
 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.9, June 2012 – www.ijais.org 

 

23 

Deviation Causing Factors in a Code based on 

Environment of Analysis 

Rohitt Sharma 
Department of Computer Science 

Lovely Professional University 
Phagwara, India 

Paramjit Singh 
Department of Computer Science 

Lovely Professional University 
Phagwara, India 

Sumit Sharma 
Department of Computer Science 

Lovely Professional University 
Phagwara, India 

 

 

ABSTRACT 

This paper is based upon the type of software metrics 
available and their behavior on a piece of code in static 

environment and in run-time/ dynamic environment. 
Observing the current trend in the research in software 
metrics, it is noted that the work is majorly being carried in 
either using the metrics to evaluate the performance of any 
software or a source code, or in the path of creating some new 
metric, which is the blend of previous metric, but nothing 
much is been done in way of evaluating the performance of a 
metric itself and in order to find ways and methods to improve 

it. In this paper a similar approach is followed that leads to 
some factors that are responsible for the deviation of a metric 
results in static environment and dynamic/ run-time state.   

General Terms 

Performance Analysis, Comparative Study. 

Keywords 

Software metrics, Static environment, Dynamic environment, 

cyclometic complexity. 

1. INTRODUCTION 
A Software in today’s world serves a bi-functional role of 
being a product of some process as well as of serving a 
vehicle to produce a new product. As a product it serves as a 
calculating potential in form of hardware or software and as 
vehicle it acts as platform for the control of systems, 
communication networks, creating tools and environments for 
development, evaluation[6]. Software engineering (SE) is the 

application of a systematic, disciplined, quantifiable approach 
to the development, operation, and maintenance of software, 
and the study of these approaches; that is, the application of 
engineering to software[1]. It is concerned with theories, 
methods and tools for professional software development.  

Software Engineering like all other engineering professions 
has metrics. Goodman (1993, 6) defines software metrics as: 
"The continuous application of measurement-based 

techniques to the software development process and its 
products to supply meaningful and timely management 
information, together with the use of those techniques to 
improve that process and its products". Software metrics can 
perform one of four functions. Metrics can help us Understand 
more about our software products, processes and services. 
Metrics can be used to Evaluate our software products, 
processes and services against established standards and 

goals. Metrics can provide the information we need to Control 
resources and processes used to produce our software. Metrics 
can be used to Predict attributes of software entities in the 
future[2].  

Thus, incorporating metrics into software development 
process is a valuable step towards creating better systems. The 
practice of applying software metrics to a software process 
and to a software product is a complex task that requires study 
of the discipline, and which brings knowledge of the status of 
the process and / or product of software in regards to the goals 

to achieve. The software metrics depend on what software’s 
attributes we want to quantify or qualify, and Software 
complexity is an estimate of the amount of effort needed to 
develop, understand or maintain the code[7]. It follows that 
more complex the code is the higher the effort and time 
needed to develop or maintain this code.  

2. STATIC AND DYNAMIC ANALYSIS 

PERSPECTIVES 
Analysis is the process of breaking a complex problem into 
smaller parts and then analysing them to gain a better 

understanding of it. In the field of software engineering, the 
analysis in terms of the environment/surroundings is done in 
two ways: 1) Static Analysis and 2) Dynamic Analysis. 

2.1 Static Analysis 
Static analysis, as by the name depicts, means the analysis of 

the code in static environment. Static code analysis, is a 
method of computer program debugging that is done by 
examining the code without executing the program[3]. It 
provides the basic understanding of the structure of the code 
and this can help in ensuring the code to be of industry 
standards. Static analysis involves no dynamic execution and 
can detect possible faults such as unreachable code, 
undeclared variables, parameter type mismatches, uncalled 

functions and procedures, possible array bound violations, 
etc.[4]. The static analysis results are basically compiler 
generated errors, and the knowledge of these syntactical errors 
proves very useful during the debugging and maintenance 
work. 

2.2 Dynamic Analysis 

Dynamic analysis means the analysis of code in dynamic 
environment. A dynamic analysis measures the efficiency and 
effectiveness of software testing by monitoring the software 
system during its execution phase [5]. The objective is to find 
errors in a program while it is running, rather than by 
repeatedly examining the code offline. In this research also, 
we will be examining the code in dynamic state and then after 
comparing the values obtained with the values of static state 

and thus finding the factors.  

3. METHODOLOGY 
Initially, a C++ code is developed, and some metrics are also 

chosen that will be used to evaluate the developed code. After 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.9, June 2012 – www.ijais.org 

 

24 

that, this research is carried in three phases. In the First phase, 

the developed code is statically analysed over the selected 

metrics. In second phase, the same code is dynamically 

analysed using the same metrics used in static case. In third 

phase, when all the values from both the states are recorded, 

then those values will be used to determine the factors behind 

the deviation in results in both the cases. 

Source code developed – Sales and inventory management 

system in C++. 

Metrics to be used – LOC, Maximum complexity, maximum, 

depth, McCabe's Cyclomatic complexity, number of modules. 

In the first phase of analysis, the code is evaluated statically 

using two tools named, CCCC[9] (C and C++ code counter ) 

and source Monitor[10] on the various measures as specified 

above. In second phase, the same code is dynamically 

evaluated using D.U.M.A[11] (Detect Unintended Memory 

Access) and Understand[12] on the same measures. Then after 

in the third phase of the study, both the results from the first 

two phases is compared and the factors causing the deviation 

in the figures is appraised. 

4. BIFURCATING FACTORS BASED 

ON EXPERIMENTAL RESULTS 
As in the first phase, the initially developed code is statically 

analyzed, the output of the process is as follows[8] : 

 

From figure 1, the values of static analysis performed on code 

are recorded, which figures out the number of modules in the 

code to be 5, with 480 lines of code and McCabe’s cyclometic 

complexity number to be 68 for the whole code.  

The figure2 shows the static analysis results from other tool 

and describes the value of maximum complexity to be 15, 

maximum depth of statements to be 7, average depth to be 

3.02 and average complexity is recorded. The results obtained 

was used to draw a kiviat graph to unriddle the interrelation 

between the various factors and a block histogram to 

understand number of statements with similar the block depth. 

 

A Kiviat diagram is used to graphically represent and 

compare multiple entities and then to evaluate them against 

more than two variables, which gives it an edge over other 

charting and graphing techniques. and a Block Histogram 

allows us to see distribution of numeric values in a data set. 

The x-axis is divided into 'bins' that correspond to value 

ranges. Each item in the data set is drawn as a rectangular 

block, and the blocks are piled into the bins to show how 

many values in each range. 

Table 1: Metrics details for the written code. 

Parameter Value 

Project Name CODING.cpp 

Checkpoint Name Baseline 

Percent Lines with comments 1.8 

Classes Defined 3 

Methods Implemented per Class 4.00 

Average Statements per Method 23.1 

Line Number of Most Complex 

Method 
118 

Maximum Complexity 15 

Line Number of Deepest Block 375 

Maximum Block Depth 7 

Average Block Depth 3.02 

Average Complexity 4.93 

Functions 2 

Thus the kiviat graph in Fig 3 depicts the inter-relation 

between %comments, Average complexity, Average Depth, 

Maximum Depth, Maximum Complexity, Average Statements 

per Method and Methods per class, formed from the above 

values from Table 1 is as given below : 

 

Figure 2:  Results obtained from tool Source Monitor. 

 
Figure 1:  Results obtained from tool CCCC 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.9, June 2012 – www.ijais.org 

 

25 

 

Table 2:  Number of statements corresponding to the 

block depth 

Block Depth Statements 

0 14 

1 50 

2 80 

3 76 

4 103 

5 41 

6 14 

7 1 

8 0 

9+ 0 

The Table 2, provides the information of number of 

statements with a particular depth of block, like, number of 

statements having block depth of 4 are 103, etc. Hence 

formulated block-depth histogram in Figure 4 is as under : 

 

The second phase, i.e. dynamic analysis produces the results 

on the same code. The results of the analysis helped in 

drawing various kinds of graphs, which ultimately helped in 

solving the enigma. By the analysis of the code a butterfly 

graph drawn is as under: 

 

The butterfly graph in diagram 5, describes the header files 

being used in order at the time of execution of the program. 

The more closer view of execution explains the calling of 

functions and the carrying out of the sequence being followed 

by the program with the help of a cluster call internal graph. It 

show the function call graph, organized by file. 

The Cluster call internal graph describes the order and the 

sequence in which the execution is taking place that how are 

the methods inside the code are originally being accessed as 

the uses is providing the input and is interacting with the 

program code. 

The Cluster call internal diagram in diagram 6, depicts the 

actual implementation of program, as per the c++ norms and 

guidelines, the main method of the code being accessed first, 

then the control is forwarded to the select method of the code 

in which the user selects its category of being a buyer or the 

administrator, after that the control is either forwarded to the 

items section or the admin section as per the selection being 

made by the user during the selection time. 

 

 

Figure 5: A Butterfly Graph 

     
Fig 4: Block histogram of Statements vs Depth 

 

 

Fig 3: Kiviat graph 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.9, June 2012 – www.ijais.org 

 

26 

 

 

 

The internal analysis of the executing structure of the code 

describes the various components present in the various 

methods of the code, i.e. select, i_manip and items with the 

aid of a uml class diagram graph. 

 

The uml class diagram graph in diagram 7, states the various 

functions under the three methods present in the code. Like 

the method select contains two options, that are customer and 

admin, i.e. shopkeeper. Similarly, the i_manip contains the 

two , delete and the search functions, and the items having the 

most, i.e. seven options as specified in Figure 8. 

The results as specified in figure 8 determines the value of the 

complexity of the code in dynamic environment. As it can be 

viewed clearly that there are four modules having complexity 

more than the allowed value (5) with the maximum 

complexity of 16 of the purchase module of the code followed 

by the s_keeper module of complexity 14, customer module 

of complexity 13 and main function with value 11. The code 

volume distribution graph of the code identifies the various 

sections of the code and their values, for example, the number 

of blank lines in the code depicted by the CountLineBlank, 

the number of lines used in for the declaration purposes in the 

code is stated by CountLineCodeDec and the total executable 

lines of code is stated by the CountLineCodeExe. 

Table 3: Code volume distribution values 

 

CountLin

eBlank 

CountLin

eCodeDec 

CountLin

eCodeExe 

CountLine

Comment 

Coding

.cpp 
50 58 362 10 

From the values as retrieved in the table 3, its crystallized that 

of the total line of code of 480, number of blank code lines is 

50, total declarations made took 58 lines of the program code, 

and the total executable code lines , i.e. the main executable 

code in the program is 362 whereas, the commented lines are 

10. From the results retrieved, a code volume distribution can 

be formulated as in figure 9, representing the relation of code 

volume with respect to the distribution. The cyclometic 

complexity factor of the code comes out to be 70, in case of 

the dynamic analysis. 

Table 4: Cyclometic complexity of code 

 Sum Cyclometic Sum Essential 

Coding.cpp 70 36 

The values from table 4 can be used to draw a graph of 

distribution values with respect to the cyclometic complexity 

of the code. The graph is shown in figure 10, depicting the 

code cyclometic complexity to be 70 and SumEssential value 

to be 36.The other factor of the complexity generated the 

maximum value to be 16 and the average complexity value to 

 

Figure 7: Uml Class diagram graph 

 

Figure 6: Cluster call internal graph 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.9, June 2012 – www.ijais.org 

 

27 

be of 5 and maximum nesting values to be 4. The values representing the results are specified in table 5. 

 

 

 

Hence using the values of the above table, a graph 

corresponding to the results is drawn which shows the 

interrelation of distribution with the complexity of the code. 

The graph is detailed in figure 11. 

After deducing the results in both the environments now it’s 

the time to compare the results produced in both the cases. 
The major change came in the values of complexity and the 
cyclometic complexity. The comparative results are specified 
in the table 6. 

Table 6: Comparative results of both states. 

 Static State Dynamic State 

Average complexity 4.93 5 

Maximum Complexity 15 16 

Cyclometic complexity 68 70 

 

Figure 9: Code Volume Distribution Graph 

 

 

 

Figure 8: Results of dynamic analysis 

 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.9, June 2012 – www.ijais.org 

 

28 

 

 

 

 

From the values in table 6, it is very much clear that there is 

variation in the values of complexity as we go from a static 

state to a dynamic state. There can be various factors that can 

lead towards the variation of these values.  

5. FACTORS HELPING IN CAUSING 

DEVIATION  
Factors that leads to the variation in the results can be as 

follows: 

 

Figure 11 : A graph showing the interrelation of distribution with code complexity 

 

Figure 10: Results for Cyclometic complexity 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.9, June 2012 – www.ijais.org 

 

29 

1. Number of looping statements : Looping statements are 

the vital part of any program code. Very less program code 

are there that do not contains any looping statements. This is 

one of the reasons that produces a change in complexity 

values in dynamic environment as compared to the static 

environment. More the number of looping statements are 

there more will be the time taken to process the whole loops 

during the runtime state, and if more time is been taken upon 

that then that extra work done will also add some extra effort. 

This extra effort is in the end added to the complexity factor. 

Thus, therefore, there is increase in the complexity of code in 

run-time environment as compared to the static state. 

2. Provision of User inputs : when a code is analysed in a 

static environment, it is analysed on the basis of the 

statements and code, i.e. no user interaction is there at that 

stage. But when a code is dynamically analysed, it is analysed 

during the runtime, i.e. with the user interation and the user 

inputs. When run-time environment is involved, then there 

can be some input errors, runtime errors, etc. and the code 

behavior will be soully dependent upon the user inputs. Hence 

as the number of inputs can vary and so as depending upon 

the inputs, the program behavior can also vary, thus, due to 

these varying of behavior and various runtime errors 

encountered, the complexity tends to increase. 

3. Coupling : Coupling is the degree to which each program 

module relies on each one of the other modules. During the 

static state, the coupling values are specified only as the 

interdependency of the code, in which the actual amount is 

not known , that how much is the fuctions interdependent, 

what is the degree of dependency,etc. but during the run-time, 

actuall value is known, and with the increase in the inputs and 

the values the coupling increases, thus increasing the 

complexity value. More is the coupling, less is the cohesion 

and more is the complexity as more time will be taken to 

process the results as the functions will be more 

interdependent and after the completion of first function only, 

the second function will be taken to execution, hence 

increasing the total execution time and oncreasing the 

complexity. 

4. Effective statements executed : In a program code, there 

are number of such functions that can be called recursivelly, 

during a run-time state. The number of times the function will 

be called and processed recurcivelly depends upon the user 

and user input. This recursive calling cannot be determined in 

static evaluationof the code. Thus, this factors is not fully 

included while fetching the values in static environment, 

therefore, the complexity in static state is less as compared to 

the dynamic run, where the total number of how many time 

was the function called is known. 

5. Modular structure : No doubt that the more number of 

modules increases the the flexibility of the code and increases 

the reusability of the program, but it also accounts into adding 

on the cost in terms of increased need of memory space and 

extra time for execution because some modules may partly 

repeat the task performed by other modules[13]. The static state 

evaluation of the code onlyprocess the code lines and 

modules, but do not processes the work done in all the 

modules, that whether work is being repeated or not, but in 

run time environment, as the whole code is procesed, thus all 

the work is checked, and the repeated work adds to the extra 

effort, hence, increasing the complexity of the code in 

dynamic environment. 

6. REMEDIES TO MINIMISE THE 

DEVIATION 
All the factors described in previous point are responsible for 

the increased work done in terms of time, space and 

complexity in the dynamic state of the analysis as compared 

to the static state analysis. Though all the factors cannot be 

overcomed, but some points can be kept into mind in order to 

reduce the run time complexity of the code and keep it as 

closer as possible to the static values of the code. Some of the 

recommendations are : 

 Though we cannot avoid including the looping 

statements into the code, but their number can be 

reduced by using a wrap function and then calling 

that wrap function which extracts the data from the 

result set which handles the null or change the query 

so it doesn't return nulls. Hence by this way the 

added complexity of the looping statements can be 

reduced and overcomed, thus, enhancing the 

performance attribute of the code. 

 The run time complexity can also be reduced by 

providing more refined inputs and avoiding the 

input errors, as errors will reduce, thus, they will 

ultimately reduce the complexity. also during the 

code writing, the modules created should be of a 

specific length, if there are more modules with less 

number of instructions under them then it also 

accounts into increased complexity, because it will 

increase the inter-modular communication cost. 

 Coupling is also one of the needed attributes of the 

code, but it must be kept in mind while writing the 

code that, the value of content coupling must be 

less, because if the value of content coupling is 

high, then it will mean that there is larger 

interdependency of the information, hence, more 

resources will be needed to process, thus increasing 

the complexity. 

The above factors were some remedies of reducing the gap of 

complexity values between static and run-time environment.  

7. CONCLUSION 
This paper was mainly oriented towards finding the factors 

that causes the deviation in the results of the metrics when 

tested in static environment as compared to when tested in a 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  
Foundation of Computer Science FCS, New York, USA 
Volume 2– No.9, June 2012 – www.ijais.org 

 

30 

run-time or dynamic environment. Various factors are 

obtained during the research study and the alternative 

remedies were also proposed along with. Various conclusions 

that can be drawn from the experimental research conducted 

are : 

1. The run-time facilities, like user input, user control, etc. are 

the basic factors leading to the deviation in the results. 

2. The structure of the program along with the kind of input 

given also effects the results. 

3. If one thing is giving benefit at one place, then it is also 

adding some cost at other place, for eg : the modular structure 

do adds the benefit of the increased readability, flexibility, 

and usability, but it also increases the complexity at run time. 

4. Although all the factors cannot be overcome, but still some 

remedies can be kept in mind while writing the program code 

and operating with it. 

8. FUTURE SCOPE 
There is a very wide future scope of this research, a more 

complex code with large codebase and more complex 

modules can be used to analyze and determine more factors 

that can cause the deviation in the results.  

The factors deduced in the study are not the only factors as 

other properties of the code are not included in the study, so 

the future analysis should include some more factors like 

coupling, cohesion, etc. with more complex codebase and 

should be tested on multiple number of tools to figure out 

some more factors. 

9. REFERENCES 
[1] Pierre Bourque and Robert Dupuis(2004). Guide to 

the Software Engineering Body of Knowledge - 

2004 Version. IEEE Computer Society. pp. 1–1. 
ISBN 0-7695-2330-7. 

[2] Robert W. Carroll, “Project management and 
process improvement through software metrics”, 
http://www.gisdevelopment.net/proceedings/gita/19
99/system/sa002pf.htm. 

[3] Hilda B. Klasky ( 2003 ). A Study Of Software 
Metrics, issued by Graduate School-New Brunswick 
Rutgers, The State University of New Jersey 

[4] Muzamil Jah ( 2008 ). Software Metrics – Usability 

and Evaluation of Software Quality, issued by 
Department of Technology, Mathematics and 
Computer Science, University West. 

[5] Varun Gupta ( 2010 ). Object-Oriented Static and 
Dynamic Software Metrics for Design and 
Complexity, issued by Department of Computer 
Engineering National Institute of Technology, 
Kurukshetra. 

[6] Roger S Pressman (2001), Software Engineering: A 
Practitioner's Approach, fifth edition, Published by 
McGraw-Hill. 

[7] Kamaljit Kaur, Kirti Minhas, Neha Mehan, and 
Namita Kakkar(2009). Static and Dynamic 
Complexity Analysis of Software Metrics. World 
Academy of Science, Engineering and Technology 
56 2009. 

[8] Rohitt Sharma, Paramjit Singh, Sumit Sharma 
(2012). An Approach Oriented Towards Enhancing 
A Metric Performance. Vol. 4 No. 05 May 2012, 
pp: 743-748 

[9] http://cccc.sourceforge.net/ 

[10] http://www.campwoodsw.com/sourcemonitor.html 

[11] http://duma.sourceforge.net/ 

[12] http://www.scitools.com/features/metrics.php

 


