

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.2, July 2012 – www.ijais.org

1

Adaptable Fault Tolerance Configurations for

Multiprocessor Systems

Samia A. Ali
Electrical Engineering Department

 Assiut University

 Assiut, Egypt

ABSTRACT

The escalating increase in the complexity of multiprocessor

systems increases the probability of faults occurring in these

systems As a consequence there is a great need for achieving

fault-tolerance of processing in multiprocessor systems. Fault-

tolerance generally requires some forms of hardware and/or

time redundancy. Two fault tolerant configurations are

proposed for both single and double transient and permanent

faults in any processor of multiprocessor systems. The

tolerance for faults takes place in three consecutive steps;

fault detection, fault diagnosing and system recovery. The

overhead cost for the first (second) configuration is only

100% hardware (time) for fault detection, an extra 100% time

for fault diagnoses and system recovery only for those

processes running on the faulty processors. The advantages of

the proposed configurations are the ease of applicability and

the low associated overhead cost over the system without any

fault tolerance. An enhancement is developed for both

configurations to check upon the system state adequately to

detect and recover from faults as soon as they infect the

system. Simulations are performed to illustrate the usefulness

of the proposed configurations.

General Terms

Fault Tolerance, Multiprocessor Systems.

Keywords

Hardware Redundancy, Time Redundancy, Transient Fault,

Permanent Fault, Cold Standby Spare.

1. INTRODUCTION

The advances in technology make processors more powerful

but also more vulnerable to hardware errors. Permanent or

intermittent hardware faults, caused by defects in the silicon

or metallization or process package and wear out over time,

lead to “hard faults”. Moreover, approaching the ultimate

limits of silicon in terms of channel width, power supply and

speed produce circuits increasingly sensitive to noise, which

will result in unacceptable rates of soft-errors. Manufacturing

testing and periodic testing cannot accommodate soft errors.

Recent studies [1] have projected that between a two to nine-

orders-of-magnitude increase in logic circuits’ soft error rates.

Therefore, fault tolerant techniques are essential for future

multiprocessor systems. A typical solution for handling soft

errors in high availability systems is to replicate the

computation and compare the results to detect an error [2] and

then do either backward or forward for error recovery [3].

Some researchers have proposed variants of integrated

checking at the processor level [4, 5]. Several studies have

evaluated core-level fault detection and containment by

running redundant processes, either on a separate thread [6, 7]

or on a separate core [8, 9]. Current systems offering very

high availability, such as the IBM z-series [10] provide

coverage for both permanent and transient hardware faults

through a combination of redundant processor hardware and

error correcting codes in memories. Redundant processor

hardware, employing dual (or triple) modular redundancy –

DMR (TMR) – can be applied at different granularities.

Redundant hardware not only detects the presence of faults,

therefore avoiding costly errors and system failure, but also

allows applications to continue executing, without downtime,

until faulty component(s) can be replaced.

Normally, there are three basic forms of hardware

redundancy: passive, active, and hybrid. Passive techniques

mask the fault effects to the next level. The active approach

detects the occurrence of faults and takes actions to correct

them. The various active redundancy approaches are

duplication with comparison, standby sparing, pair-and-a-

spare technique, and watchdog timers. Duplication with

comparison is often used to detect errors. If two processors

disagree on the result found for the same process, obviously

there is an error. Standby sparing is another form of active

redundancy. In this technique, one module is operational with

one or more modules used as spares. Various schemes are

used in each module to detect errors. When an error is

detected in the operational module, it is removed from

operation and replaced by one of the spares.

There are two types of standby spares; hot and cold. In hot

standby sparing, spare modules compute the same function as

the operational module so that they are ready to take over at

any time. In cold standby sparing, spare modules are

powerless until needed to replace the faulty operating module.

The pair-and-a-spare technique combines the duplication with

comparison technique with the standby sparing technique.

Two modules work in parallel all the time. Their results are

compared to detect discrepancies. Error reports are used to

define the faulty unit. Then a spare is used to replace the

faulty module.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.2, July 2012 – www.ijais.org

2

Time redundancy is the extra time needed to detect and

correct faults. Time redundancy is particularly useful in

applications in which time is not a critical issue. Conversely,

it is not appropriate for hard real-time applications (i.e.,

stringent deadlines). It provides a viable solution for space

missions because weight, size, and power consumption are

critical aspects of spacecraft design. Time redundancy is

extremely useful to detect transient faults. Simple retries

allow for transient fault detection as well as their correction.

Therefore, the form of incorporated redundancy should be

carefully determined. Many fault-tolerant systems that are

deployed today are not reusable because the fault-tolerance

mechanisms used in these systems are intimately connected to

the specific applications that run on them [11]. If the

applications are changed, then the fault-tolerance mechanisms

must be changed as well.

In this paper, we propose two configurations for fault-tolerant

scheduling of parallel programs in multiprocessor systems.

With the proposed configurations, fault-tolerance can be

achieved at a small cost of either time or hardware

redundancy. The proposed schemes of this paper are pair-and-

a-spare type technique combined both the time and hardware

redundancy. The time redundancy is employed to detect and

recover from transient faults. While the hardware redundancy,

in the form of pair-and-spare, is introduced to detect and

recover from permanent faults.

This paper is organized as follows. Section2 provides

preliminary assumptions for the proposed fault tolerant

configurations. Section 3 presents a description for the first

proposed configuration. In section 4, the second proposed

configuration is presented. An enhancement for both proposed

configurations is shown in Section 5. Simulation results are

given in Section 6 to illustrate the usefulness of the proposed

configurations. Finally, Section 7 draws conclusions from this

work.

2. PRELIMINARY ASSUMPTIONS

It will be assumed throughout this paper that the occurrence of

transient faults is more likely than the occurrence of

permanent faults. Also, the probability of single faults either

transient or permanent is much higher than the probability of

double transient or permanent faults. Moreover, the

probability of two adjacent processors being permanently

faulty is more likely than the probability of two nonadjacent

processors being transiently or permanently faulty. Transient

faults will be active for a single running and the processor will

self-recover by the time of the following run. A permanent

faulty processor reports matched faulty results for a given

process executing any number of times on it. However, if a

given processor experienced a transient fault its reported

result for the same process will not necessarily match.

The multiprocessor system under consideration consists of

autonomous processor modules connected by an

interconnection system (bus, direct links or switching

networks). Each processor is equipped with a local memory

which can be accessed by a local bus. The local memory of

one processor module is accessible by other processor

modules. A fault in any processor is assumed to manifest

itself as a failure of that processor, while a fault in an

interconnection facility is attributed to the failure of one or

more processors which make use of that facility.

To ease the explanation of the proposed configurations, the

microprocessor system is assumed to be consisting of a master

processor, and even number of working processors and a

single cold spare processor. The master processor is a

distinguished processor responsible for distributing data to the

working processors, receiving processor's results, comparing

those results to detect faulty processors, diagnose those faults

and initiating the recovery actions. Moreover, the master

processor is assumed to be fault-free and a self-checking

processor. It performs the recovery from permanent faults by

replacing the faulty processor with the cold spare processor

and orders replacement and/or repair for the faulty processor

to keep a cold spare available in the system for future

replacements. In case of multiple permanent faults, the master

processor replaces the faulty processors one after another until

all faulty processors have been replaced and schedules rerun

for the processes with mismatched results.

3. THE FIRST CONFIGURATION

The multiprocessor system with the incorporated first

configuration for fault tolerance with n processor nodes, a

single spare processor, and a master processor is able to

execute 2n processes simultaneously as follows:

1- The master processor assigns 2n independent processes,

Pj's and 120  nj to be executed on the n working

processor nodes, Ni's and 10  ni . More specifically,

process Pj is assigned to be executed simultaneously on

nodes Nj and N 2nj  (see Table. 1).

2- Each processor node Ni, 10  ni , executes its

assigned process and reports its result to the master

processor.

3- Upon receiving the two results for each of the running

process, the master processor performs 2n comparisons

for the 2n sets of the reported results; one set for each

executed process.

4- According to the results of the 2n comparisons, the

master processor determines the state of the

multiprocessor system. Consequently, there are three

distinguishable cases

Case (I): There is a complete match for all the 2n set of

results reported to the master by the n executing processors.

The master processor concludes that the multiprocessor

system is free of faults and proceeds to schedule 2n new

processes to be executed on the multiprocessor system. This

case is the most probable to occur in normal system condition.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.2, July 2012 – www.ijais.org

3

Table 1. Node assignment for the first configuration.

Node

Number

Running

Process

 N0 P0

N1 P1

N2 P2

N3 P3

N4 P0

N5 P1

N6 P2

N7 P3

Case (II): There is only a single mismatch in the reported

results for a single running process. Let us assume that only

the two results of Pj are mismatched. The master processor

diagnoses that the multiprocessor system has incurred either a

single or double transient or permanent faults. The master

processor must keep the set of reported results of the

mismatch process, Pj, for further analysis in the next run to

enable the master to recover from (tolerate) the incurred

fault(s). The master processor schedules a new set of

22/ n processes and the process with the mismatch

results, Pj to be executed on the multiprocessor system. The

master assignes process, Pj to be executed simultaneously on

Nj , Nj+1, Nj+n/2, and Nj+n/2+1 (see Table 2). This is done in

order to distinguish between the existence of transient and

permanent faults in the system’s processors.

Following the second run the master processor diagnoses and

recovers from the incurred fault(s) at the previous run as

follows:

1- Single or Double Transient fault(s) in the first run at either

or both Nj and Nj+ 2
n if all processors in the second run

have reported matched results for all the processes

running on them. In this case no action is necessary.

2- Single Permanent fault at processor Nj (or Nj+n/2) if the

result reported by processor Nj+n/2 (or Nj) in the first run

is matched with the results reported by the processors

Nj+1, Nj+n/2, and Nj+n/2+1 (or Nj , Nj+1, and Nj+n/2+1) in the

second run. The master replaces the faulty processor with

the spare processor.
3- Double Transient fault; a single in the first run at Nj (or

Nj+ 2
n) and another single in the second run at Nj+ 2

n (or

Nj) if Nj+ 2
n (or Nj) in the first run as well as Nj, Nj+1,

and Nj+n/2+1 (or Nj+ 2
n and Nj+n/2+1) in the second run have

reported matched results. Also, no action is necessary.

4- Double transient fault in the first run at Nj and Nj+ 2
n and

double transient fault in the second run at any two

processors of the four processors, Nj , Nj+1, Nj+n/2, and

Nj+n/2+1, if only two processors in the second run have

reported matched results for Pj. No action is necessary.

5- Single permanent fault at Nj (or Nj+ 2
n) and a single

transient fault at any of the processors, Nj+ 2
n (or Nj),

Nj+1, and Nj+n/2+1 in the second run if only two processors

from Nj+ 2
n (or Nj), Nj+1, and Nj+n/2+1have reported

matched results for Pj in the second run. The master

processor replaces Nj (or Nj+ 2
n) with the spare processor.

6- Single permanent at Nj (or Nj+ 2
n) and double transient at

the two processors, Nj+1, and Nj+n/2+1 in the second run if

the processor Nj+ 2
n (or Nj) has reported matched results

for Pj in the first and second run. The master processor

replaces Nj (or Nj+ 2
n) with the spare processor.

Table 2. Node assignments for the first configuration

after a mismatch for P0.

Node

Number

Running

Process

Processes of the

Second Run

 N0 P0 P0

N1 P1 P0

N2 P2 P4

N3 P3 P5

N4 P0 P0

N5 P1 P0

N6 P2 P4

N7 P3 P5

7- Single permanent at Nj (or Nj+ 2
n) and double transient;

one at either Nj+ 2
n (or Nj) in the first or the second run

and the other at one of the two processors, Nj+1, and

Nj+n/2+1 in the second run . if Nj+ 2
n (or Nj) in the second

or first run has reported matched results as one of the two

processors Nj+1, and Nj+n/2+1 in the second run. The master

processor replaces Nj (or Nj+ 2
n) with the spare processor.

8- Double permanent fault at Nj and Nj+ 2
n if only the two

processor, Nj+1, and Nj+n/2+1, have reported matched results

for Pj at the second run. The master processor should

replace the two faulty processors Nj and Nj+ 2
n one after

the other with the available spare processor and order

repair for the faulty processors as soon as they are

replaced.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.2, July 2012 – www.ijais.org

4

Case (III): There are two mismatched set of results for two of

the running processes in the multiprocessor system. Let us

assume that Pi and Pj are the two processes with mismatched

results. The master processor concludes that the system has

experienced either a quadruple, triplet, double transient or

double, single permanent faults or any combination of

transient and permanent faults in any of the four processors;

Ni , Ni+ 2
n , Nj and Nj+ 2

n . In order to figure out which

processor experienced what type of fault the master processor

schedules n/2 – 2 new processes and reschedules the two

processes with mismatched results to be executed in the

system processors. However, the two processes Pi and Pj with

mismatched results in the first run should switch processors

with each other. In other words, Pi should run on Nj and

Nj+ 2
n and Pj should run on Ni and Ni+ 2

n in the second run

(see Table 3).

Following the second run the master processor diagnoses the

state of the multiprocessor system as follows:

1- Either Quadruple, Triple, or Double Transient faults in the

first run at Ni, Ni+ 2
n , Nj and Nj+ 2

n if all processors in the

second run have reported matched results for Pi and Pj. In

this case no action is necessary.

2- Double Permanent faults; one at Ni (or Ni+ 2
n) and

another at Nj (or Nj+ 2
n) if Ni+ 2

n (or Ni) in the first run

reported the same result for Pi as Nj+ 2
n (or Nj) in the

second run. Also, Nj+ 2
n (or Nj) in the first run has

reported the same result as Ni+ 2
n (or Ni) in the second

run. The master replaces one of the faulty processors with

the system spare processor and orders repair in order to be

able to replace the other faulty processor. The occurrence

of this case is rare.

3- Single permanent at Ni (or Ni+ 2
n) and another single

transient in the first run at Nj (or Nj+ 2
n) or vice versa for

the permanent and transient faults. This happens if

Ni+ 2
n (or Ni) in the first run has reported matched results

as Nj and Nj+ 2
n in the second run for Pi , and Nj+ 2

n (or

Nj) in the first run has reported matched results as Ni and

Ni+ 2
n in the second run for Pj. The master processor

replaces the permanent faulty processor with the system

spare and orders repair for the faulty processor to be

available as system spare.

4- Double transient in the first run at any two processors of

the four processors; Ni , Ni+ 2
n , Nj, and Nj+ 2

n and double

transient in the second run at the two fault-free processors

in the first run. No action is necessary.

In the two cases II and III, the master processor is able to

recover from the fault(s) occurred in the previous run.

However, it is possible that the multiprocessor system may

incur further faults either transient or permanent in the current

(i.e., the recover run for the faults occurred in the previous)

run. The master processor detects those faults in this current

run and recovers in the following run. Thus the first proposed

configuration detects and tolerates the existence of any

number of transient faults up to four, double and/or single

permanent faults or combination of transient and permanent

faults. The cost of tolerance is doubling the hardware required

for processes executions without providing faults detection

and tolerance, and a time overhead of 100% only for those

processes running on faulty processors. Moreover, the first

proposed configuration recovers from double permanent faults

by replacing one of the two faulty processors with the spare

processor provided in the system, orders repair for the two

faulty processors and when repaired replaces the other faulty

processor and keeps the other as a system spare. In conclusion

the total overhead cost for the first configuration is 100% of

hardware and no time overhead for the normal case; case (I)

when the multiprocessor system is free of all faults. The

overhead cost is 100% of hardware and 100% time only for

the processes running on faulty processor; cases II and III. It

is worth noting that processes running on fault-free processors

do not experience any delay.

Table 3. Node assignments after the mismatch for

Both P1 and P3

Node

Number

Processes of the

First Run

Processes of the

Second Run

 N0 P0 P4

N1 P1 P3

N2 P2 P5

N3 P3 P1

N4 P0 P4

N5 P1 P3

N6 P2 P5

N7 P3 P1

4. THE SECOND CONFIGURATION

As for the first proposed configuration the microprocessor

system is assumed to be consisting of a master processor and

n working processor nodes called Ni,

)10( ni and a

single cold spare to replace any of the working processor

nodes in case of permanent faults striking the working

processors. The multiprocessor system with the incorporated

second configuration for fault tolerance proceeds as follows:

1- The master processor assigns n independent processes;

Pj)10( nj to be executed on the n working

processor nodes, Ni's)10( ni respectively (see

Table 4).

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.2, July 2012 – www.ijais.org

5

2- Each Ni)10( ni executes its assigned process and

reports its execution result to the master processor for

comparison.

3- The master processor reassigns the same processes Pj's

)10( nj for a second run on the working processors

Ni's)10( ni . However, this time each process must

be executed on a different working processor node in

order to detect the existence of faults within the working

processors. More specifically, in the second run Ni

executes process P(i+1) MOD n , where

)10( ni (see Table 4). Similar to the first run, each

Ni executes its assigned process and reports its execution

result to the master processor.

4- The master processor performs n comparisons

simultaneously for the 2 n reported results one

comparison for each of the n processes over the two runs.

Accordingly, there are three distinguishable cases presented

below in a decreasing order of the probability of their

occurrence in normal system operation.

Case (I): The n sets of results reported to the master processor

from the two runs for the n processes Pj's)10( nj are

exactly matched. The master processor concludes that the

system is free of all types of faults. This case is most

probable case.

Case (II): Only one set of all the reported sets to the master

processor from the two runs for the n processes, Pj's

)10( nj has reported mismatched results. The master

processor concludes that the system has incurred either single

or double transient and/or permanent fault in one of the two

processors reporting the set of two mismatched results. The

master processor reschedules the process, Pi; with mismatch

set of results for another run with n-1 new processes to be

executed by the system (see Table 5 where Pi is P1). In this

third (current) run, process Pi, should be schedule to execute

in processor N(i+2) MOD n.

After the third (current) run the master processor distinguishes

between the different incurred faults as follows:

1- Single transient or permanent fault in the first or second

run at Ni or N(i+1) MOD n if there are two matched

results reported for Pi by either N(i+1) MOD n or Ni, and

N(i+2) MOD n in this run. The distinction between

transient and permanent is performed by the master

according to the result of the next system run. More

specifically, if in the next run the suspected faulty

processor, Ni or N(i+1)MOD n has been involved in

another mismatch for another process then the fault is

permanent otherwise it is transient.

Table 4. Node assignments for the second configuration

Node

Number

Processes of the

First Run

Processes of the

Second Run

N0 P0 P7

N1 P1 P0

N2 P2 P1

N3 P3 P2

N4 P4 P3

N5 P5 P4

N6 P6 P5

N7 P7 P6

2- Double transient fault at any two processors of the three

processors; Ni, N(i+1) MOD n and N(i+2) MOD n if there

is no matched results for the process Pi. The master

schedules process Pi to run in processor P(i+3) MOD n to

obtain the correct result for Pi.

Table 5. Node assignments for the second Configuration

 for case II after the mismatch of P1

Node

Number

Processes of

the First

Run

Processes of

the Second

Run

Processes of

the Third

Run

N0 P0 P7 P8

N1 P1 P0 P9

N2 P2 P1 P10

N3 P3 P2 P1

N4 P4 P3 P11

N5 P5 P4 P12

N6 P6 P5 P13

N7 P7 P6 P14

Case (III)): Two sets of processes; Pi and Pk of the n

processes have mismatched results. The master processor

reschedules these two processes Pi and Pk for another run on

processors P(k+1) MOD n and P(i+1) MOD n respectively

with n-2 new processes to run in the multiprocessor system.

For illustration purposes, see Table 6 and let Pi and Pk be P1

and P3 respectively.

After the third (current) run the master processor distinguishes

between the different incurred faults as follows:

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.2, July 2012 – www.ijais.org

6

1- Double and/or Single transient faults at Ni and/or Nk in

the first run if there are two matched results for processes

Pi and/or Pk in the last two runs. No action is necessary.

2- Double and/or Single transient faults at N(i+1) MOD n

and/or N(k+1) MOD n in the second run if there are two

matched results for processes Pi and/or Pk in the first and

last run. No action is necessary.

3- Double and/or Single permanent faults at N(i+1) MOD n

and/or N(k+1) MOD n started in the second run if there is

no match results for Pi and/or Pk in the three consecutive

runs. The master processor assures the existence of

permanent faults if and only if the two processors N(i+1)

MOD n and/or N(k+1) MOD n have reported mismatch

results for the processes assigned to them in the two

subsequent runs. Otherwise, the master decides that the

incurred faults are transient and no further action is

required. In case of permanent faults the master processor

replaces the faulty processors N(i+1) MOD n and/or

N(k+1) MOD n one after the other with the spare

processor and orders repair for the faulty ones.

Table 6. Node assignments for the second Configuration

for case II after the mismatch of P1and P3

Node

Number

Processes

of the First

Run

Processes of

the Second

Run

Processes of

the Third

Run

N0 P0 P7 P8

N1 P1 P0 P9

N2 P2 P1 P3

N3 P3 P2 P10

N4 P4 P3 P1

N5 P5 P4 P11

N6 P6 P5 P12

N7 P7 P6 P13

In both two cases, II and III, the master processor tolerates the

fault(s) occurred in the previous two runs. However, it is

possible that the multiprocessor system may incur further

faults in recovery runs for faults occurred in previous runs.

Those faults incurred in recovery runs are detected and

tolerated by the master processor recursively as done above.

More specifically, the master keeps the results of every two

successive runs, compares these reported results for all the

processes executed in these two runs; detects the incurred

faults and then reschedules one more run for those processes

incurred the faults with other new processes to recover from

the incurred faults. Thus the second proposed configuration

detects and tolerates the existence of double and/or single

transient faults, and double and/or single permanent faults or

combination of those transient and permanent faults. The cost

of this is doubling the time required for executions without

providing any fault detection or tolerance plus an extra time to

rerun the processes executed on faulty processors. The

overhead cost for the second configuration is 100% of time

and no hardware overhead for the normal case; case (I) when

the multiprocessor system is free of all faults. The overhead

cost is 100% of time and an extra time for one more run only

for process(s) experienced some type of faults during its two

runs on the multiprocessor system (i.e., cases II and III).

5. ENHANCING THE PROPOSED

CONFIGURATIONS
With the current scale of massively parallel systems,

occurrence of faults is no longer an exception but it is the

norm. As more of such systems are being deployed in

practice, issues of fault-tolerance and self-healing are

becoming tremendously important. The reliability of a fault

tolerant system depends upon a reasonably fast detection of

faults to ensure that no more than the number of tolerated

faults is active at the same time. While hardware fault-

tolerance can be achieved by deploying redundant hardware

components and re-allocating alternate hardware resources to

the applications at run-time, this approach is not cost-

effective. The age-old checkpoint/restart mechanism still

seems most attractive due to its simplicity and low-cost. The

high failure rate of these systems puts additional pressure on

checkpoint mechanisms. Checkpoints should now be taken

more frequently [11, 12] relative to the failure rate of the

system which, in turn, directly impacts the application running

time and disk-storage requirements. One of the ways to reduce

the checkpoint file size is incremental check-pointing

technique which is proposed and implemented by several

researchers [13, 14].

The sooner the multiprocessor system detects and

recovers from the infected faults the more reliable the system

will be. The performance of the two proposed fault tolerant

configurations for multiprocessor systems can be increased

substantially through periodical checking upon the system

processors; every τ time interval. Therefore, in order to

increase the performance of the two presented fault tolerance

configurations we propose dividing each running process,

similar to dividing memory into pages, into a number of sub-

processes each with execution time τ. The exception is only

may be for the last sub-process which could have an execution

time less than τ. The master processor conducts a periodical

checkup upon the state of the system processors every τ time

interval. More specifically, at the end of every τ time interval

each of the executing sub-processes reports its result to the

master processor. Upon receiving two results for each sub-

process, the master processor conducts the comparison as

described in Sections 3 and 4 to learn the state of the system

processors and performs the necessary actions. It is worth

noting that the periodical checkup for the multiprocessor

system in the fault-free state occurs at the end of every τ time

interval for the first proposed configuration and at every other

time interval (i.e., 2τ) for the second proposed configuration.

Otherwise, when the system experiences any type of fault, the

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.2, July 2012 – www.ijais.org

7

master processor conducts its check for the multiprocessor

system every τ time interval for both the proposed

configurations until the system recovers completely from all

faults and returns to its fault-free state.

There is number of issues concerning the duration of the

time slices τ; how long should it be to achieve the best

enhancement for the reliability of the multiprocessor system.

If the time slice τ, is too short the master processor will be

performing checking upon the system processors more

frequently, thus wasting valuable processing time. On the

other hand, if the time slice τ is too long the system may

experience more faults than it can tolerate efficiently and thus

decreasing the multiprocessor system performance drastically.

Deciding upon the period of the time slice is similar to the

page size of the memory system. Therefore, the time slice τ

should be moderate; not too short nor too long. There are

some factors should be taken into consideration to figure out

the suitable time slice τ for a given multiprocessor system

deploying either of the proposed configurations. Some of the

foremost factors are the system exposure to faults, the

frequency of fault occurrence, the nature of the executing

applications and the environment where the system is

deployed. The most suitable time slice for a given system and

executing applications could be found through some heuristic.

Applying the proposed enhancement, the master

processor is able to detect any exposed single transient,

permanent or double transient, permanent faults at any

working processor node within at most the chosen time

interval τ from the instance of the system exposure to the

fault(s). Using the proposed enhancement, diagnosing the

system faults is within at most 2 τ, and recovering in at most 3

τ. Thus employing the proposed enhancement saves precious

system execution time. However, without the proposed

enhancement the master processor will diagnose the fault state

of the system after unspecified amount of time depending on

the execution time of the executing processes during the

system fault exposure. The worst case for the wasted time for

the system without the proposed enhancement would be the

longest execution time for any of the executing processes

during the fault attack.

6. SIMULATION RESULTS

For this research we have developed a discrete event

simulator, which has been designed to deal with the two

proposed fault tolerant configurations for multiprocessor

system described in sections 3, 4, and 5. The simulation

program is written using C# in which we have simulated a

multiprocessor environment consisting of eight processors and

a cold spare. The application chosen to perform the

simulation is multiplication of two matrices, one of size 8 x16

and the other is 16x1. Each processor computes one element

of the resultant matrix. The simulation for the first proposed

configuration verified the different fault categories (cases II

and III of Section 3). Similarly, the simulation for the second

proposed configuration has verified the different fault

categories for cases II and III of Section 4.

Simulation for the enhanced configuration has been

performed with the assumption that the context switch time is

τ. The chosen context switch time is high however; it is the

most suitable for matrix multiplication. The matrix

multiplication process is divided to 2, 4, 8, and 16 sub-

processes. The fault(s) has been introduced randomly at the

beginning of a slice and the simulation performed for 1, 2, 4,

8, and 16 slices for no fault, single transient, and single

permanent, double transient, and double permanent faults. The

result of the simulation is shown in Fig.1. The time consumed

to detect and recover from faults is about 3τ for double

transient, single transient and permanent faults and about 9τ

for double permanent faults.

30

35

40

45

50

55

60

65

70

75

80

1 2 4 8 16
Number of slices

E
x

ec
u

ti
o

n
 t

im
e

Double

permanent

faults

(Double

transient/

Single)

fault(s)
No fault

Fig 1: Illustration of Slicing on the performance of

Multiprocessor System for the proposed Configurations.

7. CONCLUSIONS

High performance multiprocessor systems offer promising

and powerful mechanisms for large scale computation. The

chances that those massively parallel systems will experience

component failures from time to time are high. Designers of

massively parallel systems cannot just demand that no parts of

the system should fail; they have to be aware that this or that

part of the system may eventually fail and have to take the

steps to add redundancy and reconfigure. In this paper, we

have presented two fault tolerant configurations with variable

overhead cost to detect, diagnose and tolerate single and

double transient and/or permanent faults in multiprocessor

systems. The overhead cost depends upon the fault state of the

multiprocessor system. More specifically, for fault detection

only (i.e., the system is free of all faults which is the norm for

most systems) the overhead cost for the first configuration is

100% hardware and no time overhead. While, the second

configuration has 100% time overhead and no hardware

overhead cost. For fault diagnoses both the proposed

configurations require an extra overhead of 100% time but

only for those processes executed on faulty processors.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.2, July 2012 – www.ijais.org

8

Furthermore, at most another 100% time overhead only for

those processes executed on permanent faulty processor for

both configurations is required to recover from incurred

permanent faults.

An enhancement is presented for both fault tolerant

configurations to reduce the fault existence duration in the

system before detection to a minimum value of τ. This is

accomplished through dividing the execution time of each

executing process into slices; each with a time interval τ. The

most suitable time interval τ for a given multiprocessor

system depends upon the nature of the executing processes,

the system susceptibility to faults, and the environment where

the system is deployed. A good estimation for τ could be

found through some heuristics.

8. REFERENCES
[1] Shivakumar, P. Keckler, S.W., Moore, C.R., Burger, D.,

"Exploiting Microarchitectural Redundancy for Defect

Tolerance", the 21st International Conference on

Computer Design (ICCD), October, 2003.

[2] Bernick, D., Bruckert, B., Vigna, P. D., Garcia, D.,

Jardine, R., Klecka,J., Smullen, J., "NonStop® Advanced

Architecture", DSN, 2005.

[3] Anderson, T., Lee, A., "Fault-tolerance - Principles and

Practice", Prentice Hall, Eaglewood Cliffs, 1981.

[4] Qureshi, M. K. et al. Microarchitecture-based

introspection: A technique for transient-fault tolerance in

microprocessors. In Proc. of 32nd Intl. Symp. on Comp.

Arch. (ISCA-32), June 2005.

[5] Ray, J. et al. Dual use of superscalar datapath for

transient-fault detection and recovery. In Proceedings of

the 34th International Symposium on Microarchitecture,

December 2001.

[6] Rotenberg, E.. AR-SMT: A microarchitectural approach

to fault tolerance in microprocessors. In Proceedings of

the 29th International Symposium on Fault-Tolerant

Computing, June 1999.

[7] Vijaykumar, T. N. et al. Transient-fault recovery using

simultaneous multithreading. In Proceedings of the 29th

International Symposium on Computer Architecture,

May 2002

[8] Gomaa, M. et al. Transient-fault recovery for chip

multiprocessors. In Proceedings of the 30th International

Symposium on Computer Architecture, June 2003.

[9] Mukherjee, S. S. et al. Detailed design and evaluation of

redundant multithreading alternatives. In Proceedings of

the 29th International Symposium on Computer

Architecture, May 2002, 99–110.

[10] Fair, M.L., Conklin, C.R., Swaney, S. B., Meaney, P. J.,

Clarke, W. J., Alves, L. C., Modi, I. N., Freier, F. ,

Fischer, W. ,and Weber, N. E. Reliability, Availability,

and Serviceability (RAS) of the IBM eServer z990. IBM

Journal of Research and Development, Nov, 2004.

[11] J. S. Plank and W. R. Elwasif, “Experimental assessment

of workstation failures and their impact on checkpointing

systems,” in 28th International Symposium on Fault-

Tolerant Computing, June 1998.

[12] N. H. Vaidya, “Impact of checkpoint latency on

overhead ratio of a checkpointing scheme,” IEEE

Transactions on Computers, vol. 46 ,Aug. 1997.

[13] K. Li, J. F. Naughton, and J. S. Plank, “Low-latency,

concurrent checkpointing for parallel programs,” IEEE

Transactions on Parallel and Distributed Systems, vol. 5,

Aug. 1994.

[14] J. S. Plank, J. Xu, and R. H. Netzer, “Compressed

differences: An algorithm for fast incremental

checkpointing,” Tech. Rep. CS-95-302, University of

Tennessee at Knoxville, Aug. 1995.

