuzzy Decision Tree

The fuzzy decision tree provides elevated comprehensibility

and the elegant performance of fuzzy systems. Fuzzy sets and

fuzzy logic permits the modelling of language related

uncertainties. In addition to this, it provides a symbolic

outline for knowledge comprehensibility, the capability to

represent fine knowledge details and the ability in dealing

with problems of noise and inexact data.

The tree construction procedure for fuzzy decision tree is

similar to decision tree construction algorithm. The splitting

criteria are based on fuzzy boundaries but the procedures for

inference are dissimilar in fuzzy decision tree. The fuzzy

decision trees [101] have fuzzy decisions at each branching

point. It makes calculating the best split difficult to some

extent if the attributes are continuous valued or multivalued.

Constructing smaller fuzzy decision trees is valuable as they

contain more information in internal nodes.

The enhancements to the fuzzy decision tree algorithms are as

follows. Zeidler and Schlosser [102] proposed use of

membership function to discretize the attributes for handling

continuous valued attributes. Janikow [103] optimized the

fuzzy component of a fuzzy decision tree using a genetic

algorithm. Myung Won Kim et al. [104] proposed an

algorithm that determines an appropriate set of membership

functions for each attribute. The algorithm uses histogram

analysis with application of the genetic algorithm to tune the

initial set of membership functions. A fuzzy decision tree with

given set of membership functions is constructed. Fajfer and

Janikow [105] described bottom-up fuzzy partitioning in

fuzzy decision trees, a complement of top down technique.

The proposed algorithm is useful to partition continuous

valued attributes into fuzzy sets. Guetova et al. [106]

proposed Incremental fuzzy decision trees. The algorithm gets

equivalent results to non-incremental methods.

8. Handling Large Data Set

Handling large size data on currently available computing

systems is a challenging task. Approaches like parallel,

scalable and Meta decision tree are disused here in brief.

8.1 Parallel and Distributed Decision Tree

Algorithms

Parallelization is a renowned, conventional means to speed up

classification tasks with large amounts of data and complex

programs. In the data mining applications, the size of dataset

is growing that leads us to find out computationally efficient,

parallel and scalable algorithms with the objective to get

optimal accuracy in a reasonable amount of time with parallel

processors. The algorithms work in parallel using multiple

processors to construct a single reliable model.

Kazuto et al. [107] explained two methods for parallelizing

decision tree algorithm, intra-node and the inter-node

parallelization. Intra-node parallelization practices the parallel

processing in single node and Inter-node parallelization

practices the parallel processing among multiple nodes. Intra-

node parallelism is further classified in record parallelism,

attribute parallelism and their combination. Authors have

implemented and experimented these four types of

parallelizing methods with four kinds of test data. The

performance analysis from these experiments states that there

is a relation between the characteristics of data and the

parallelizing methods. The combination of various

parallelizing approaches is the most effectual parallel method

 Kufrin [108] proposed a framework for decision tree

construction on shared and distributed memory

multiprocessor. The method builds parallel decision trees that

overcome limitation of serial decision tree on large-scale

training data. Narlikar [109] proposed parallel structure of a

decision tree-based classifier for memory-resident datasets on

SMP. The structure uses two types of divide-and-conquer

parallelism, intra-node parallelization and the inter-node

parallelization with lightweight Pthreads. Experimental

verification on large datasets signifies that the space and time

performance of the tree construction algorithm scales with the

data size and number of processors.

Joshi et al. [110] proposed ScalparC, a scalable parallel

classification algorithm for mining large datasets with

decision trees using MPI on Cray T3D system. This

implementation confirms scalability and efficiency of

ScalparC for wide range of training set and wide range of

processors. Hall et al. [111] presented combining decision

trees learned in parallel. The proposed algorithm builds

decision trees with n disjoint data subsets of a complete

dataset in parallel and after that converts them into rules to

combine into a single rule set. The experiments on two

datasets illustrate that there is enhancement of around 40% in

quantity of rules generated by decision tree. Zaki et al. [112]

proposed parallel algorithm for building decision tree on

shared memory multiprocessors and it was verified that it

achieves good speedup. Srivastava et al. [113] presented two

parallel formulations for decision tree induction as

synchronous tree induction and partitioned tree induction.

Authors proposed a hybrid method that implements the high-

quality features of these formulations. The experimental

results illustrate the high speedups and scalability in

processing.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

21

Kazuto et al. [114] proposed a parallel decision tree algorithm

on a PC cluster. Plain parallelization of decision tree is not

efficient due to load imbalance. The proposed algorithm is a

better parallel algorithm with data redistribution. The parallel

algorithm’s performance on benchmark data demonstrate that

it provides an improvement in speed of 3.5 times, in the best

case and equal performance even in the worst case.

Jin and Agrawal [115] proposed parallel decision tree

construction with memory and communication efficiency. The

approach achieves very low communication volume; no need

to sort the training records, during the execution and

combining shared memory and distributed memory

parallelization. Jin et al. [116] proposed use of SMP machines

with a chain of techniques that includes full replication, full

locking, fixed locking, optimized full locking and cache-

sensitive locking for parallelization of data mining algorithms.

The results state that among full replication, optimized full

locking and cache sensitive locking, there is no clear

conqueror. Any of these three techniques can outperform

other technique depending upon machine and dataset. These

techniques perform considerably better than the other two

techniques. In decision tree construction, combining different

techniques is found to be critical for obtaining high

performance. Li Wenlong et al. [117] proposed parallel

decision tree algorithm based on combination.

Similarly distributed decision trees learning algorithms are

proposed. Jie Ouyang et al. [118] proposed Chi-Square test

based decision trees induction in distributed environment.

Kanishka Bhaduri et al. [119] proposed distributed decision-

tree induction in peer-to-peer systems. Bin Liu et al. [120]

proposed data mining in distributed data environment.

8.2 Scalable Decision Trees

Advances in technologies create a large volume of data. The

large amount of knowledge in this data can be utilized to

improve decision-making process of an organization.

Scalability is one of the important issues in decision tree

learning, a brief review of scalability handled by researchers

is presented here.

SLIQ [121] a fast scalable decision tree classifier adopts the

presorting scheme in the growing phase of the tree that

eliminates the sorting of data at each node of decision tree.

The training data are sorted just once for each numeric

attribute at beginning of tree growth phase. In this method a

separate list for each attribute of the training data and a

separate list for the class labels of each instance is created. An

entry in an attribute list has two columns, first contains an

attribute value and the second contains an index into the class

list. An entry of the class list also has two columns, first one

contains a class label and the second contains a reference to a

leaf node of the decision tree. As every leaf node represents a

partition of the training data on the path from the node to the

root, the class list identifies the partition to which an instance

belongs. The presorting process combined with a breadth first

tree growing strategy enables SLIQ to scale for disk resident

large data sets and can handle both numerical and categorical

data. SLIQ uses gini index as splitting criteria, uses a new

tree-pruning algorithm that is inexpensive and results in

compact and accurate trees.

Shafer et al. [122] proposed SPRINT that provides scalability,

parallelism and removes memory restriction. It achieves

parallelism by its design, which allows multiple processors to

work together. In this algorithm list are created as are created

in SLIQUE. Initially an attribute list for each attribute in the

data set is created. The entries in these lists called attribute

records that consists an attribute value, a class label and the

index of the record. Initial lists for continuous attributes are

sorted by attribute value. If the complete data does not fit in

memory, attribute lists are kept on disk. Thus memory

restrictions are solved. The initial lists formed from the

training set are linked with the root of the classification tree.

As the algorithm executes the tree is grown and nodes are

split to create new children, the attribute lists for each node

are partitioned and associated with the children. The order of

the records in the list is maintained while partition and thus

partitioned lists never require resorting. The algorithm uses

gini index as splitting criteria. The results demonstrate good

scale up and speedup on large data set. The size up

performance is also good because the communication costs

for exchanging split points and count matrices does not

change as the training set size is increased.

Gehrke et al. [123] proposed a framework called Rainforest

that provides approach for implementing scalability in

decision tree algorithms with large data sets. Rainforest makes

refinement to some initial steps of decision tree construction

algorithm. Algorithm creates only one attribute list for all

categorical attributes jointly. It creates the histograms for

splitting information and thus avoids additional scan. The

refinement is made up to this step, afterwards remaining part

conventional decision tree algorithm proceeds.

The improvements claimed are as follows. The best splitting

criteria available can be exploited for classification in a

scalable manner. The algorithm claims performance

improvements of greater than a factor of five over the Sprint

algorithm, which is the known fastest scalable classification

algorithm. Alsabti et al. proposed CLOUDS [124] a decision

tree classifier for large datasets. The proposed algorithm

samples for splitting points on numeric attributes followed by

estimate procedure to narrow search space of best split.

CLOUDS reduces computational and I/O complexity as

compared to benchmark classifiers with quality in terms of

accuracy and tree size. Gehrke et al. proposed [125] BOAT an

approach for optimistic decision tree construction. It uses

small subset of data for initial decision tree construction and

refines it to construct final tree. With only two scans of

training data it can construct several levels of decision tree

and thus it is claimed to be faster by factor three. It can handle

insertion and deletion of data in dynamic databases and thus it

is first scalable incremental decision tree approach.

8.3 Meta Decision Trees

Meta learning [132] technique integrates distinct learning

processes. Several meta-learning methods are been proposed

for integrating autonomously learned classifiers in a parallel

or distributed computing environment.

The process of constructing meta classifiers can be divided

into two sub-processes. First process is to build a diverse set

of base-level classifiers and second process is to combine

predictions by base-level classifiers. Several approaches can

be used to generate base-level classifiers to single data set.

The approaches are using different learning algorithms or

using a single learning algorithms. Voting, stacking and

cascading are combining techniques. Meta decision tree

combines multiple base level decision tree classifiers. The

Meta decision tree leaf points the base level classifier,

whereas ordinary decision tree leaves specify classification.

http://dl.acm.org/author_page.cfm?id=81317491726&coll=DL&dl=ACM&trk=0&cfid=79071820&cftoken=37203042

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

22

Todorovski and Dzeroski [127], [128] modified C4.5 to

develop algorithm MLC4.5 for learning Meta decision tree.

Todorovski and Dzeroski compared meta decision trees with

ensemble learning methods bagging and boosting and found

to perform better [129]. The important issues, approaches and

applications of meta-learning are discussed in [136], [137].

9. Surveys

The work on literature review of decision trees and related

issues is reviewed here. Murthy [3] in his paper covered

multi-disciplinary existing work on decision trees. The basics

and terminologies of decision trees construction, details of

tree construction methods are reviewed. The paper provides

summarized existing surveys and also discusses work on

determining splits at tree nodes, various pruning techniques.

The other sections on several different topics relevant to tree

construction such as sample size and dimensionality, work on

improving greedy induction, incorporating costs, estimating

probabilities from decision trees are provided. The work also

compares tree based data exploration to alternative methods

such as multivariate statistical methods and neural networks.

At the end some recent, real-world applications of decision

trees are discussed.

Safavian and Landgrebe [132] presented a survey of available

design approaches for decision tree classifier. The paper

provides potential advantages of decision tree classifier over

single-state classifiers. The observations concerning the

relation between decision trees and neural networks are also

presented. This review also presents the different issues in

decision tree classifiers along with the probable lacunas of

each method.

Rokach and Maimon [133] analyzed various issues in decision

tree construction. The survey of basics of decision trees,

decision tree complexity metrics, algorithmic framework for

decision trees, details of various splitting criteria, pruning

methods are presented. In addition the issues like missing

attribute values, misclassification cost, various decision tree

inducers, handling large database with decision trees are

presented.

10. Other Issues

Induction of incremental decision trees and oblique decision

trees are some of the important issues in decision tree learning

and these issues are discussed here.

10.1 Incremental Tree Induction

The normal decision tree-learning algorithm builds decision

tree on currently available training set. If new training cases

are offered, the previously built decision trees are not useful

and we have to execute the decision tree algorithm once again

from scratch to add new cases in decision tree. Utgoff [134]

developed incremental decision tree learning algorithm. The

incremental decision tree algorithm adds new training

instances to current decision tree without reconstruction of the

decision tree. The results produced are equivalent to the

standard decision tree learning algorithms.

Reynolds and Shehri [135] proposed use of cultural algorithm

based evolutionary programming to direct incremental

decision tree learning. The proposed algorithm constructs a

tree with minimum number of nodes and uses of few variables

for its construction. It is found that evolutionary approaches

enhance the quality of built trees over incremental tree

approach ITI in certain cases.

10.2 Oblique Decision Tree

The Oblique decision tree is proposed for applications where

the instances have numeric attribute values. The oblique

classifier builds decision trees that contain linear

combinations of one or more attributes at each internal node.

Most of the decision tree induction algorithms generate tests

at each internal node that involve a single attribute of the data

at each internal node the trees. These tests are equivalent to

hyperplanes that are parallel to one of the axes in the attribute

domain and the resulting trees are called as axis-parallel trees.

The oblique decision tree partitions the space of examples

with both oblique and axis-parallel hyperplanes. The oblique

hyperplanes are more complicated than finding axis-parallel

Sr. No. Data Set No. of Instances No. of Attributes Description

1 Annealing 798 38 Annealing process data

2 Australian 690 14 Credit card data

3 Balance scale 625 5 Weight and Distance data

4 Breast 286 9 Breast cancer data

5 Breast W 699 10 Breast cancer data

6 Pima Indians 768 9 Pima Indians Diabetes test data

7 German 1000 20 Credit data

8 Glass 214 10 Glass identification data

9 Heart 270 13 Heart dieses data

10 Hepatitis 155 19 Hepatitis data

11 Horse Colic 368 27 Horse Colic data

12 Iris 150 4 Iris plants data

13 Kr-vs-kp 3196 36 Chess data

14 Labor 57 16 Labor negotiation, agreements

15 Mushroom 8124 22 Physical characteristic of mushroom

16 Segment 2310 19 Hand segmented image data

17 Tic-tac-toe 958 9 Tic-tac-toe games data

Table1: Commonly used benchmark datasets in decision tree research

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

23

partitions, demanding greater computational effort.

Murthy et al. [136] extended the work of Breiman et al.

[9] and developed OC1 a randomized algorithm for inducing

oblique decision tree. The use of randomized hill-climbing

algorithm in OC1 is more efficient than other existing

randomized methods. The algorithm C4.5 uses goodness

measure, which should be maximum, while OC1 uses

impurity that should be minimum. The available impurity

measures in OC1 are information gain, gini index, twoing

rule, max minority, sum minority and sum of variations.

These measures can be used as per the need of the application.

Twoing rule is the default impurity measure. OC1 uses the

reciprocal of twoing value as a goodness measure hence tries

to minimize it and uses cost complexity pruning as default

pruning method. Setiono and Liu [137] proposed simple

method to generate oblique decision trees. Iyengar [138]

proposed a new method of constructing oblique decision trees.

The method can be integrated with ease into available

decision tree tools. In this method the normal decision trees

are pruned. The pruned decision trees are used to learn high-

quality candidate oblique vectors. Then the learned oblique

vectors are fed back to the decision tree algorithm. The

resulting trees are accurate and compact. Cantu-Paz and

Kamath [139] proposed evolutionary methods for inducing

Oblique decision trees. The empirical results show that the

EAs quickly obtain competitive classifiers and improved scale

up than traditional methods to size of dataset used in training.

11. Decision Tree Learning Softwares And

Commonly Used Dataset

Various decision tree softwares are available for researchers

working in data mining. Some of the prominent softwares

employed for analysis of data and some of the commonly used

data sets for decision tree learning are discussed below.

WEKA–WEKA (Waikato Environment for Knowledge

Analysis) workbench is set of different data mining tools

developed by machine learning group at [140] University of

Waikato, New Zealand. WEKA versions supporting windows,

Linux and MAC operating systems are available. It provides

various associations, classification and clustering algorithms,

in addition to that it provides pre-processors like filters and

attribute selection algorithms. In case of decision tree learning

WEKA provides J48 i.e. C4.5 implementation in java, Simple

CART and Random Forest Tree are some of the prominent

tree classifiers. In J48 we can construct trees with EBP, REP

and unpruned trees. The input data file is in .arff (attribute

relation file format) format. The source code is available to

the user.

C4.5- Version C4.5.8 developed by Quinlan [2] supports Unix

based operating systems only. The package consists of

programs for decision tree generator, the rule generator, the

decision tree interpreter and the production rule interpreter.

The decision tree generator expects two input files with

extentions .name and .data file as input files. The .name file

provides information about attributes and classes. The .data

file contains actual attribute values with their class. The

source code of C4.5 is available to the user.

OC1- OC1 is an oblique decision tree classifier by Murthy

[136]. Various splitting criteria are also available with this

package. The OC1 software can also be used to create both

standard axis-parallel decision trees and oblique trees. The

source code is available to the user.

GATree- GATree is evolutionary decision tree by Papagelis

and Kalles [96]. GATree works on windows operating system.

The evaluation version of GATree is available on request to

the authors. Here we can set various parameters like

generations, populations, crossover and mutation probability

etc. to generate decision trees.

Commonly Used Data Sets

Researchers have used various benchmark datasets from

University of California machine learning repository, UCI

Repository [141]. Some of the most commonly used datasets

by researchers are explained in Table 1 with number of

records and attributes in each data set and description of data.

Some of the data sets may not be available at present.

12. The Applications of Decision Trees in

Various Areas

The decision tree algorithm has applications in all walks

of life. The application areas are listed below

Business: Virine and Rapley [142] proposed use of decision

trees in visualization of probabilistic business models. Yang et

al. [143] proposed use of decision tree in customer

relationship management. Zhang et al. [144] proposed use of

decision tree in credit scoring for credit card users.

E-Commerce: A good online catalog is essential for the

success of an e-commerce web site, Sung et al. [145]

mentioned use of decision tree for construction of online

catalog topologies.

Energy Modelling: Energy modelling for buildings is one of

the important tasks in building design. Zhun et al. [146]

proposed decision tree method for building energy demand

modelling.

Image Processing: Macarthur et al. [147] proposed use of

decision tree in content-based image retrieval. Park et al.

[148] proposed perceptual grouping of 3-D features in aerial

image using decision tree classifier.

Intrusion Detection: Sinclair et al. [149] proposed decision

trees with genetic algorithms to automatically generate rules

for an intrusion detection expert system. Abbes et al. [150]

proposed protocol analysis in intrusion detection using

decision tree.

Medical Research: Medical research and practice are the

important areas of application for decision tree techniques.

Stasis et al. [151] proposed decision trees algorithms for heart

sound diagnosis. Lenic et al. [152] focused on decision tree

methods that can support physicians in medical diagnosing in

case of mitral valve prolapse. Kokol et al. [153] introduced

decision trees as part of intelligent systems that help

physicians. Dong et al. [154] proposed evaluating skin

condition using a decision tree. Kennedy and Adams [155]

proposed decision tree to help out in selecting a brain

computer interface device for patients who are cognitively

intact but unable to move or communicate. Hui and GaiLiping

[156] proposed analysis of complex diseases by statistical

estimation of diagnosis with genetic markers based on

decision tree analysis.

Intelligent Vehicles: The job of finding the lane boundaries

of the road is important task in development of intelligent

vehicles. Gonzalez and Ozguner [157] proposed lane

detection for intelligent vehicles by using decision tree.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

24

Object Recognition: Freixenet et al. [158] proposed use of

decision trees for color feature selection in object recognition

for outdoor scenes.

Reliability Engineering: Claudio and Rocco [159] proposed

approximate reliability expressions for network reliability

using a decision tree approach. Assaf and Dugan [160]

proposed method that establishes a dynamic reliability model

and generates a diagnostic model using decision trees for a

system.

Remote Sensing: Remote sensing is a strong application area

for pattern recognition work with decision trees. Simard et al.

[161] proposed decision tree-based classification for land

cover categories in remote sensing. Palaniappan et al. [162]

proposed binary tree with genetic algorithm for land cover

classification.

Space Application: The portfolio allocation problem is

pervasive to all research activities. The use of past experience

in this area with help of decision trees is recommended.

Manvi et al. [163] suggested use of decision trees in NASA

space missions.

Speech Recognition: Amit and Murua [164] proposed speech

recognition using randomized decision trees. Bahl et al. [165]

proposed a tree-based statistical language model for natural

language speech recognition, which predicts the next word

spoken, based on previous word spoken. Yamagishi et al.

[166] proposed decision trees for speech synthesis.

Software Development: Selby and Porter [167] proposed

decision trees for software resource analysis. Khoshgoftaar et

al. [168] proposed decision trees for software quality

classification.

Steganalysis: Geetha et al. [169] proposed evolving decision

tree based system for audio stego anomalies.

Text Processing: Diao et al. [170] introduced decision trees

for text categorization.

Traffic and Road Detection: Wu et al. [171] proposed use of

decision tree in analysing, predicting and guiding the traffic

flow. Jeong and Nedevschi [172] proposed intelligent road

region detection based on decision tree in highway and rural

way environments.

Video Processing: Jaser et al. [173] proposed automatic

sports video classification with decision tree. Cen and

Cosman [174] explained decision trees for error concealment

in video decoding.

Web Applications: Bonchi et al. [175] proposed decision

trees for intelligent web caching. Chen et al. [176] presented a

decision tree learning approach to diagnosing failures in large

Internet sites.

REFERENCES

1. Mitchell, (1997). Machine Learning, The McGraw-

Hill Companies, Inc.

2. J. R. Quinlan, (1993). C4.5: Programming for

Machine Learning. San Francisco, CA: Morgan

Kaufman.

3. S. K. Murthy (1998). Automatic construction of

decision trees from data: a multi-disciplinary survey.

Data Mining and Knowledge Discovery, Vol. 2, No. 4,

pp. 345-389.

4. E. Alpaydin (2005). Introduction to machine Learning

Prentice-Hall of India.

5. S. Ruggieri (2002). Efficient C4.5. IEEE Transaction

on Knowledge and Data Engineering, Vol.14, No. 2,

pp. 438-444.

6. Moshe Ben-Bassat (1987). Use of distance measure,

Information measures and error bounds on feature

evaluation. In Sreerama Murthy (1), pp. 9-11.

7. Mark Last and Oded Maimon (2004).. A compact and

accurate model for classification. IEEE Transactions

on Knowledge and Data Engineering, Vol. 16, No. 2,

pp. 203-215.

8. Byung Hwan Jun, Chang Soo Kim, Hong-Yeop Song

and Jaihie Kim (1997). A new criterion in selection

and discretization of attributes for the generation of

decision trees. IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. 19, No. 12, pp. 1371-

1375.

9. Leo Breiman, Jerome H. Friedman, Richard A.

Olshen, and Charles J. Stone (1984). Classification

and Regression Trees. Wadsworth International

Group, Belmont, California.

10. S. K. Murthy, Simon Kasif and Steven Salzberg

(1994). A system for induction of oblique decision

trees. Journal of Artificial Intelligence Research 2,

pp.1-33.

11. R. S. Mantaras (1991). A distance based attribute

selection measure for decision tree induction.

Technical Report, Machine Learning, Vol. 6, pp. 81-

92.

12. B. Chandra, R. Kothari, P. Paul (2010). A new node

splitting measure for decision tree construction Pattern

Recognition Vol.43, Elsevier Publishers, pp. 2725-

2731.

13. E. Rounds (1980). A combined nonparametric

approach to feature selection and binary decision tree

design. Pattern Recognition, Vol. 12, pp. 313-317.

14. P. E. Utgoff and J. A. Clouse (1996). A Kolmogorov-

Smirnoff metric for decision tree induction. Tech. Rep.

No. 96-3, Dept. Comp. Science, University

Massachusetts, Amherst.

15. J. K. Martin (1997). An exact probability metric for

decision tree splitting and stopping. Machine

Learning, Vol. 28, No. 2-3, pp. 257-29.

16. W. L. Buntine and T. Niblett (1992). A further

comparison of splitting rules for decision-tree

induction. Machine Learning, Vol. 8, pp. 75-85.

17. T. Windeatt and G. Ardeshir (2001). An empirical

comparison of pruning methods for ensemble

classifiers. Proc. of 4th International Conference on

Advances in Intelligent Data Analysis, Cascais,

Portugal, pp. 208-217.

18. Floriana Esposito, Donato Malerba and Giovanni

Semeraro (1997). A comparative analysis of methods

for pruning decision trees. IEEE Transactions On

Pattern Analysis And Machine Intelligence, Vol. 19,

No. 5, pp. 476-491.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

25

19. J. R. Quinlan (1987). Simplifying decision trees.

International Journal of Man Machine Studies Vol.

27, pp. 221-234.

20. J. Mingers (1989). An empirical comparison of

pruning methods for decision tree induction,’’

Machine Learning, Vol.3, pp. 227-243.

21. M. Mehta, J. Rissanen and R. Agrawal (1995). MDL-

based decision tree pruning. Proc. of the 1st

International Conference on Knowledge Discovery in

Databases and Data Mining, Montreal, Canada, pp.

216-221.

22. J. Ross Quinlan and Ronald L. Rivest (1989). Inferring

decision trees using the minimum description length

principle. Inform. Comput. Vol. 80, pp. 227-248.

23. I. Bratko and M. Bohanec (1994). Trading accuracy

for simplicity in decision trees. Machine Learning,

Vol. 15, pp. 223-250.

24. H. Allamullim (1996). An efficient algorithm for

optimal pruning of decision trees. Artificial

Intelligence, Vol. 83, Issues 2, pp. 347-362.

25. Matti Kaariainen (2004). Learning small trees and

graphs that generalize. A Report, University of

Helsinki, Finland Series of Publications Helsinki.

26. Lawrence Hall, Richard Collins, Kevin W. Bowyer

and Robert Banfield (2002). Error-Based pruning of

decision trees grown on very large data sets can work!

Proc. of the 14th IEEE International Conference on

Tools with Artificial Intelligence, pp. 233-238.

27. T. Oates and D. Jensen (1999). Toward a theoretical

understanding of why and when decision tree pruning

algorithms fail. Proc. of the Sixteenth National

Conference on Artificial Intelligence, pp. 372-378.

28. Jan Macek and Lenka Lhotsk (2004). Gaussian

complexities based decision tree pruning. Cybernetics

and Systems 2004, Austrian Society for Cybernetics

Studies Vienna, pp. 713-718.

29. Eibe Frank (2000). Pruning Decision Trees and List. A

Doctoral Thesis Submitted to University of Waikato.

30. J. P. Bradford, Clayton Kunz, Ron Kohavi, Clifford

Brunk and C. E. Brodley (1998). Pruning decision

trees with misclassification costs. European

Conference on Machine Learning, pp. 131-136.

31. Clayton Scott (2005). Tree pruning with subadditive

penalties. IEEE Transactions On Signal Processing,

Vol. 53, No. 12, pp. 4518-4525.

32. Andrew P. Bradley and Brian C. Lovell (1995). Cost-

sensitive decision tree pruning: use of the ROC curve.

In Eighth Australian Joint Conference on Artificial

Intelligence, November 1995, Canberra, Australia pp.

1-8.

33. J. Cai1, J. Durkin1 and Q. Cai (2005). CC4.5: cost-

sensitive decision tree pruning. Proc. of Data Mining

Conference, Skiathos, Greece. pp. 239-245.

34. Y. Mansour (1997). Pessimistic decision tree pruning

based on tree size. Proc. of 14th International

Conference on Machine Learning, pp. 195-201.

35. X. Huo, Seoung Bum Kim, Kwok-Leung Tsui and

Shuchun Wang (2006). FBP: A frontier-based tree-

pruning algorithm. INFORMS Journal on Computing

Vol. 18, No. 4, pp. 494-505.

36. Johannes Faurnkranz (1997). Pruning algorithms for

rule learning. Machine Learning, Vol. 27, pp. 139-172.

37. Shesha Shah and P. S. Sastry (1999). New algorithms

for learning and pruning oblique decision trees. IEEE

Transactions On Systems, Man, And Cybernetics—

Part C: Applications And Reviews, Vol. 29, No. 4, pp.

494-505.

38. G.V. Kass (1980). An exploratory technique for

investigating large quantities of categorical data.

Applied Statistics, Vol. 29, No.2, pp.119-127.

39. Quinlan J. R. (1986). Induction of decision trees.

Machine Learning, Vol.1-1, pp. 81-106.

40. Ron Kohavi (1994). Feature subset selection as search

with probabilistic estimates. In proc. the AAAI Fall

Symposium on Relevance. pp.122-126.

41. Rich Caruana and Dayne Freitag (1994). Greedy

attribute selection. Proc. of the 11th International

Conference on Machine Learning. pp.28-36.

42. Mark Last, Abraham Kandel, Oded Maimon and

Eugene Eberbach (2000). Anytime algorithm for

feature selection. Proc. of Second International

Conference on Rough Sets and Current Trends in

Computing, pp. 532 - 539.

43. Shaomin Wu and Peter A. Flach (2002). Feature

selection with labelled and unlabelled data. In Marko

Bohanec, Dunja Mladenic, and Nada Lavrac, editors,

ECML/PKDD'02 workshop on Integrating Aspects of

Data Mining, Decision Support and Meta-Learning.

pp.156-167.

44. Huang Yuan, Shian-Shyong Tseng, Wu Gangshan and

Zhang Fuyan (1999). A two-phase feature selection

method using both filter and wrapper. Proc. of IEEE

International Conference on Systems, Man and

Cybernetics, pp. 132 - 136.

45. Krzysztof Grabczewski and Norbert Jankowski (2005).

Feature selection with decision tree criterion. Proc. of

Fifth International Conference on Hybrid Intelligent

Systems.6-9 Nov. pp.212-217.

46. Jose Bins, Bruce A. Draper (2001). Feature selection

from huge feature sets. Proc. of International

Conference on Computer Vision, Vancouver, pp. 159-

165.

47. Cesar Guerra-Salcedo, Stephen Chen, Darrell Whitley

and Stephen Smith (1999). Fast and accurate feature

selection using hybrid genetic strategies. Proc. of the

Congress on Evolutionary Computation. pp. 177-184.

48. Jacques-Andre Landry, Luis Da Costa and Thomas

Bernier (2006). Discriminant feature selection by

genetic programming: towards a domain independent

multi-class object detection system. Journal of

Systemics, Cybernetics and Informatics, Vol. 1, 3. pp.

76-81.

49. Bala, J. Huang and H. Vafaie, K. DeJong and H.

Wechsler (1995). Hybrid learning using genetic

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

26

algorithms and decision trees for pattern classification.

Proc. of the IJCAI conference, Montreal.pp.719-724

50. Gaelle Legrand and Nicolas Nicoloyannis (2005).

Feature selection and preferences aggregation.

Machine Learning and Data Mining in Pattern

Recognition, Springer Heidelberg, pp. 203-217.

51. Mark A. Hall and Lloyd A. Smith (1997). Feature

subset selection: a correlation based filter approach.

Proc. of International Conference on Neural

Information Processing and Intelligent Information

Systems1997, pp. 855-858.

52. W. Duch, J. Biesiada, T. Winiarski, K. Grudzinski and

K. Gr. Abczewski (2002). Feature selection based on

information theory filters and feature elimination

wrapper methods. Proc. of the International

Conference on Neural Networks and Soft Computing,

Advances in Soft Computing, pp. 173-176.

53. Mark A. Hall (2000). Correlation-based feature

selection for discrete and numeric class machine

learning. Proc. of International Conference on

Machine Learning, Stanford University, CA. Morgan

Kaufmann Publishers, pp. 359-366.

54. Huang Yuan, Shian-Shyong Tseng, Wu Gangshan and

Zhang Fuyan (1999). A two-phase feature selection

method using both filter and wrapper. Proc. of IEEE

International Conference on Systems, Man and

Cybernetics, pp. 132 - 136.

55. Pier Luca Lanzi (1997). Fast feature selection with

genetic algorithms: a filter approach. Proc. of 1997

IEEE International Conference on Evolutionary

Computation. pp.537-540

56. G. H. John (1995). Robust decision trees: Removing

outliers from databases. In Proc. of the First

ICKDDM, 1995, pp. 174-179.

57. A. Arning, R. Agrawal, and P. Raghavan. A linear

method for deviation detection in large databases. In

KDDM 1996, Pages 164–169.

58. A. I. Guyon, N. Matic and V. Vapnik, “Discovering

informative patterns and data cleaning”, Advances in

knowledge discovery and data mining, AAAI, 1996,

Pages: 181 – 203.

59. G D.Gamberger and N. Lavrac. Conditions for

Occam's Razor applicability and noise elimination. In

Marteen van Someren and Gerhard Widmer, editors,

Proceedings of the 9th European Conference on

Machine Learning, Springer, 1997. Pages 108-123.

60. E. M. Knorr and R. T. Ng. “A unified notion of

outliers: properties and computation”, In Proceedings

of 3rd International Conference on Knowledge

Discovery and Data Mining, 1997.

61. E. M. Knorr and R. T. Ng. “Algorithms for mining

distance-based outliers in large datasets.” In Proc. 24th

VLDB, 1998, Pages 392–403, 24–27.

62. D. Tax and R. Duin, “Outlier detection using classifier

instability” Proceedings of the workshop Statistical

Pattern Recognition, Sydney 1998.

63. C. E. Brodley and M. A. Friedl (1999). Identifying

mislabeled training data. Journal of Artificial

Intelligence Research 11, pp. 131-167.

64. I. S. Weisberg (1985) Applied Linear Regression, John

Wiley and Sons.

65. D. D. Gamberger, N. Lavrac, and C. Groselj,

”Experiments with noise filtering in a medical

domain.”, In Proc. 16th ICML, Morgan Kaufman, San

Francisco, CA, 1999, Pages 143–151.

66. S. Schwarm and S. Wolfman, “Cleaning data with

Bayesian methods” 2000. Final project report for

University of Washington Computer Science and

Engineering CSE574, March 16, 2000.

67. S. Ramaswamy, R. Rastogi, and K. Shim. “Efficient

algorithms for mining outliers from large data sets.”

ACM SIGMOD Volume 29, Issue 2 June 2000, Pages:

427 - 438.

68. V. Raman and J.M. Hellerstein, “An interactive

framework for data transformation and cleaning”

Technical report University of California Berkeley,

California, September 2000.

69. J. Kubica and A. Moore, “Probabilistic noise

identification and data cleaning”, Third IEEE

International Conference on Data Mining, 19-22 Nov.

2003.

70. V. Verbaeten and A. V. Assche “Ensemble methods

for noise elimination in classification problems. In

Multiple Classifier Systems.” Springer, 2003.

71. J. A. Loureiro, L. Torgo, and C. Soares, “Outlier

detection using clustering methods: a data cleaning

application”, in Proceedings of KDNet Symposium on

Knowledge-based Systems for the Public Sector.

Bonn, Germany, 2004.

72. H. Xiong, G. Pande, M. Stein and Vipin Kumar,

“Enhancing Data analysis with noise removal”, IEEE

Transaction on knowledge and Data Engineering

Volume 18, Issue 3, March 2006, Pages: 304 – 319.

73. Seung Kim , Nam Wook Cho , Bokyoung Kang , Suk-

Ho Kang, “Fast outlier detection for very large log

data” Expert Systems with Applications Vol. 38, 2011

Elsevier. pp. 9587–9596.

74. S. Hido, Y. Tsuboi, H. Kashima, M. Sugiyama and T.

Kanamori Statistical Outlier Detection Using Direct

Density Ratio Estimation. Knowledge and Information

Systems. vol. 26, no.2, pp.309-336, 2011.

75. George John and Pat Langley, “Static Versus

Dynamic Sampling for Data Mining”, In Proceedings

of the Second International Conference on Knowledge

Discovery and Data Mining 1996, AAAI Press, pp.

367-370.

76. Foster Provost and David Jensen and Tim Oates,

“Efficient Progressive sampling”, In Proceedings of

the Fifth International Conference on Knowledge

Discovery and Data Mining, 1999 ACM Press, pp.23-

32.

77. D. V. Patil and R.S. Bichkar (2006). A hybrid

evolutionary approach to construct optimal decision

trees with large data sets. In Proc. IEEE ICIT06

Mumbai, 15-17 December 2006, pp. 429-433.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

27

78. R .J. Little and D.B. Rubin (1987). Statistical Analysis

with Missing Data. John Wiley and Sons, New York.

79. G. Batista and M.C. Monard (2003). An analysis of

four missing data treatment methods for supervised

learning. Applied Artificial Intelligence, Vol. 17, pp.

519-533.

80. Jerome H. Friedman, Jon Louis Bentley and Raphael

Ari Finkel (1977). An algorithm for finding best

matches in logarithmic expected time. ACM

Transactions on Mathematical Software, Vol. 3 pp.

209-226.

81. J. R. Quinlan (1986). Unknown attribute values in

induction. Journal of Machine Learning Vol. 1, pp.

81-106.

82. Kuligowski R. J. and Barros A. P. Using artificial

neural Networks to estimate missing rainfall data.

Journal AWRA 34(6), 14.1998.

83. Brockmeier L. L., Kromrey J. D. and Hines C. V.,

1998.Systematically Missing Data and Multiple

Regression Analysis: An Empirical Comparison of

Deletion and Imputation Techniques. Multiple Linear

Regression Viewpoints, Vol. 25, 20-39.

84. Abebe A. J., Solomatine D. P. and Venneker R. G. W.

2000. Application of adaptive fuzzy rule-based models

for reconstruction of missing precipitation events.

Hydrological Sciences Journal.45 (3), 425–436.

85. Sinharay S., Stern H.S. and Russell D. 2001. The use

of multiple imputations for the analysis of missing

data. Psychological Methods Vol.4: 317–329.

86. Khalil K., Panu M. and Lennox W. C. 2001. Groups

and neural networks based stream flow data infilling

procedures. Journal of Hydrology, 241, 153–176.

87. Bhattacharya B., Shrestha D. L. and Solomatine D. P.

2003. Neural networks in reconstructing missing wave

data in Sedimentation modeling. In the Proceedings of

30th IAHR Congress, Thessaloniki, Greece Congress,

August 24-29 2003 Thessaloniki, Greece.

88. Fessant F. and Midenet, S. 2002. Self-organizing map

for data imputation and correction in surveys. Neural

Comput. Appl. 10, 300–310.

89. Musil C. M., Warner C. B., Yobas P. K. and Jones S.

L. 2002. A comparison of imputation techniques for

handling missing data. Weston Journal of Nursing

Research 24(7), 815–829.

90. Junninen H., Niska H., Tuppurainen K., Ruuskanen J.

and Kolehmainen M. 2004. Methods for imputation of

missing values in air quality data sets. Atoms. Environ.

38, 2895–2907.

91. M. Subasi, E. Subasi and P.L. hammer, 2009. New

Imputation Method for Incomplete Binary Data,

Rutcor Research Report, August 2009.

92. Amman Mohammad Kalteh and Peder Hjorth, 2009.

Imputation of Missing values in precipitation-runoff

process database. Journal of Hydrology research.40.4,

pages 420- 432.

93. Rhian M. Daniel, Michael G. Kenward, “A method for

increasing the robustness of multiple imputation,”

Computational Statistics and Data Analysis, doi

10.1016/j.csda.2011.10.006, Elsevier 2011.

94. Patil and Bichkar (2010). Multiple Imputation of

Missing Data with Genetic Algorithms based

Techniques. International Journal on Computer

Applications Special Issue on Evolutionary

Computation in Optimisation Techniques (2), pp. 74 -

78.

95. Gary Mitchell Weiss (2003). The Effect of Small

Disjuncts and Class Distribution on Decision Tree

Learning. A Doctoral Thesis Submitted to the

Graduate School, New Brunswick Rutgers, The State

University of New Jersey.

96. A. Papagelis and D. Kalles (2000). GATree:

Genetically evolved decision trees. Proc. 12th

International Conference On Tools With Artificial

Intelligence, pp. 203-206.

97. Zhiwei Fu and Fannie Mae (2001). A computational

study of using genetic algorithms to develop intelligent

decision trees. Proc. of the 2001 IEEE Congress On

Evolutionary Computation Vol. 2. pp. 1382-1387.

98. A. Niimi and E. Tazaki (2000). Genetic programming

combined with association rule algorithm for decision

tree construction. Proc. of fourth International

Conference on Knowledge-Based Intelligent

Engineering Systems and Allied Technologies, Vol. 2,

pp. 746-749.

99 Y. Kornienko and A. Borisov (2003). Investigation of

a hybrid algorithm for decision tree generation. Proc.

of the Second IEEE International Workshop on

Intelligent Data Acquisition and Advanced Computing

Systems: Technology and Applications, pp. 63-68.

100 Zhi-Hua Zhou and Yuan Jiang (2004). NeC4.5: Neural

ensemble based C4.5. IEEE Transactions On

Knowledge And Data Engineering, Vol. 16, No. 6. pp.

770-773.

101 C. Z. Janikow (1998). Fuzzy decision trees: Issues and

methods. IEEE Transactions on Systems, Man, and

Cybernetics, Vol. 28, Issue 1, pp. 1-14.

102 Zeidler and M. Schlosser (1996). Continuous-valued

attributes in fuzzy decision trees. Proc. of the

International Conference on Information Processing

and Management of Uncertainty in Knowledge-Based

Systems, pp. 395-400,

103 C. Z. Janikow (1996). A genetic algorithm method for

optimizing the fuzzy component of a fuzzy decision

tree. In CA for Pattern Recognition, editors S. Pal and

P. Wang, CKC Press, pp. 253-282,

104 Myung Won Kim, Joong Geun Lee, and Changwoo

Min (1999). Efficient fuzzy rule generation based on

fuzzy decision tree for data mining. Proc. of IEEE

International Fuzzy Systems Conference Seoul, Korea,

22-25.

105 Maciej Fajfer and C. Z. Janikow (2000). Bottom-up

fuzzy partitioning in fuzzy decision trees. Proc. of 19th

International Conference of the North American Fuzzy

Information Processing Society, 2000 pp. 326 - 330.

106 Marina Guetova, Steffen Holldobler and Hans-Peter

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

28

Storr (2004). Incremental fuzzy decision trees.

International Conference on Fuzzy Sets and Soft

Computing in Economics and Finance, St. Petersburg,

Russia.

107 Kazuto Kubota, Hiroshi Sakai, Akihiko Nakase and

Shigeru Oyanagi (2000). Parallelization of decision

tree algorithm and its performance evaluation. Proc. of

The Fourth International Conference on High

Performance Computing in the Asia-Pacific Region,

Vol. 2. pp. 574 -579.

108 R. Kufrin (1997). Decision trees on parallel processors

Machine Intelligence and pattern recognition , Vol.

20, Elsevier . pp. 279-306.

109 G. J. Narlikar (1998). A parallel, multithreaded

decision tree builder. A Technical Report, School of

Computer Science, Carnegie Mellon University.

110 M. V. Joshi, G. Karypis and V. Kumar (1998).

Scalparc: A new scalable and efficient parallel

classification algorithm for mining large datasets.

Proc. of the International Parallel Processing

Symposium. pp. 573-579.

111 Lawrence O. Hall, Nitesh Chawla and Kevin W.

Bowyer (1998). Combining decision trees learned in

parallel. Distributed Data Mining Workshop at

International Conference of Knowledge Discovery and

Data Mining. pp. 77-83.

112 M. J. Zaki, C.T. Ho and R. Agrawal (1999). Parallel

classification for data mining on shared-memory

multiprocessors. IEEE International Conference on

Data Engineering, pp. 198-205.

113 Anurag Srivastava, EuiHong Han, Vipin Kumar and

Vineet Singh (1999). Parallel formulations of decision-

tree classification algorithms. Data Mining and

Knowledge Discovery: An International Journal, vol.

3, no. 3. pp. 237-261.

114. Kazuto Kubota, Akihiko Nakase and Shigeru Oyanagi

(2001). Implementation and performance evaluation of

dynamic scheduling for parallel decision tree

generation. Proc. of the 15th International Parallel and

Distributed Processing Symposium. pp. 1579-1588.

115. Ruoming Jin and Gagan Agrawal (2003).

Communication and memory efficient parallel

decision tree construction. Proc. of Third SIAM

Conference on Data Mining.

116. Ruoming Jin, Ge Yang and Gagan Agrawal (2004).

Shared memory parallelization of data mining

algorithms: techniques, programming interface, and

performance. IEEE Transactions On Knowledge And

Data Engineering, Vol. 16, No. 10. pp.71-89.

117. Li Wenlong, Xing Changzheng, "Parallel Decision

Tree Algorithm Based on Combination", IEEE

International Forum on Information Technology and

Applications (IFITA) Kunming, 2010, 16-18 July 2010,

pp. 99-101.

118. Jie Ouyang, Patel N., Sethi I.K., Chi-Square Test

Based Decision Trees Induction in Distributed

Environment IEEE International Conference on Data

Mining Workshops, 2008. ICDMW '08. 15-19 Dec.

2008 pp. 477 – 485.

119. Kanishka Bhaduri, Ran Wolff, Chris Giannella, Hillol

Kargupta, “Distributed Decision-Tree Induction in

Peer-to-Peer Systems”, Journal Statistical Analysis

and Data Mining. Vol. 1 Issue 2, June 2008 John

Wiley and Sons 2008.

120. Bin Liu, Shu-Gui Cao, Xiao-Li Jim, Zhao-Hua Zhi,

"Data mining in distributed data environment",

International Conference on Machine Learning and

Cybernetics (ICMLC), 11-14 July 2010 Vol.1 pp.421 –

426.

121. M. Mehta, R. Agrawal and J. Rissanen (1996). SLIQ:

A fast scalable classifier for data mining. Proc. of the

Fifth international Conference on Extending Database

Technology, Avignon, France. pp. 18-32.

122. Shafer, R. Agrawal and M. Mehta (1996). SPRINT: A

scalable parallel classifier for data mining. Proc. of the

22nd VLDB Conference. pp. 544-555.

123. J. Gehrke, R. Ramakrishnan and V. Ganti (1998).

Rainforest—A framework for fast decision tree

construction of large datasets. Proc. of Conference on

Very Large Databases (VLDB). pp .416-427.

124. K. Alsabti, S. Ranka and V. Singh (1998). CLOUDS: a

decision tree classifier for large datasets. Proc. of

Conference on Kno wledge Discovery and Data

Mining (KDD-98), pp. 2-8.

125. J. Gehrke, V. Ganti, R. Ramakrishnan and W. Loh

(1999). BOAT-optimistic decision tree construction.

Proc. of Conference SIGMOD, pp.169-180.

126. P. Chan and S. J. Stolfo (1993). Toward parallel and

distributed learning by meta-learning. In Working

Notes AAAI Work. Knowledge Discovery in

Databases, pp. 227-240.

127. Todorovski L. and Dzeroski (2000). Combining

multiple models with meta decision trees. Proc. of the

Fourth European Conference on Principles of Data

Mining and Knowledge Discovery, pp. 54-64.

128. L. Todorovski and Dzeroski (2003). Combining

classifiers with meta decision trees. Machine Learning,

Vol. 50, issue 3, pp. 223-249.

129. B. Zenko, L. Todorovski, and Dzeroski (2001). A

comparison of stacking with meta decision trees to

bagging, boosting, and stacking with other methods.

Proc. of the 2001 IEEE International Conference on

Data Mining, pp. 669-670.

130. Andreas L. Prodromidis, Philip K. Chan and Salvatore

J. Stolfo (2000). Meta-learning in distributed data

mining systems: Issues and approaches.editors Hillol

Kargupta and Philip Chan, Book on Advances of

Distributed Data Mining AAAI press. pp. 81-113.

131. S. Stolfo, W. Fan, W. Lee, A. Prodromidis and P.

Chan (1997). Credit Card Fraud Detection Using

Metalearning: Issues and Initial Results. In working

notes of AAAI Workshop on AI Approaches to Fraud

Detection and Risk Management.

132. S. Rasoul Safavian and David Landgrebe (1991). A

survey of decision tree classifier methodology. IEEE

Transaction on Systems, Man, and Cybernetics. Vol.

http://dl.acm.org/author_page.cfm?id=81317491726&coll=DL&dl=ACM&trk=0&cfid=79071820&cftoken=37203042

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

29

21, Issue 3, pp. 660 - 674.

133. Lior Rokach and Oded Maimon (2005). Top-down

induction of decision trees classifiers-a survey. IEEE

Transactions On Systems, Man, And Cybernetics-Part

C: Applications And Reviews, Vol. 35, No. 4. pp. 476-

487.

134. Utgoff P.E. (1989). Incremental induction of decision

trees. Machine Learning, 4. pp. 161-186.

135. R. Reynolds and Hasan Al-Shehri (1998). The use of

cultural algorithms with evolutionary programming to

guide decision tree induction in large databases Proc.

of The 1998 IEEE International conference on

Evolutionary Computation, at IEEE World Congress

on Computational Intelligence at Anchorage, AK,

USA, pp. 441-546.

136. S. K. Murthy, S. Kasif, S. Salzberg, And R. Beigel

(1993). OC1: Randomized induction of oblique

decision trees. In Proc. Eleventh National Conference

on Artificial Intelligence, Washington, DC, 11-15th,

July 1993. AAAI Press, pp. 322-327.

137. Rudy Setiono and Huan Liu (1999). A connectionist

approach to generating oblique decision trees. IEEE

Transactions On Systems, Man, And Cybernetics, Vol.

29, No. 3.

138. Iyengar V. S. (1999). HOT: Heuristics for oblique

trees. Proc. of Eleventh International Conference on

Tools with Artificial Intelligence, IEEE Press, pp. 91-

98.

139. Cantu-Paz E. and Kamath C. (2003). Inducing oblique

decision trees with evolutionary algorithms. IEEE

Transactions on Evolutionary Computation, Vol. 7,

Issue 1, pp. 5-68.

140. Ian H. Witten and Eibe Frank (2005). Data Mining

Practical Machine Learning Tools and Techniques.

Morgan Kaufmann.

141. Frank, A. and Asuncion, A. (2010). UCI Machine

Learning Repository Irvine, CA

[http://archive.ics.uci.edu/ml]. University of

California, School of Information and Computer

Science.

142. Lev Virine and Lisa Rapley (2003). Visualization of

probabilistic business models. Proc. of the 2003

Winter Simulation Conference, Vol. 2, pp. 1779-1786.

143. Qiang Yang, Jie Yin, Charles X. Ling and Tielin Chen

(2003). Post processing decision trees to extract

actionable knowledge. Proc. of the Third IEEE

International Conference on Data Mining, 2003.

Florida, USA.

144. Defu Zhang, Xiyue Zhou, Stephen C.H. Leung, Jiemin

Zheng, (2010). Vertical bagging decision trees model

for credit scoring. Expert Systems with Applications,

Elsevier Publishers, Vol. 37. pp. 7838-7843.

145. Wing-Kin Sung, David Yang, Siu-Ming Yiu, David

W. Cheung, Wai-Shing Ho, and Tak-Wah Lam (2002).

Automatic construction of online catalog topologies.

IEEE Transactions On Systems, Man, And

Cybernetics—Part C: Applications And Reviews, Vol.

32, No. 4.

146. Zhun Yu, Fariborz Haghighat, Benjamin C.M. Fung

and Hiroshi Yoshino (2010). A decision tree method

for building energy demand modeling International

Journal of Energy and Buildings Vol.42. pp. 1637-

1646.

147. Sean D. MacArthur, Carla E. Brodley, Avinash C. Kak

and Lynn S. Broderick (2002). Interactive content-

based image retrieval using relevance feedback.

Computer Vision and Image Understanding, pp. 55-

75.

148. Kyu Park, Kyoung Mu Lee and Sang Uk Lee (1999).

Perceptual grouping of 3D features in aerial image

using decision tree classifier. In Proc. of 1999

International Conference on Image Processing, Vol. 1,

pp. 31 - 35.

149. Chris Sinclair, Lyn Pierce and Sara Matzner, An

application of machine learning to network intrusion

detection. In Proc. of 15th Annual Computer Security

Applications Conference. pp. 371-37

150. Tarek Abbes, Adel Bouhoula and Michael

Rusinowitch (2004). Protocol analysis in intrusion

detection using decision tree. Proc. of the

International Conference on Information Technology:

Coding and Computing, IEEE. pp. 404-408.

151. A. Ch. Stasis, E. N. Loukis, S. A. Pavlopoulos and D.

Koutsouris (2003). Using decision tree algorithms as a

basis for a heart sound diagnosis decision support

system. Proc. of the 4th Annual IEEE Conference on

Information Technology Applications in Biomedicine,

UK, pp. 354 -357.

152. M. Lenic, P. Povalej, M. Zorman V. Podgorelec, P.

Kokol and L. Lhotska (2003). Multimethod machine

learning approach for medical diagnosing. Proc. of the

4th Annual IEEE Conf on Information Technology

Applications in Biomedicine, UK, pp. 195-198.

153. Peter Kokol, Milan Zorman, Vili Podgorelec and Spela

Hleb Babie (1999). Engineering for intelligent

systems. Proc. of 1999 IEEE International Conference

on Systems, Man, and Cybernetics, Vol. 6, pp. 306 -

311.

154. Ming Dong, Ravi Kothari, Marty Visschert and Steven

B. Hoatht (2001). Evaluating skin condition using a

new decision tree induction algorithm. Proc.

International Joint Conference on Neural Networks,

Vol.4, pp. 2456 - 2460.

155. P. R. Kennedy and K. D. Adams (2003). A decision

tree for brain-computer interface devices. IEEE

Transactions On Neural Systems And Rehabilitation

Engineering, Vol. 11, No. 2. pp. 148-150.

156. Liu Hui and GaiLiping (2009). Statistical estimation of

diagnosis with genetic markers based on decision tree

analysis of complex disease International Journal of

Computers in Biology and Medicine Vol. 39, pp. 989-

992.

157. Juan Pablo Gonzalez and U. Ozguner (2000). Lane

detection using histogram-based segmentation and

decision trees. Proc. of IEEE Intelligent

Transportation Systems, pp. 346-351.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3 – No.5, July 2012 – www.ijais.org

30

158. J. Freixenet, X. Lladb, J. Marti and X. Cufi (2000).

Use of decision trees in color feature selection.

application to object recognition in outdoor scenes.

Proc. of International Conference on Image

Processing, Vol. 3, pp. 496-499.

159. Claudio M. Rocco S. (2004). Approximate reliability

expressions using a decision tree approach. Proc. of

Annual Symposium - RAMS Reliability and

Maintainability, pp. 116-121.

160. Tariq Assaf and Joanne Bechta Dugan (2004).

Diagnostic expert systems from dynamic fault trees.

Annual Symposium-RAMS Reliability and

Maintainability, pp. 444-450.

161. Simard, Sasan S. Saatchi and Gianfranco De Grandi

(2000). The use of decision tree and multiscale texture

for classification of jers-1 sar data over tropical forest.

IEEE Transactions On Geoscience And Remote

Sensing, Vol. 38, No. 5.

162. Palaniappan, Feng Zhu, Xinhua Zhuang and Yunxin

Zhao Blanchard (2000). Enhanced binary tree genetic

algorithm for automatic land cover classification. Proc.

of International Geoscience and Remote Sensing

Symposium, pp.688-692.

163. Ram Manavi, C. Weisbin, W. Zimmerman and G.

Rodriguez (2002). Technology portfolio options for

NASA missions using decision trees. Proc. of IEEE

Aerospace Conference, Big Sky, Montana. pp. 115-

126.

164. Yali Amit and Alejandro Murua (2001). Speech

recognition using randomized relational decision trees.

IEEE Transactions On Speech And Audio Processing,

Vol. 9, No. 4. pp. 333-341.

165. L.R. Bahl, Peter F. Brown, Peter V. De Souza and

Robert L. Mercer (1989). A tree-based statistical

language model for natural language speech

recognition. IEEE Transactions On Acoustics, Speech,

And Signal Processing, Vol. 37, No. 7. pp. 1001-1008.

166. Junichi Yamagishi, Makoto Tachibana, Takashi

Masuko and Takao Kobayashi, Speaking style

adaptation using context clustering decision tree for

hmm-based speech synthesis. Proc. of IEEE

International Conference on Acoustics, Speech and

Signal Processing, Vol. 1, pp. 5-8.

167. Selby R.W. and Porter (1988). A learning from

examples: generation and evaluation of decision trees

for software resource analysis. IEEE Transactions On

Software Engineering, Vol. 14, pp.1743-1757.

168. T.M. Khoshgoftaar, N. Seliya and Yi Liu (2003).

Genetic programming-based decision trees for

software quality classification. Proc. of 15th IEEE

International Conference on Tools with Artificial

Intelligence, pp. 374-383.

169. S.Geetha, N. N. Ishwarya, N. Kamaraj (2010).

Evolving decision tree rule based system for audio

stego anomalies detection based on Hausdorff distance

statistics Information Sciences Elsevier Publisher pp.

2540-2559.

170. Lili Diao, Keyyun Hu, Yuchan Lu, Chunyi Shi

Boosting (2002). Simple decision trees with Bayesian

learning for text categorization. IEEE Robotics and

Automation Society Proc. of the 4th World Congress

on Intelligent Control and Automation, Shanghai,

China, pp. 321- 325.

171. Bing Wu, Wen-Jun Zhou and Wei-Dong Zhang

(2003). The applications of data mining technologies

in dynamic traffic prediction. IEEE Intelligent

Transportation Systems, Vol.1 pp. 396-401.

172. Pangyu Jeong and Sergiu Nedevschi (2003).

Intelligent road detection based on local averaging

classifier in real-time environments. Proc. of the 12th

International Conference on Image Analysis and

Processing.

173. Edward Jaser, Josef Kittler and William Christmas

(2004). Hierarchical decision making scheme for

sports video categorization with temporal post-

processing. Proc. of the IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition. pp. 908-913.

174. Song Cen and Pamela C. Cosman (2003). Decision

trees for error concealment in video decoding. IEEE

Transactions on Multimedia, Vol. 5, No. 1. pp. 1-7.

175. Francesco Bonchi, Giannotti, G. Manco, C. Renso, M.

Nanni, D. Pedreschi and S. Ruggieri (2001). Data

mining for intelligent web caching. Proc. of

International Conference on Information Technology:

Coding and computing, 2001, pp. 599 - 603.

176. M. Chen, A. Zheng, J. Lloyd, M. Jordan and E. Brewer

(2004). Failure diagnosis using decision trees. Proc. of

the International Conference on Autonomic

Computing, pp. 36 -43.

