

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.1, July2012 – www.ijais.org

38

Verifying Data Integrity in Cloud

S. P. Jaikar
Department of Information Technology,

 Sinhgad College of Engineering, University of Pune

M. V. Nimbalkar
Department of Information Technology,

 Sinhgad College of Engineering, University of Pune

ABSTRACT

Clouds are revolution in computing field which provides on

demand access to virtualized resources which are hosted

outside of your own data center. In Cloud computing, data and

applications are moved to large data centers where

management of data is not fully trustworthy. Secure

outsourcing of data and applications to a third party service

provider is very important. Moving of data in cloud is

convenient for users as they don‟t have to deal with

complicated data management and other hardware related

issues on their local data centers. But this convenience brings

down the user to the mercy at their service providers for

correctness and trustworthiness of their data. Since the

applications and data are under control of the third party

service provider, the users have to rely on the security

mechanisms implemented by service provider for availability

and integrity of their data. We propose a distributed scheme to

ensure users that their data are indeed stored appropriately and

kept intact all the time in the cloud. We are using erasure

correcting code in the file distribution preparation to provide

redundancies. We are relaying on challenge response protocol

along with pre-computed tokens to verify the storage

correctness of user‟s data & to effectively locate the

malfunctioning server when data corruption has been

detected. Our scheme maintains the same level of storage

correctness assurance even if users modify, delete or append

their data files in the cloud.

Keywords

Cloud computing, Distributed data storage, Virtualization,

Pervasive Computing, Data security.

1. INTRODUCTION

1.1 Clouds: New Era of computing
Innovations are necessary to ride the inevitable tide of change.

Most of enterprises are striving to reduce their computing cost

through the means of virtualization. This demand of reducing

the computing cost has led to the innovation of Cloud

Computing. Cloud computing is a term used to describe a set

of IT services that are provided to a customer over a network

on a leased basis and with the ability to scale up or down as

per their service requirements. Usually cloud computing

services are delivered by a third party provider who owns the

infrastructure. Cloud Computing has become one of the most

talked about technologies in recent times and has got lots of

attention from media as well as analysts because of the

opportunities it is offering.

A general scenario of cloud computing is shown in Fig.1.

Cloud provider provides the resources to the clients in

different forms like IaaS, PaaS, and SaaS. Clients subscribes

to the service via internet, & they pays as per usage of service

to which they have subscribed.

Fig.1. How Cloud Computing works.

Clients need not to be stationary it can be PDA‟s, Mobiles and

Laptops. Clients doesn‟t need to have in house infrastructure,

they can purchase to the service they want on hourly, weekly

or monthly reasonable basis. Cloud computing users can

avoid capital expenditure on hardware, software, and services

when they pay a provider only for what they use.

Consumption is usually billed on a utility or subscription basis

with little or no upfront cost.

1.2 Cloud Data Storage
Cloud computing, the trend toward loosely coupled

networking of computing resources, is unmooring data from

local storage platforms. Users today regularly access files

without knowing or needing to know on what machines or in

what geographical locations their files reside. They may even

store files on platforms with unknown owners and operators,

particularly in peer-to-peer computing environments. One

fundamental aspect of this new computing model is that data

is being centralized or outsourced into the cloud. From the

data owners perspective, including both individuals and IT

enterprises, storing data remotely in a cloud in a flexible on-

demand manner brings appealing benefits: relief of the burden

of storage management, universal data access with

independent geographical locations, and avoidance of capital

expenditure on hardware, software, personnel maintenance,

and so on although the infrastructures under the cloud are

much more powerful and reliable than personal computing

devices, they still face a broad range of both internal and

external threats to data integrity. Outages and security

breaches of noteworthy cloud services appear from time to

time. Amazon S3‟s recent downtime [11], Gmail‟s mass email

deletion incident [12] is such examples. For benefits of their

own, there are various motivations for CSPs to behave

unfaithfully toward cloud customers regarding the status of

their outsourced data. Examples include CSPs, for monetary

Desktop PC

Laptops

Mobile/PDA

Internet

IaaS

PaaS

SaaS

Cloud Provider

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.1, July2012 – www.ijais.org

39

reasons, reclaiming storage by discarding data that has not

been or is rarely accessed or even hiding data loss incidents to

maintain a reputation [12].

In short, although outsourcing data into the cloud is

economically attractive for the cost and complexity of long-

term large scale data storage, it does not offer any guarantee

on data integrity and availability. In particular, simply

downloading the data for its integrity verification is not a

practical solution due to the high cost of input/output and

transmission across the network. Besides, it is often

insufficient to detect data corruption only when accessing the

data, as it does not give correctness assurance for remaining

data and might be too late to recover the data loss or damage.

Juels and Kaliski [1] proposed a Proof of Retrievability

protocol and provided formal security definitions. POR is a

protocol in which a server/archive proves to a client that a

target file F is intact, in the sense that the client can retrieve

all of F from the server with high probability. Juels and

Kaliski present proofs of Retrievability focusing on static

archival storage of large files. Furthermore, the number of

queries a client can perform is limited, and fixed a priori.

G.Ateniese et al. [2] introduced a model for provable data

possession (PDP) that allows a client that has stored data at an

untrusted server to verify that the server possesses the original

data without retrieving it. Major limitation of this model is the

number of challenges a client can perform against the server is

limited. Data privacy issues also have not been addressed. The

model doesn‟t provide any support for dynamic operations on

data blocks.

G. Ateniese & R. Pietro [3] constructed a highly efficient and

provably secure PDP technique based entirely on symmetric

key cryptography, while not requiring any bulk encryption.

The drawback with this technique is that the number of

updates and challenges a client can perform is limited and

fixed a priori. Also, one cannot perform block insertions

anywhere only append-type insertions are possible. H.

Shacham and B. Waters [4] proposed protocols based on the

idea of using homomorphic authenticators for file blocks,

essentially block integrity values that can be efficiently

aggregated to reduce bandwidth in a POR protocol. Due to the

use of integrity values for file blocks, this scheme can use a

more efficient erasure code to encode the file; the block

authenticators transform the erasure code into an error-

correcting code. This scheme supports an unlimited number of

verifications, but the solution is static.

K. D. Bowers, A. Juels, and A. Oprea [5], introduced High-

Availability and Integrity Layer. It is a distributed

cryptographic system that permits a set of servers to prove to

a client that a stored file is intact and retrievable. C.Wang et

al. [6], has proposed an effective and flexible distributed

scheme with explicit dynamic data support to ensure the

correctness of user‟s data in the cloud. It relies on erasure

correcting code in the file distribution preparation to provide

redundancies and guarantee the data dependability. This

scheme has limitation on number of challenges user‟s can

perform against the server. User has burden of storing pre-

computed tokens locally. Q. Wang et al. [7], proposed a

scheme with explicit dynamic data support to ensure the

correctness of user‟s data in the cloud. User can easily verify

integrity of his data without much overhead with the help of

challenge response protocol. This scheme doesn‟t address

privacy concerns of users. C. Erway et al. [8], come up with A

Dynamic Provable Data Possession technique which

demonstrates to a client that a server possesses a file F in an

informal sense, but is weaker than a POR in that it does not

guarantee that the client can retrieve the file. Major limitation

with this scheme is that, it doesn‟t support all dynamic

operations. Curtmola et al. [9] aim to ensure data possession

of multiple replicas across the distributed storage system.

They extend the PDP scheme in [2] to cover multiple replicas

without encoding each replica separately, providing guarantee

that multiple copies of data are actually maintained.

We propose a distributed scheme to ensure users that their

data are indeed stored appropriately and kept intact all the

time in the cloud. We are using erasure correcting code in the

file distribution preparation to provide redundancies. We are

relaying on challenge response protocol along with pre-

computed tokens to verify the storage correctness of user‟s

data & to effectively locate the malfunctioning server when

data corruption has been detected. Our scheme maintains the

same level of storage correctness assurance even if users

modify, delete or append their data files in the cloud. It has no

limitation on number of challenges user can perform against

the server. Users are having no burden of storing pre-

computed tokens locally; all the tokens are stored inside the

cloud.

By splitting the file according to the number of server‟s we

are adding extra security to system, so that if an unauthorized

user compromises a storage server, he won‟t get access to all

the data. To add furthermore security, we are encrypting the

user‟s data before uploading it to cloud, as we do in traditional

system. Another important aspect of our system is that our

system is proactive & guarantees to detect every single data

modification attack. We are not addressing any load balancing

techniques in this research; also we are not doing any work on

privacy issues.

2. CLOUD STORAGE ARCHITECTURE
The general architecture of cloud storage system is illustrated

in Fig.2. Generally two different network entities can be

identified. We have assumed that user‟s have direct peer to

peer connection between them & cloud.

Fig.2 Storage Architecture for Cloud

Different network entities are mentioned below:

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.1, July2012 – www.ijais.org

40

 User: users, who have data to be stored in the cloud

and rely on the cloud for data computation, consist

of both individual consumers and organizations.

 Cloud Service Provider (CSP): CSP is who has the

capabilities to host data & applications of users.

They have huge resources that they can provide

dynamically for satisfying various user needs. CSP

having expertise in building & managing cloud

servers, having their own data centers for hosting

user‟s data.

Fig.2 shows how the data is outsourced in cloud and users

have no control over it. This also gives perception of the

problem with the storage and to ensure the integrity of the

data in the cloud. In cloud data storage, a user stores his data

through a CSP into a set of cloud servers, which are running

in a simultaneous, cooperated and distributed manner. Data

redundancy can be employed with technique of erasure-

correcting code to further tolerate faults or server crash as

user‟s data grows in size and importance. Thereafter, for

application purposes, the user interacts with the cloud servers

via CSP to access or retrieve his data. In some cases, the user

may need to perform operations on his data.The most general

forms of these operations we are considering are update,

delete, insert and append. As users no longer possess their

data locally, it is of critical importance to assure users, that

their data are being correctly stored and maintained. That is,

users should be equipped with security means so that they can

make continuous correctness assurance of their stored data

even without the existence of local copies.

In case those users do not necessarily have the time,

feasibility or resources to monitor their data, user‟s can

delegate the tasks to an optional trusted TPA of their

respective choices. But users need to pay to the Third Party

Auditors for that. This is not our aim, what we want is to give

freedom to users to ensure intactness of their data in cloud. In

our scheme, we assume that the point-to-point communication

channels between each cloud server and the user is

authenticated and reliable. Security threats faced by cloud

data storage can come from two different sources. On the one

hand, a CSP can be self-interested, untrusted and possibly

malicious. It may also attempt to hide a data loss incident due

to management errors, Byzantine failures and so on. On the

other hand, there may also exist an economically motivated

adversary, who has the capability to compromise a number of

cloud data storage servers in different time intervals and

subsequently is able to modify or delete user's data while

remaining undetected by CSPs for a certain period. So we

have attackers with different purposes in different context &

we need to classify them as per the severity of damage they

can do to storage.

To ensure the security for cloud data storage under the

aforementioned adversary model, we aim to design efficient

mechanisms for dynamic data verification and operation.

3. SECURING DATA STORAGE

3.1 Notation & Preliminaries
 𝐹 − The data file to be stored. We assume that 𝐹

can be denoted as a matrix of 𝑚 equal-sized data

vectors, each consisting of 𝑙 blocks. Data blocks are

all well represented as elements in Galois Field

𝐺𝐹(2𝑤) for 𝑤 = 4, 8, 16.

 𝑅 − The dispersal matrix used for Reed-Solomon

coding.

 𝐷 − Data matrix constructed over data vectors.

 𝐶 − The encoded file matrix, which includes a set

of 𝑛 = 𝑚 + 𝑘 vectors, each consisting of 𝑙 blocks.

 𝑃𝑅𝐹 − Pseudorandom function.

 𝑃𝑅𝑃 − Pseudorandom permutation.

It is well known that erasure-correcting code may be

used to tolerate multiple failures in distributed storage systems

[18]. In cloud data storage, we rely on this technique to

disperse the data file 𝐹 redundantly across a set of 𝑛 = 𝑚 + 𝑘

distributed servers. 𝑅 𝑚 + 𝑘, 𝑘 Reed-Solomon erasure-

correcting code is used to create 𝑘 redundancy parity vectors

from 𝑚 data vectors in such a way that the original 𝑚 data

vectors can be reconstructed from any 𝑚 out of the 𝑚 + 𝑘

data and parity vectors. By placing each of the 𝑚 + 𝑘 vectors

on a different server, the original data file can survive the

failure of any 𝑘 of the 𝑚 + 𝑘 servers without any data loss,

with a space overhead of 𝑘/ 𝑚. For support of efficient

sequential I/O to the original file, our file layout is systematic,

i.e., the unmodified 𝑚 data file vectors are distributed across

𝑚 + 𝑘 different servers. We are using Reed Solomon

Algorithm to disperse the file redundantly over 𝑚 storage

devices. In Reed Solomon Algorithm, Given 𝑛 data devices

and 𝑚 checksum devices, the RS-Raid algorithm for making

them fault-tolerant to up to 𝑛 failures is as follows.

1. Choose a value of w such that 2𝑤 > 𝑛 + 𝑚. It is

easiest to choose 𝑤 = 4 𝑜𝑟 𝑤 = 8 𝑜𝑟 𝑤 = 16, as

words then fall directly on byte boundaries.
 𝑤 − 𝑤𝑜𝑟𝑑 𝑠𝑖𝑧𝑒 .

2. Set up the table‟s 𝑔𝑓𝑙𝑜𝑔 and 𝑔𝑓𝑖𝑙𝑜𝑔. These tables

are used to perform multiplication over Galois

Fields.

3. Set up the matrix 𝑃 to be the 𝑚 × 𝑛 matrix: 𝑝𝑖,𝑗 =

 𝑗𝑖−1 where multiplication is performed

over 𝐺𝐹(2𝑤).

4. Use the matrix 𝑃 to calculate and maintain each

word of the checksum devices from the words of the

data devices. Again, all addition and multiplication

is performed over 𝐺𝐹 2𝑤 . Create the matrix 𝐷 as

actual data matrix & Calculate 𝐶 by equation 𝑃𝐷 =
𝐶.

5. If any number of devices up to 𝑚 fails, then they

can be restored in the following manner. Choose

any 𝑛 of the remaining devices, and construct 𝐴′and

a vector 𝐸′ . Then solve for 𝐷 in 𝐴′𝐷 = 𝐸′ . This

enables the data devices to be restored. Once the

data devices are restored, the failed checksum

devices may be recalculated using the matrix 𝐹.

So, as per RS Raid algorithm, we divide the input

file to the 𝑛 data vectors, where 𝑛 is number of storage

devices present in the system. The data vectors that are

generated are of equal size, so the load will be distributed

equally to all the storage devices. We create 𝑚 × 𝑛 matrix 𝐷

& store all the data vectors in matrix 𝐷. In next step we create

a Reed Solomon matrix 𝑅 which is generated over Galois

field, i. e. 𝐺𝐹 2𝑤 . In our case we have assumed word

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.1, July2012 – www.ijais.org

41

size 𝑤 = 4. After this stage, we perform matrix

multiplication to generate checksum matrix 𝐶. We multiply

data matrix 𝐷 with Reed Solomon matrix 𝑅. The resultant

matrix is the redundant matrix which contains original data

from data matrix 𝐷 & parity vectors added by Reed Solomon

matrix. It means matrix 𝐷 will be stored redundantly across

the different storage devices & it will be used for token

computation as well as data recovery purpose.

3.2 Token Pre-computation
To verify the correctness of user‟s data & to locate the errors,

we entirely rely on the pre-computed verification tokens.

These tokens are calculated before file distribution & they are

very short. We are computing the tokens by pseudorandom

function 𝑃𝑅𝐹 & pseudorandom permutation function 𝑃𝑅𝑃.

We pre-computes short verification tokens on individual

vector, each token covering a random subset of data blocks.

We have assumed block size as 256 bits & 𝑟 as 8 number of

verification per indices. We have three data devices and three

checksum devices. Then 𝑛 = 3 and 𝑚 = 3. We choose 𝑤 =
4, since 2𝑤 > 𝑛 + 𝑚. Next, we set 𝑔𝑓𝑙𝑜𝑔 and 𝑔𝑓𝑖𝑙𝑜𝑔

table‟s. 𝑔𝑓𝑙𝑜𝑔 and 𝑔𝑓𝑖𝑙𝑜𝑔 tables are shown in Table 1.

We construct 𝑃 to be a 3 × 3 matrix, defined

over 𝐺𝐹 24 .

𝑃 =
10

11

12

 20

 21

 22

 30

 31

 33

 =
1
1
1

 1
 2
 4

 1
 3
 5

Now, we can calculate each word of each checksum

device using 𝑃𝐷 = 𝐶

Later, when the user wants to make sure the storage

correctness for the data in the cloud, he challenges the cloud

servers. Upon receiving challenge, cloud server computes the

new value of tokens, which is compared with previously

calculated tokens. It gives clear idea about integrity of user‟s

data.

Algorithm: TOKEN PRE-COMPUTATION

1. Begin

2. Choose file 𝐹 to upload & encrypt the file using

 𝐴𝐸𝑆.

3. Generate 𝑛 × 𝑚 Vector Matrix 𝐷 on file 𝐹.

4. Create Reed Solomon Matrix 𝑃 over Galois

Field 𝐺𝐹 2𝑤 . where 𝑤 = 4.

5. Generate Matrix 𝐶 = 𝐷 × 𝑃. It is Checksum

Matrix created for fault tolerance.

6. Compute Token over Matrix 𝐶

i.e. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑇𝑜𝑘𝑒𝑛 (𝐶, 𝑙, 𝑡, 𝑟), where 𝑙 − block

size, 𝑡 − no. of tokens, 𝑟 − indices per verification.

Compute the tokens by pseudorandom function

𝑃𝑅𝐹 & pseudorandom permutation function 𝑃𝑅𝑃.

7. Store these precomputed tokens on the main cloud

server.

8. Disperse the file over the Cloud. i.e.

𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑒𝐹𝑖𝑙𝑒(𝑀𝑎𝑡𝑟𝑖𝑥 𝐷)

9. End.

3.3 Correctness Verification
To eliminate the errors in storage systems key prerequisite is

to locate the errors. However, many previous schemes do not

explicitly consider the problem of data error localization, thus

only provide binary results for the storage verification. In our

scheme we integrate the correctness verification and error

localization in our challenge-response protocol. The newly

computed tokens from servers for each challenge are

compared with pre-computed tokens to determine the

correctness of the distributed storage. This also gives

information to locate potential data errors.

Algorithm: CORRECTNESS VERIFICATION

1. Begin Challenge 𝑖, for 𝑖 = (𝑖 = 1 𝑡𝑜 𝑛), where

𝑛 − total number of cloud servers.

2. Get 𝑇𝑜𝑘𝑒𝑛𝐴𝑟𝑟() // Getting precomputed tokens

from main cloud server.

3. 𝐻𝑎𝑛𝑑𝑙𝑒𝐶𝑕𝑎𝑙𝑙𝑒𝑛𝑔𝑒() // Reading file blocks from

all cloud servers for calculating new tokens.

4. Generate Vector Matrix 𝐷 on all file blocks that are

read in step 3.

5. Create Reed Solomon Matrix 𝑃

6. Generate Matrix 𝐶 = 𝐷 × 𝑃. On this matrix, new

tokens will be computed.

7. Compute token on Matrix 𝐶.

 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑇𝑜𝑘𝑒𝑛 (𝐶, 𝑙, 𝑡, 𝑟)

8. If

((𝑃𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑡𝑜𝑘𝑒𝑛 ==
𝑛𝑒𝑤𝑙𝑦 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑡𝑜𝑘𝑒𝑛) then,

 Data is intact Else

Data is Corrupt. For that 𝑖, initiate the recovery.

9. End

3.4 Error Recovery
Once the data corruption is detected, next important step is to

recover the corrupted data and bring data storage back to

consistent state. The comparison of pre-computed tokens and

received response values can guarantee the identification of

misbehaving server. Therefore user can recover the corrupted

data. Our system recovers data from backup server &

distributes all data vectors to corresponding servers. This will

results in successful recovery of corrupted data. But due to

file splitting we made at the time of file distribution, user‟s

need to recover file from all the servers. Error localization is

limited to misbehaving servers only, i.e. servers giving false

assurance of posing user‟s data.

Algorithm: Error Recovery

1. Begin (Assume that the data corruptions have been

detected & 𝑠 ≤ 𝑘 servers have been identified

misbehaving.)

2. Download consistent data blocks from backup

server.

3. Create the data vectors as per number of cloud

storage servers.

4. Distribute the consistent data blocks to

corresponding servers & recover the data.

5. End.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.1, July2012 – www.ijais.org

42

 Table 1: 𝐠𝐟𝐥𝐨𝐠 and 𝐠𝐟𝐢𝐥𝐨𝐠 tables for 𝐆𝐅 𝟐𝟒 .

𝑖 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑔𝑓𝑙𝑜𝑔[𝑖] − 0 1 4 2 8 5 10 3 14 9 7 6 13 11 12

𝑔𝑓𝑖𝑙𝑜𝑔[𝑖] 1 2 4 8 3 6 12 11 5 10 7 14 15 13 9 −

3.5 Dynamic Operations
In cloud data storage, there are many potential scenarios

where data stored in the cloud is dynamic, like electronic

documents, photos, or log files etc. Therefore, it is crucial to

consider the dynamic case, where a user may wish to perform

various operations of update, delete and append to modify the

data file while maintaining the storage correctness assurance.

The straightforward and trivial way to support these

operations is for user to download all the data from the cloud

servers and re-compute the whole parity blocks as well as

verification tokens. This would clearly be highly inefficient.

In cloud data storage, sometimes the user may need to modify

some data stored in the cloud, from its current value to a new

one. We refer this operation as data update. To perform

update operation on particular data block client need to

recalculate the verification token on updated data. Also client

need to update this value of newly calculated token to all the

replicas of file in storage cloud. When user want to perform

update operation, the splitted file from all storage servers is

merged and given to the user to perform data updates. Once

user has finished with the updating the data, new tokens are

calculated on whole file and they are stored on main cloud

server. After this, updated file is splitted back and dispersed

onto corresponding cloud storage servers. Update operations

include modifying file, inserting data, as well as deleting data

from file.

Sometimes, after being stored in the cloud, certain data may

need to be deleted. The delete operation we are considering is

a general one. When user wants to delete some file, he can

simply delete it. In delete operation, file blocks that are

distributed among cloud storage servers are all deleted. Once

file is deleted, we cannot perform any recovery of deleted

files as there won‟t be any backup available in main cloud

server. In some cases, the user may want to increase the size

of his stored data in file by adding data at the end of the data

file, which we refer as data append operation. So in case of

append operation whenever user append data to his file, new

verification tokens are calculated & stored on main cloud

server & file is splitted as before and dispersed among the

cloud storage servers.

4. IMPLEMENTATION & RESULTS
We have implemented our system with the help of web

services. The functionalities of cloud servers are provided

through web services. We have used .net framework 4.0. At

the back end side we used MySQL server.

Our model is systematic & it guarantees detection of every

single data modification attacks. So there is no probability of

detection as previous work rather there is guarantee of

detection of each modification attack. We have evaluated the

performance of our system in following cases:

1. Token pre-computation time.

2. File distribution time.

3. Server Token computation time.

4. Server response time.

Our experiment is conducted using C#.Net on a system with

an Intel core 2 duo processor running at 2.10 GHz, 4 GB of

RAM, and a 7200 RPM Western Digital 320 GB Serial ATA

drive. We have tested our system under upload speed of

1Mbps & varied file size up to 10MB. The token pre-

computation is long process. It includes encrypting user‟s file

then converting user‟s file into data vector matrix D. Next

step is to create Reed Solomon matrix P. Later we generate

checksum matrix C on which we computes our short tokens.

After that the file is distributed to all cloud storage servers.

Cost of token pre-computation & file distribution is shown in

Table 2. By looking at the Fig.5 & Fig.6 the time taken for

token pre-computation & file distribution is very small & it

increases gradually as file size grows.

As we have mentioned, dynamic operations like append,

update, delete can be performed on .doc, .rtf, and .txt file

formats only. When user performs any dynamic operation, the

new token values are calculated and stored back into cloud.

Modified file is divided again & dispersed to all cloud servers

to maintain consistency. To demonstrate data modification

attacks, we have provided a hacker account with access to all

the uploaded files by all users. Hacker performs the dynamic

operations on files like an authorized user. Our system detects

every single data modification done by an unauthorized user.

Data modification is shown in Fig.3.Token pre-computation

technique helps us to find out any modification to users data.

It guarantees that no single unauthorized data modification is

left undetected. Fig.4 shows a screenshot where data

modification has been detected. After detection of an

unauthorized data modification, our system initiates recovery.

Sometimes storage servers try to hide an unauthorized data

modification & give false result about the intactness of user‟s

data, i.e. Storage server doesn‟t possess the user‟s data but it

gives false assurance about the data. Our system guarantees

detection of such misbehaving servers. Our scheme supports

dynamic operations on .txt, .rtf &.doc data formats only.

Support for other data formats like, .xls, .pdf has not been

provided. Also in case of .doc data formats, we are not able to

edit the data which contains images inside it. Data storage

security in Cloud Computing is an area full of challenges and

of paramount importance and many research problems are yet

to be identified. We have envisioned several possible

directions for future research on this area.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.1, July2012 – www.ijais.org

43

Fig.3 Data modification snapshot

Fig. 4 Data modification detected snapshot.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.1, July2012 – www.ijais.org

44

Table 2: Cost of token pre-computation & file distribution.

File Size Token Pre-computation

Time (Sec)

File Distribution Time

(Sec)

1 MB 7 9

2 MB 15 16

3 MB 22 24

4 MB 30 33

5 MB 42 44

6 MB 47 50

7 MB 54 59

8 MB 60 67

9 MB 71 77

10 MB 90 100

Fig. 5 Graph of token pre-computation time v/s file size

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Token Pre-computation
Time (Sec)

Token Pre-
computation
Time (Sec)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.1, July2012 – www.ijais.org

45

Fig. 6 Graph of File distribution time v/s file size

5. CONCLUSION
We have analyzed the data security concerns in cloud data

storage, which is a distributed storage system. We proposed a

distributed scheme to ensure users that their data are indeed

stored appropriately and kept intact all the time in the cloud.

To provide redundancy we used erasure correcting code in the

file distribution preparation. As we all know cloud is not just a

third party data warehouse. So providing support for dynamic

operations is very important. Our scheme maintains the same

level of storage correctness assurance even if users modify,

delete or append their data files in the cloud. Challenge

response protocol along with pre-computed token is used to

verify the storage correctness of user‟s data & to effectively

locate the malfunctioning server when data corruption has

been detected. Through detailed performance analysis, we

show that our scheme is having very low communication

overhead & guarantees to detect every single unauthorized

data modification. Our scheme has no limitation on number of

pre-computed tokens used for challenging the cloud servers.

Unlimited number of challenges can be made. We removed

burden of calculating pre-computed tokens & storing the

locally from the users. By splitting the file according to the

number of server‟s we are added extra security to system. But

we still believe that data storage security in Cloud computing

is an area full of challenges and of paramount importance.

6. REFERENCES
[1] A. Juels, J. Burton, and S. Kaliski, “PORs: Proofs of

Retrievability for Large Files,” Proc. ACM CCS „07,

Oct. 2007, pp. 584–97.

[2] G.Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, and D. Song, “Provable Data

Possession at Untrusted Stores,” Proc. ACM CCS „07,

Oct. 2007, pp. 598–609.

[3] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik,

“Scalable and Efficient Provable Data Possession,” Proc.

SecureComm „08, Sept. 2008.

[4] H. Shacham and B. Waters, “Compact Proofs of

Retrievability,” Proc. Asia-Crypt „08, LNCS, vol. 5350,

Dec. 2008, pp. 90–107.

[5] K. D. Bowers, A. Juels, and A. Oprea, “Hail: A High-

Availability and Integrity Layer for Cloud Storage,”

Proc. ACM CCS „09, Nov. 2009, pp. 187–98.

[6] C.Wang, Qian Wang, Kui Ren, Wenjing Lou, “Ensuring

Data Storage Security in Cloud Computing,” Proc.

IWQoS „09, July 2009, pp. 1–9.

[7] Q. Wang, C.Wang, Wenjing Lou, Jin Li, “Enabling

Public Verifiability and Data Dynamics for Storage

Security in Cloud Computing,” Proc. ESORICS „09,

Sept. 2009, pp. 355–70.

[8] C. Erway, Alptekin, Charalampos Papamanthou, Roberto

Tamassia, “Dynamic Provable Data Possession,” Proc.

ACM CCS „09, Nov. 2009, pp. 213–22.

[9] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “MR-

PDP: Multiple-replica provable data possession,” in

Proc. of ICDCS‟08. IEEE Computer Society, 2008, pp.

411–420.

[10] T. Schwarz and E. L. Miller, “Store, forget, and check:

Using algebraic signatures to check remotely

administered storage,” in Proc. of ICDCS‟06, 2006.

[11] N. Gohring, “Amazon‟s S3 down for several hours,”

Online at

http://www.pcworld.com/businesscenter/article/142549/,

amazons_s3_down_for_several hours.html, 2008.

[12] M. Arrington, “Gmail Disaster: Reports of Mass Email

Deletions,” Dec. 2006;

http://www.techcrunch.com/2006/12/28/gmail-disaster-

reports-of-massemail-deletions/

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

File Distribution Time (Sec)

File Distribution Time
(Sec)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 3– No.1, July2012 – www.ijais.org

46

[13] Peter Mell, Tim Grance, “The NIST Definition of Cloud

Computing”, http://www.nist.gov/itl/cloud/upload-def-

v15.pdf.

[14] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of

Retrievability: Theory and Implementation,” Cryptology

ePrint Archive, Report 2008/175, 2008,

http://eprint.iacr.org/.

[15] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows and

M. Isard, “A Cooperative Internet Backup Scheme”,

Proc. of the 2003, USENIX Annual Technical

Conference (General Track), pp. 29–41, 2003.

[16] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin

Li, “Enabling Public Auditability and Data Dynamics for

Storage Security in Cloud Computing” , IEEE

Transactions on Parallel & Distributed Systems, Volume:

22, Issue: 5, pages: 847-859.

[17] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-

preserving public auditing for storage security in cloud

computing”, in Proc. of IEEE INFOCOM’10, San Diego,

CA, USA, March 2010.

[18] J. S. Plank and Y. Ding, “Note: Correction to the 1997

Tutorial on Reed-Solomon Coding,” University of

Tennessee, Tech. Rep. CS-03- 504, 2003.

