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ABSTRACT 
The availability of mobile information systems is being 

driven by the increasing demand to have information 

available for users at any time. As the availability of 

wireless devices increases, so will the load on available 

radio frequency resources. The radio frequency spectrum is 

limited, thus there will be a need to effectively manage these 

resources. 

This paper studies the application of the genetic algorithm in 

optimizing cellular radio networks. The aim of the algorithm 

is to allocate the available frequency channels in such a way 

that the average quality of the signals that the mobile 

stations receive is maximized, while meeting the minimum 

requirement even for the worst signals. 

In this study, a genetic algorithm for solving the channel 

allocation problem is implemented in MATLAB 

environment and the parameters of the genetic algorithm are 

tuned so that the algorithm converges nicely.  
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1. INTRODUCTION 

A cellular network is a mobile network in which radio 

resources are managed in cells. A cell is a two-dimensional 

area bounded logically by an interference threshold. By 

exploiting the ability minimize the co-channel interference, 

one can ensure that mobile stations will receive a strong 

signal to communicate. Further, channels can be assigned in 

a way that maximizes their availability at a future time. A 

number of decisions have to be made in the process of 

frequency assignment. Thus, a choice must be made 

intelligently that minimizes interruption to services [1, 2, 3]. 

The received signal quality in cellular radio networks 

depends basically on three things: the received signal power, 

the interference power, and the level of background noise.  

 

1. The received signal power depends on the distance 

between the transmitter and the receiver and this can not 

be optimized because mobile can be anywhere in the 

region. 

2. The level of background noise is something that cannot 

be changed. Because we do not have control on other 

traffic.  

3. Therefore, optimizing the signal quality must be done by 

minimizing the interference. So co-channel interference 

is taken into account. 

The sources of the interference that the mobile stations 

receive are the other connections on the same frequency 

channel in the other parts of the network. The closer the 

interferer, the higher the interference it causes. This gives 

rise to a question of how the available frequency channels 

should be allocated to the mobile stations so that the 

performance of the network is optimized. In any matured 

cellular network the number of users is much larger than the 

number of frequency channels. Therefore, each channel is 

shared by several users, but if their connections do not take 

place too close to each other, then they do not interfere each 

other too much. 

 

2. CHANNEL ALLOCATION 
Channel allocation deals with the allocation of channels to 

cells in a cellular network. Once the channels are allocated, 

cells may then allow users within the cell to communicate 

via the available channels. Channels in a wireless 

communication system typically consist of time slots, 

frequency bands and/or CDMA pseudo noise sequences, but 

in an abstract sense, they can represent any generic 

transmission resource. 

 

2.1   The Channel Allocation Problem 
With the significant increase in the number of the mobile 

users, the number of mobile devices (hosts) has increased. 

Due to this increasing load, the number of mobile hosts that 

could not connect to the destination (called blocked hosts) 

has also increased. There are two ways to solve this 

problem. The first is by increasing the number of channels, 

but that incurs certain costs. The other way is to utilize the 

current infrastructure efficiently and try to maximize the 

uses of the available infrastructure so that the best 

performance can be achieved. The latter is obviously 

preferable, as it is always cost effective to utilize the 

available resources effectively than to add more bandwidth. 

The channel allocation problem addresses the effective 

channel utilization in a cellular network. 

 

2.2   Channel Allocation Schemes 
One main issue in cellular system design reduces to one of 

economics. Essentially we have a limited resource 

transmission spectrum that must be shared by several users. 

Unlike wired communications which benefits from isolation 

provided by cables, wireless users within close proximity of 

one another can cause significant interference to one 

another? To address this issue, the concept of cellular 

communications was introduced around in 1968 by 

researchers at AT&T Bell Labs. The basic concept being 

that a given geography is divided into polygons called cells. 

Each cell is allocated a portion of the total frequency 

spectrum. As users move into a given cell, they are then 

permitted to utilize the channel allocated to that cell. The 

virtue of the cellular system is that different cells can use the 

same channel given that the cells are separated by a 

minimum distance according to the system propagation 

characteristics; otherwise, intercellular or co-channel 

http://www.wirelesscommunication.nl/reference/chaptr04/multi/tdma.htm
http://www.wirelesscommunication.nl/reference/chaptr04/multi/fdma.htm
http://www.wirelesscommunication.nl/reference/chaptr05/cdma/cdma.htm
http://www.wirelesscommunication.nl/reference/chaptr02/issues.htm
http://www.wirelesscommunication.nl/reference/chaptr04/cellplan/cellular.htm
http://www.wirelesscommunication.nl/reference/chaptr04/cellplan/cellular.htm
http://www.wirelesscommunication.nl/reference/chaptr04/cellplan/reuse.htm
http://www.wirelesscommunication.nl/reference/chaptr04/cellplan/reuse.htm
http://www.wirelesscommunication.nl/reference/chaptr04/cellplan/reuse.htm
http://www.wirelesscommunication.nl/reference/chaptr03/propmain.htm


 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 3– No.5 , July 2012 – www.ijais.org 

 

6 

interference occurs. The minimum distance necessary to 

reduce co-channel interference is called the reuse distance. 

The reuse distance is defined as the ratio of the distance, D, 

between cells that can use the same channel without causing 

interference and the cell radius, R. Note that R is the 

distance from the center of a cell to the outermost point of 

the cell in cases when the cells are not circular.  

 

 
 

                       Fig 2: Cell Architecture 

 

Adding bandwidth to a mobile network is an expensive 

operation. When developing a mobile network‟s 

infrastructure, wasting bandwidth should be avoided because 

it is very costly. Thus, the objective is to try and get the most 

out of the minimum infrastructure. The same problem 

applies to a mobile network that is already installed, where it 

is cheaper to utilize the available resources more effectively 

than to add more bandwidth. 

The channel allocation problem involves how to allocate 

borrowable channels in such a way as to maximize the long 

term and/or short-term performance of the network. The 

performance metrics that can be used to evaluate the 

solutions proposed will be primarily the number of hosts 

blocked and the number of borrowings. A host is blocked 

when it enters a cell and cannot be allocated a channel.  

Obviously, the more hosts that are blocked, the worse will 

be the performance of the network. The other major metric 

is the number of channel-borrowings. This should be 

minimized because channel borrow requests generate 

network traffic. There are other metrics that can be used to 

evaluate the performance of the solution such as the number 

of “hot cells” that appear in a cellular environment.  

There are three major categories for assigning these 

channels to cells (or base-stations). They are  

 

 Fixed Channel Allocation,  

 Dynamic Channel Allocation and  

 Hybrid Channel Allocation which is a combination of 
the first two methods.  

2.2.1 Fixed Channel Allocation 
Fixed Channel Allocation (FCA) systems allocate specific 

channels to specific cells. This allocation is static and can 

not be changed. For efficient operation, FCA systems 

typically allocate channels in a manner that maximizes 

frequency reuse. Thus, in a FCA system, the distance 

between cells using the same channel is the minimum reuse 

distance for that system. The problem with FCA systems is 

quite simple and occurs whenever the offered traffic to a 

network of base stations is not uniform. Consider a case in 

which two adjacent cells are allocated N channels each. 

There clearly can be situations in which one cell has a need 

for N+k channels while the adjacent cell only requires N-m 

channels (for positive integer‟s k and m). In such a case, k 

users in the first cell would be blocked from making calls 

while m channels in the second cell would go unused. 

Clearly in this situation of non-uniform spatial offered 

traffic, the available channels are not being used efficiently. 

FCA has been implemented on a widespread level to date.  

 

2.2.2 Dynamic Channel Allocation  
Dynamic Channel Allocation (DCA) attempts to alleviate 

the problem mentioned for FCA systems when offered 

traffic is non-uniform. In DCA systems, no set relationship 

exists between channels and cells. All channels are kept in a 

central pool and are assigned dynamically to radio cells as 

new calls arrive in the system. After a call is completed, its 

channel is returned to the central pool. In DCA, a channel is 

eligible for use in any cell provided that signal interference 

constraints are satisfied. Because, in general, more than one 

channel might be available in the central pool to be assigned 

to a cell that requires a channel, some strategy must be 

applied to select the assigned channel. There are two 

problems that typically occur with DCA based systems.  

 

 First, DCA methods typically have a degree of 

randomness associated with them and this leads to the 

fact that frequency reuse is often not maximized unlike 

the case for FCA systems in which cells using the same 

channel are separated by the minimum reuse distance. 

  

 Secondly, DCA methods often involve complex 

algorithms for deciding which available channel is most 

efficient. These algorithms can be very computationally 

intensive and may require large computing resources in 

order to be real-time.  

 

2.2.3 Hybrid Channel Allocation 
The third category of channel allocation methods includes 

all systems that are hybrids of fixed and dynamic channel 

allocation systems. Several methods have been presented 

that fall within this category and in addition, a great deal of 

comparison has been made with corresponding simulations 

and analyses. We will present several of the more developed 

hybrid methods below.  

Channel Borrowing is one of the most straightforward 

hybrid allocation schemes. Here, channels are assigned to 

cells just as in fixed allocation schemes. If a cell needs a 

channel in excess of the channels previously assigned to it, 

that cell may borrow a channel from one of its neighboring 

cells given that a channel is available and use of this channel 

won't violate frequency reuse requirements. Note that since 

every channel has a predetermined relationship with a 

specific cell, channel borrowing (without the extensions 

mentioned below) is often categorized as a subclass of fixed 

allocation schemes. The major problem with channel 

borrowing is that when a cell borrows a channel from a 

neighboring cell, other nearby cells is prohibited from using 

http://www.wirelesscommunication.nl/reference/chaptr04/cellplan/cellsize.htm
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the borrowed channel because of co-channel interference. 

This can lead to increased call blocking over time. To reduce 

this call blocking penalty, algorithms are necessary to ensure 

that the channels are borrowed from the most available 

neighboring cells; i.e., the neighboring cells with the most 

unassigned channels.  

Two extensions of the channel borrowing approach are 

Borrowing with Channel Ordering (BCO) and Borrowing 

with Directional Channel Locking (BDCL).  

 Borrowing with Channel Locking was designed as an 

improvement over the simpler Channel Borrowing 

approach as described above. BCO systems have two 

distinctive characteristics: 

i. The ratio of fixed to dynamic channels varies with 

traffic load.  

ii. Nominal channels are ordered such that the first 

nominal channel of a cell has the highest priority 

of being applied to a call within the cell.  

The last nominal channel is most likely to be borrowed by 

neighboring channels. Once a channel is borrowed, that 

channel is locked in the co-channel cells within the reuse 

distance of the cell in question. To be "locked" means that a 

channel can not be used or borrowed. Zhang and Yum [6] 

presented the BDCL scheme as an improvement over the 

BCO method. From a frequency reuse standpoint, in a BCO 

system, a channel may be borrowed only if it is free in the 

neighboring co-channel cells. This criterion is often too 

strict. 

 In the BCO strategy, a channel is suitable for 

borrowing only if it is simultaneously free in three 

nearby co-channel cells. This requirement is too 

stringent and decreases the number of channels 

available for borrowing. In the Borrowing with 

Directional Channel Locking (BDCL) strategy, the 

channel locking in the co-channel cells is restricted to 

those directions affected by the borrowing. Thus, the 

number of channels available for borrowing is greater 

than that in the BCO strategy. To determine in which 

case a “locked” channel can be borrowed, “lock 

directions” are specified for each locked channel. The 

scheme also incorporates reallocation of calls from 

borrowed to nominal channels and between borrowed 

channels in order to minimize the channel borrowing of 

future cells, especially the multiple-channel borrowing 

observed during heavy traffic. A disadvantage of 

BDCL is hat the statement "borrowed channels are only 

locked in nearby cells that are affected by the 

borrowing" requires a clear understanding of the term 

"affected." This may require microscopic analysis of 

the area in which the cellular system will be located. 

Ideally, a system can be general enough that detailed 

analysis of specific propagation measurements is not 

necessary for implementation.  

 

3. GENETIC ALGORITHM 
A genetic algorithm (GA) is a procedure used to find 

approximate solutions to search problems through 

application of the principles of evolutionary biology. 

Genetic algorithms use biologically inspired techniques such 

as genetic inheritance, natural selection, mutation, and 

sexual reproduction (recombination, or crossover). Along 

with genetic programming (GP), they are one of the main 

classes of genetic and evolutionary computation (GEC) 

methodol

ogies. 
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  Fig 3: Flow Chart of a General form of Genetic 

Algorithm 

 

Genetic algorithms are typically implemented using 

computer simulations in which an optimization problem is 

specified. For this problem, members of a space of candidate 

solutions, called individuals, are represented using abstract 

representations called chromosomes. The GA consists of an 

iterative process that evolves a working set of individuals 

called a population toward an objective function, or fitness 

function. Traditionally, solutions are represented using fixed 

length strings, especially binary strings, but alternative 

encodings have been developed. 

The evolutionary process of a GA is a highly simplified and 

stylized simulation of the biological version. It starts from a 

population of individuals randomly generated according to 

some probability distribution, usually uniform and updates 

this population insteps called generations. Each generation, 

multiple individuals are randomly selected from the current 

population based upon some application of fitness, bred 

using crossover, and modified through mutation to form a 

new population. 

 

3.1   Initialization 
In the initialization, one generates, often randomly, a 

population from which new generations are formed. At this 

point one also needs to de-₃ne the terminating condition so 

that the algorithm stops running once an acceptable solution 

is found. 

 

3.2   Crossover 
Crossover is one of the genetic operators used in producing 

new candidates using the features of the existing ones. The 

crossover procedure is illustrated in Figure below. 

 1 1 1 1 1 1 1 1 1 

Initialization 

Carry the Crossover 

Procedure with a 

defined Probability 

Mutate with a defined 

Probability 

Is the 

termination 

condition 

met ? 

Terminate 

Select the strongest 

candidate 
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Two Parents  

 
 

 

 

Select the 

Crossover 

Points 

 

 
 

 

Switch 

the 

values 

 

                           Fig3.2: Crossover Procedure 
 

The crossover procedure consists of three parts. First one 

selects two parents from the population. Then the crossover 

points are selected. The selection of crossover points is done 

at random, usually so that the distribution from which the 

points are drawn from is uniform. In figure 3.2 two 

crossover points are marked with lines. Once the points are 

de₃ned two offsprings are generated by interchanging the 

values between the two parents as illustrated in the figure 

3.2.In the genetic algorithm crossover is the operator that 

spreads the advantageous characteristics of the members 

around the population. 

 

3.3   Mutation 
In the genetic algorithm mutation is the operator that causes 

totally new characteristics to appear in the members of the 

population. In many cases the mutations, of course, result in 

offsprings that are worse than the other members, but 

sometimes the result has such characteristics that make it 

better. Figure below demonstrates the mutation operation.  

 

 

 

 

 

 

 

              Fig 3.3: Mutation Procedure 

First, one selects a member from the population to be 

mutated and a point of mutation. Then the values at the point 

of mutation are replaced by another value that is picked 

randomly from the set of all possible values. 

 

3.4   Evaluation 
After the population is manipulated using the genetic 

operators, the fitness of each of the new offspring‟s is 

evaluated. For this one needs to have a numerical function, 

fitness function. 

 

3.5   Selection 
In the selection the weakest individuals in the population are 

eliminated. The fit offspring‟s survive to the next 

generation. 

This chapter begins with a survey of GA variants: the simple 

genetic algorithm, evolutionary algorithms, and extensions 

to variable-length individuals. It then discusses GA 

applications to data mining problems, such as supervised 

inductive learning, clustering, and feature selection and 

extraction. It concludes with a discussion of current issues in 

GA systems, particularly alternative search techniques and 

the role of building block (schema) theory. 

 

4. TYPES OF GA 
The simplest genetic algorithm represents each chromosome 

as a bit string (containing binary digits: 0s and 1s) of fixed-

length. Numerical parameters can be represented by 

integers, though it is possible to use floating-point 

representations for reals. The simple GA performs crossover 

and mutation at the bit level for all of these. 

Other variants treat the chromosome as a parameter list, 

containing indices into an instruction table or an arbitrary 

data structure with pre-defined semantics, e.g., nodes in a 

linked list, hashes, or objects. Crossover and mutation are 

required to preserve semantics by respecting object 

boundaries, and formal invariants for each generation can 

specified according to these semantics. For most data types, 

operators can be specialized, with differing levels of 

effectiveness that are generally domain-dependent.  

 

5. APPLICATIONS 
Genetic algorithms have been applied to many classification 

and performance tuning applications in the domain of 

knowledge discovery in databases (KDD). De Jong et al. 

produced GABIL (Genetic Algorithm-Based Inductive 

Learning), one of the first general-purpose GAs for learning 

disjunctive normal form concepts.[7] GABIL was shown to 

produce rules achieving validation set accuracy comparable 

to that of decision trees induced using ID3 and C4.5. 

Since GABIL, there has been work on inducing rules and 

decision trees using evolutionary algorithms. Other 

representations that can be evolved using a genetic 

algorithm include predictors and anomaly detectors. 

Unsupervised learning methodologies such as data 

clustering also admit GA-based representation, with 

application to such current data mining problems as gene 

expression profiling in the domain of computational biology. 

KDD from text corpora is another area where evolutionary 

algorithms have been applied. 

GAs can be used to perform meta-learning or higher-order 

learning, by extracting features, selecting features, or 

selecting training instances. They have also been applied to 

combine, or fuse, classification functions. 

 

6. FUTURE TRENDS 
Some limitations of GAs are that in certain situations, they 

are overkill compared to more straightforward optimization 

methods such as hill-climbing, feed forward artificial neural 

networks using back propagation, and even simulated 

annealing and deterministic global search. In global 

optimization scenarios, GAs often manifests their strengths: 

efficient, parallelizable search; the ability to evolve solutions 

with multiple objective criteria and a characterizable and 

controllable process of innovation. 

Several current controversies arise from open research 

problems in GEC: 

• Selection is acknowledged to be a fundamentally important 

genetic operator. Opinion is, however, divided over the 

importance of crossover verses mutation. Some argue that 

crossover is the most important, while mutation is only 

necessary to ensure that potential solutions are not lost. 

2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 

1 1 2 2 2 1 1 1 1 

2 2 1 1 1 2 2 2 2 

1 1 1 1 1 1 1 1 1 

2 2 1 2 2 2 2 2 2 
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Others argue that crossover in a largely uniform population 

only serves to propagate innovations originally found by 

mutation, and in a non-uniform population crossover is 

nearly always equivalent to a very large mutation (which is 

likely to be catastrophic). 

• In the field of GEC, basic building blocks for solutions to 

engineering problems have primarily been characterized 

using schema theory, which has been critiqued as being 

insufficiently exact to characterize the expected convergence 

behavior of a GA. Proponents of schema theory have shown 

that it provides useful normative guidelines for design of 

GAs and automated control of high-level GA properties 

(e.g., population size, crossover parameters, and selection 

pressure). Recent and current research in GEC relates certain 

evolutionary algorithms to ant colony optimization. 

 

7. THE NETWORK 

7.1   Topology of Network 
The network consists of 19 base transceiver stations, each 

serving one cell with a radius of one kilometer. The cells 

form a hexagonal grid. In each cell there are three mobile 

stations. The locations of the mobiles are chosen at random 

from a distribution that is uniform over the corresponding 

hexagonal cell. 

 
                             Fig 7.1: Topology of Network 

 

7.2   Propagation Modeling 
The amount of attenuation that the signal experiences in the 

air interface between the transmitter and the receiver, path 

loss, can be calculated using the following model[4]: 

 

Lp = 40(1 – 0.004∆h) log(R) -18 log (∆ h) + 21 log (f) + 

80Db 

 

Where, 

    Lp is the attenuation in dB, 

    h is the height of the base station antennas above the 

rooftop    level in meters, 

    R is the distance between the transmitter and the receiver 

in kilometers, 

    f is the carrier frequency in MHz 

This formula gives the attenuation on average, i.e., possible 

fading effects are not taken into account. 

Assuming h equal to 15 meters and a UMTS carrier 

frequency of 2000 MHz and adding the antenna gain of 9 

dB, we get the total loss, L, as a function of R only: 

 

L = 119.1 + 37.6 log (R) 

 

Furthermore, the signal power at the receiver, PR , is 

 

                 PR  = PT  , L  

 

Where PT is the transmission power of 43 dBm. 

 

The quality of the received signal not only depends on the 

received signal power, PR, but also on the amount of 

interference and noise. For this, a concept of signal-to-

interference-and-noise ratio, SINR[5] is needed: 

 

SINRk = PR,C  [mW]/ ∑iЄI PR,I  [mW] + N0 [mW] 

 

Where, 

SINRk is the SINR for mobile station k on the linear scale, 

PR,C  [mW] is the received carrier power in mW, 

PR,C  [mW] is the received power of the interfering signal 

arriving from base station i in mW, 

I is the group of connections using the same frequency 

channel, 

N0[mW] is the thermal noise in mW. 

 

Switching between the linear (mW) and decibel (dB/dBm) 

scales can be done with the following, well known relations: 

x[dBm] =10 X log (x[mW]) 

x[mW] =10^(x[dBm]/10)  

 

8. IMPLEMENTATION 

8.1   Initialization 
The population is formed so that there are 12 individuals 

that are represented as vectors. The length of each of the 

individuals is the same as the number of mobile stations 

connected to the network. The ith value in the vector gives 

the frequency channel that mobile station i is using. 

Because one of the purposes of this project is to study the 

performance of the genetic algorithm, the individuals are 

initialized corresponding to a worst case situation, i.e., such 

case in which all the mobile stations are allocated to the 

same channel. In this case the one selected is the channel 

number one. The terminating condition is defined by the 

number of generations to be produced. In order to better 

compare the different evolutions the length of the run should 

be constant. Later, this „age‟ of the population is selected so 

that the algorithm works optimally. 

 

8.2   Crossover 
In crossover procedure the population of 12 parents is 

collected into pairs of two so that the first parent is paired 

with the twelfth one, the second parent with the eleventh 

one, and so on. The crossover is executed twice for each pair 

of parents. Therefore, they will get four children. 
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Fig 8.2: Crossovers 

 

Overall, the size of the population of children is 24. The 

order of the children is mixed so that the siblings are not 

always next to each other in the new generation, see Figure 

8.2. 

In crossover there is also a probability, namely crossover 

probability, involved. With this probability the crossover is 

done, otherwise the children are identical to their parents. 

 

8.3   Mutation 
Mutation is carried out for the individuals after the crossover 

procedure. In mutation one changes one of the values in a 

vector representing an individual. This is carried out with a 

pre-defined probability, mutation probability. Just like 

crossover probability, this mutation probability is one of the 

parameters of the algorithm. 

 

8.4   Evaluation 
A smart channel allocation has basically two characteristics. 

Firstly, the average signal-to-interference-and-noise ratio, 

SINR that mobile stations receive must be as high as 

possible.  

This reflects the overall performance of the network. On the 

other hand, the minimum SINR requirement for all the users 

must be met. In this case the minimum requirement is set at 

SINR = 9 dB. 

The fitness function in this case has the following form: 

 

                       Fitness = SINR + penalty + jitter 

Where 

 SINR is the SINR that the mobile 

stations experience on average in dB. 

 Penalty  decreases the fitness is some 

mobiles experience a SINR that is lower 

than 9 dBm 

 Jitter adds randomness. 

   The Penalty and Jitter, respectively, are             

calculated with the following formulas: 

            Penalty = -5 x (9 – min ( 9, min (SINR)) 

 

 Jitter = (10 / #G+1) * U 

Where 

#G is the order number of the corresponding generation, and 

 

U is a random number from a uniform distribution between 

0 and 1. 

 

Obviously, the effect of jitter becomes negligible in higher 

generations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the beginning however, when #G is small, jitter has an 

effect on the fitness: this way none of the individuals do not 

start to dominate the others too much at a point when all of 

the individuals are equally bad. 

  

8.5   Selection 
A simple selection scheme is utilized of the 24 individuals 

the worse half is eliminated and the rest will contribute to 

the next generation. 

 

8.6   GA Parameter Tuning 
There are three parameters related to the implementation of 

the genetic algorithm that must be tuned before the 

algorithm is used. These parameters are crossover 

probability, mutation probability and the number of 

generations to be produced. Crossover and mutation 

probability affect on how the population evolves in time, 

and the number of generation must be chosen so that the 

optimal, or at least a good one, solution is found. 

 

8.6.1   Crossover Probability 
In order to study the effect of crossover probability on the 

evolution, the algorithm is run with different crossover 

probabilities ranging from 0.2 to 1.0. For these runs the 

mutation probability is equal to 0.4, and the maximum 

fitness for each generation is traced. The results are shown 

in Graph below. 

From Graph 8.6.1 it can be seen that with all the values of 

crossover probability the evolution converges pretty nicely. 

Even though there are some differences between the runs, 

the time of convergence seems to be mostly a matter of luck. 

With the crossover probabilities closer to one the evolution 

converges slightly faster, and therefore, a value of 0.8 is 

chosen to be the crossover probability with which the final 

results are generated. 

 
Fig 8.6.1: Evolution of fitness with different crossover                     

probabilities ranging from 0.2 to 1.0 

 

A probability of 1.0 is not selected because it seems to 

x-Over 

1 12 

1 7 13 19 

x-Over 

2 11 

2 8 14 20 

x-Over 

3 10 

3 9  15  21 

x-Over 

4 9 

4 10 16 22 

x-Over 

5 8 

5 11 17 23 

x-Over 

6 7 

6 12 17 24 
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behave somewhat chaotically even though it converges 

fastest. 

 

8.6.2   Mutation Probability 
The effect of mutation probability is studied similarly to that 

for crossover probability in the previous subsection. The 

algorithm is run with five different mutation probabilities 

from ranging 0.2 to 1.0. The maximum fitness as a function 

of generation is presented in Graph below for all of the five 

runs. 

Graph 8.6.2 shows that the evolution of the population 

significantly depends on the mutation probability. With high 

mutation rate the better values of fitness are reached faster 

but, on the other hand, the population acts chaotically and 

the maximum is not reached in the later generations. This 

shows that if the mutation probability is very high, then 

some of the advantageous characteristics of the generations 

are eliminated by mutation and the fitness of the population 

does not  

 

 
Fig 8.6.2: Evolution of fitness with different mutation                     

probabilities ranging from 0.2 to 1.0 

 

Converge. With lower values of mutation probability the 

fitness evolves more slowly but the populations do not act 

chaotically. Therefore, the requirement of convergence is 

met. 

A good compromise between fast evolution and nice 

convergence seems to be at a mutation probability of 0.4. 

 

8.6.3   Number of Generations 
The number of generation to be produced is selected so that 

the algorithm almost always converges to a good value of 

fitness. From Graph 5.2 and Graph 5.3 it can be seen that 

with reasonable values of crossover and mutation probability 

the algorithm has easily converged before the 300th 

generation. To be absolutely sure about the convergence the 

algorithm is run over 400 generations. Such high confidence 

margin can be selected because the computations for a 

system of this size do not take very long for a standard 

computer of today. For larger systems a less conservative 

approach may be selected. 

 

9.  RESULTS 
The performance of the algorithm in optimizing cellular 

radio networks is studied in this section. In the system to be 

optimized there are 19 base stations as illustrated in Graph 

7.1 and three mobile stations in each cell. The locations of 

the mobile stations are chosen randomly, but the coordinates 

have been the same in every case. Because the mobile 

positions affect on the fitness, having the locations 

unchanged decreases the unwanted variability in the results. 

 

9.1 Maximum Fitness with Different 

Numbers of Frequency Channels 
The network is optimized for different number of frequency 

channels ranging from 5 to 21. Obviously, the larger the 

number of frequency channels the better should the network 

perform. The number of interferers is smaller if there are 

more channels to allocate on. 

The results are plotted in Graph 9.1. With the lowest 

numbers of frequency channels the maximum fitness is very 

bad. In these cases not all of the mobile stations experience a 

SINR higher than 9 dB. 

 

 
Fig 9.1: Maximum fitness as a function of no. of   

frequency channel 

 

This results in penalty term dominating the fitness. In other 

words, the mobile stations are packed so tightly on the 

available frequency channels that it is not possible to meet 

the minimum requirements for all of them. In cases where 

there are more than 9 frequency channels the maximum 

fitness increases with a slope smaller than that with cases 

where there are less than 9 frequency channels. In this case 

the minimum requirements of SINR = 9 dB is met for all the 

mobile stations and the fitness is dominated by the average 

SINR. The effect of jitter is at most equal to 0.025. 

Therefore, its effect can not be seen in Graph 9.1. 

 

9.2   Comments on the Performance 
One can also see that the resulting maximum fitness 

increases pretty consistently with the number of frequency 

channels. This suggests that the algorithm in each run finds a 

solution that is close to the global maximum. Getting stuck 

with local maximums would cause inconsistency in the 

curve. 

The number of possible allocations is NM , where N is the 

total number of available frequencies, and M is the number 

of mobile stations in the network. In the cases studied here 

this goes from 457 = 2x1034 to 2157 = 2x1075. Clearly, finding 

the optimal allocations by going through all the possibilities 

is not possible, which justifies the use of more intelligent 

methods such as genetic algorithms. With the 

implementation of a genetic algorithm used here the number 

of allocations to be evaluated is 24x400 = 9600 even though 

a very conservative safety margin was selected for the 

number of generations to be produced. 

 

10.  CONCLUSION 

This thesis presents a cellular radio network optimization 

problem and studied the applicability of genetic algorithms 
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on solving it. Firstly, the problem was formulated so that 

solutions can be searched using a genetic algorithm, and 

then a genetic algorithm was implemented in MATLAB 

environment. The effects of three parameters, namely 

crossover probability, mutation probability, and the number 

of generations to be produced, were briefly studied by 

tracing the evolution of the initial population with different 

parameter values. The most suitable parameter values were 

then suggested. Finally, the performance of an example 

network was optimized with the genetic algorithm.The 

application of genetic algorithms in channel allocation 

optimization sets two requirements for the network.  

Firstly, the propagation environment must be known and a 

suitable model for it must be available. In urban areas the 

attenuation that the signals experience in the air interface is, 

of course, very different from that in urban areas. 

Secondly, the locations of the mobile stations must be 

known. In most of the networks this is not the case yet. In 

the near future, however, the locationing services will be 

launched, which among other things enables the use of more 

advanced optimization methods. 

The results reported show that the genetic algorithm works 

relatively consistently in optimizing the network. The 

resulting performance of the network increases with 

available resources (frequency channels) as expected. The 

fact that the results form a smooth curve in Graph 9.1 proves 

that the algorithm in most cases converges close to the 

global maximum. 

Compared to the exhaustive search the performance of the 

genetic algorithm in finding solutions to this problem is 

superb; with an exhaustive search the number of points to be 

checked would have risen at least 2x1034, depending on the 

case under study, whereas the genetic algorithm found a 

good solution by checking 9600 points only. Here, the 

genetic algorithm started with a worse-case initial 

population; in real life systems this should not be the case, 

which makes the convergence even faster. Also, for the 

number of generations less conservative safety margins may 

be used if the computational power becomes an issue and if 

it is good enough just to and a good solution and not 

necessarily the very best one. 

 

11.  ACKNOWLEDGEMENT 
I would like to acknowledge my deep sense of gratitude to 

my Supervisor Dr. Surya Prakash Tripathi, IET 

Lucknow for his valuable help, guidance and 

encouragement for my thesis work. He gladly accepted all 

the pains in going through my work again and again, and 

giving me opportunity to learn essential research skills. This 

work would not have been possible without his insightful 

and critical suggestions, his active participation in 

constructing right models and a very supportive attitude. 

It gives me immense pleasure to express my deep sense of 

gratitude to my colleagues Ajay Garg and Suyash Kumar for 

their guidance and encouragement during the course of 

project work. 

Last but not the least, I extend my heartiest gratefulness to 

my parents for their blessing, husband Devendra for his 

support and daughter Jhalak for her understanding. 
 

12.  REFERENCES 
 [1]  K. Feher, Wireless Digital Communications. McGraw- 

Hill, 1995. 

[2]  M.A.C. Gill and A.Y. Zomaya, Obstacle Avoidance in   

Multi-Robot Systems. World Scientific, 1998. 

 [3]  A.Y. Zomaya and M. Wright, “Observation on Using  

Genetic Algorithms for Channel Allocation in Mobile 

Computing,” IEEE Trans. Parallel and Distributed 

Systems, vol 13, no. 9, pp. 948-962, Sept. 2002. 

 [4]  European Telecommunications and Standards Institute, 

ETSI TR 101 112 version 3.2.0, Universal Mobile 

Telecommunications System (UMTS) Selection 

procedures for the choice of radio trans-mission 

technologies for the UMTS, 1998. 

[5]  Steven W. Smith, The Scientist and Engineer‟s Guide to 

Digital Signal Processing, California Technical 

Publishing, 1998. 

 [6]   Zhang, M. and Yum, TS. P., "Comparisons of 

Channel-Assignment Strategies in Cellular Mobile 

Telephone Systems", IEEE Transactions on Vehicular 

Technology, vol. 34, no. 4, November 1989.  

 [7]  De Jong, K.A., Spears, W.M., & Gordon, F.D. (1993). 

Using genetic algorithms for concept learning. Machine 

Learning, 13, 161-188, 1993. 

 


