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ABSTRACT 

Since it was first proposed, it is amazing to notice how K-

Means algorithm has survive over the years. It has been one 

among the well known algorithms for data clustering in the 

field of data mining. Day in and day out new algorithms are 

evolving for data clustering purposes but none can be as fast 

and accurate as the K-Means algorithm. But in spite of its 

huge speed, accuracy and simplicity K-Means has suffered 

from some of its own problem. Such as, the exact number of 

cluster is not known prior to clustering. The other thing that is 

causing problem is that it is quite sensitive to initial centroids. 

Not just that, K-Means fails to give optimum result when it 

comes to clustering high dimensional data set because its 

complexity tends to make things more complicated when 

more number of dimensions are added. In Data Mining this 

problem is known as “Curse of High Dimensionality”. Here in 

our paper we proposed a new Modified K-Means algorithm 

that will overcome the problem faced by the standard K-

Means algorithm. We proposed the use of Kohonen Self 

Organizing Map (KSOM) so as to visualize exact number of 

clusters before clustering and genetic algorithm is applied for 

initialization. The Kohonen Self Organizing Map (KSOM) 

with Modified K-Means algorithm is tested on an iris data set 

and its performance is compared with other clustering 

algorithm and is found out to be more accurate, with less 

number of classification and quantization errors and can be 

applied even for high dimensional dataset. 
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1. INTRODUCTION 
Data mining is the process of extracting useful information 

from a collection of data‟s in a large database. One can view 

cluster analysis as one of the major task for the process of data 

mining to be successful. It is used in many applications such 

as pattern recognition,  medical purpose, web documentation, 

business purposes, scientific purposes and so on. Clustering 

can be defined as the process of organizing objects into 

groups such that the objects in a group will be similar to one 

another and different from the objects in other groups. A good 

clustering will produce a very high intra-cluster similarity and 

low inter-cluster similarity. The quality of a clustering result 

depends on both the similarity measure used by the method 

and also its ability to discover some or all of the hidden 

patterns. 

K-means is among the commonly used partitioning based 

clustering method that tries to find a specified number of 

clusters (k), represented by their centroids, by minimizing the 

sum of square error function. It is very simple and fast but is 

very sensitive to initial positions of cluster centers. Dash et 

al[1]  found out that the complexity of original K-means 

algorithm is very high, especially for large data sets because 

the distance calculation increases exponentially with increase 

in dimensions. Usually only a small number of dimensions are 

relevant to certain clusters; the irrelevant one may produce 

noise and mask the real clusters to be discovered. Moreover 

when dimensionality increases, data usually become 

increasingly sparse, this can affect the quality of clustering. 

Hence, attribute reduction or dimensionality reduction is is an 

essential task for dataset having many attributes. 

Dimensionality reduction can be defined as transforming of 

high-dimensional data into a meaningful representation of 

reduced dimensionality that corresponds to the intrinsic 

dimensionality of the data. There are of two types 

1. Feature Selection which aims at finding subset of the most 

representative features according to some objective function 

in discrete space. 

2. Feature Extraction/ Feature Reduction algorithms aim to 

extract features by projecting the original high dimensional 

data into a lower-dimensional space through algebraic 

transformations. It finds the optimal solution of a problem in a 

continuous space, but with computational complexity. PCA is 

among the commonly used feature reduction method in terms 

of minimizing the reconstruction error. 

Traditional K-means algorithm does not work well for high 

dimensional data and results may not be accurate most of the 

time due to noise and outliers associated with original data. 

Also the computational complexity increases rapidly as the 

dimension increases. Moreover the exact number of clusters 

cannot be determined and that it is very sensitive to initial 

centroids. Hence to improve the performance we proposed 

KSOM with Modified K-Means algorithm, basically SOM for 

dimension reduction and determining the number of clusters 

followed by GA for initialization of the enhanced K-Means. It 

is found out that the approach gives better accuracy and better 

performance in terms of speed. Below we gave a brief 

description of the proposed algorithms. 

2. RELATED WORKS 
There have been many works done on improving the 

performance and efficiency of k-means clustering.. A 

hybridized K-Means clustering approach for high dimensional 

data set was proposed by Dash, et al [1] where PCA was used 

for dimensional reduction and for finding the initial centroids 

a new method is employed that is by finding the mean of all 

the data sets divided in to k different sets in ascending order. 

Hs Behera et al [2] proposed another paper an improved 

hybridized k-means clustering algorithm (IHKMCA) for high 
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dimensional dataset making used of Canonical Variate 

analysis and Genetic Algorithm or initialization of the 

algorithms. Juha Vesanto and Esa Alhoniemi [3] proposed the 

used of Self Organizing Map for clustering whereby Self 

Organizing Map(SOM) was used for clustering purpose .J. 

Vesanto [4] in his another work proposed the SOM based data 

visualization to visualize the data‟s using SOM. 

 

M.N.M and Ehsan Moheb [5] proposed the hybridized self 

organizing map for overlapping clusters. Geoff Bohling [6] 

give a brief idea on dimensionality reduction and the various 

technique that can be applied for dimensional reduction. For 

improving the performance of K-Means clustering M Yedla et 

al[7] proposed an enhanced K-Means algorithm with 

improved initial center by the distance from the origin. Fahim 

A M et al [8].proposed an efficient method for assigning data 

points to clusters. Zhang Chen et al [9] proposed the initial 

centroids algorithm based on K-Means that have avoided 

alternate randomness of initial centroids. Bashar Al Shboul 

et.al [10] proposed an efficient way of initializing K-Means 

clustering by using Genetic algorithm thus there by solve the 

problem of randomly initializing the centroids. 

 

3. MATERIALS AND METHODS 

3.1 K-Means Algorithm 
One of the simplest and widely used partitioning based, 

nonhierarchical clustering methods is the K-Means. For  any 

given set of numeric dataset X and an integer number k, the 

K-means algorithm searches for a partition of X into k clusters 

that minimizes the within groups sum of squared errors. The 

K-means algorithm starts by initializing the k cluster centers. 

The input data points are then allocated to one of the existing 

clusters according to the square of the Euclidean distance 

from the clusters, choosing the closest. The mean (centroid) of 

each cluster is then computed so as to update the cluster 

center. This update occurs as a result of the change in the 

membership of each cluster. The processes of re-assigning the 

input vectors and the update of the cluster centers is repeated 

until no more change in the value of any of the cluster centers. 

The steps of the K-means algorithm are written below: 

 

1. Initialization: choose randomly K input vectors (data 

points) to initialize the clusters. 

2. Nearest-neighbor search: for each input vector, find the 

cluster center that is closest, and assign that input vector to the 

corresponding cluster. 

3. Mean update: update the cluster centers in each cluster 

using the mean (centroid) of the input vectors assigned to that 

cluster. 

4. Stopping rule: repeat steps 2 and 3 until no more change in 

the value of the means 

3.2 Principal Component Analysis 
Principal component analysis (PCA) involves a mathematical 

procedure that transforms a number of (possibly) correlated 

variables into a (smaller) number of uncorrelated variables 

called principal components.  The first principal component 

accounts for as much of the variability in the data as possible, 

and each succeeding component accounts for as much of the 

remaining variability as possible. The main objectives of PCA 

are: 

1. Identify new meaningful underlying variables; 

2. To reduce the dimensionality of the data set. 

The mathematical background lies in covariance matrix and 

"Eigen analysis": In PCA a dataset is normalized by 

subtracting the mean attribute value from all the attributes in a 

particular dimension. Then covariance of the normalized 

matrix is calculated . Then eigen vector and eigen value of the 

covariance matrix is calculated. The eigenvector associated 

with the largest Eigen value is used to determine first 

principal component. The eigenvector associated with the 

second largest Eigen value helps in determining  the second 

principal component. In here we used the second objective, in 

that case the covariance matrix of the data set is defined as 

follows: 

Cov(x,y)=        
  𝑥𝑖−𝑥 (𝑦𝑖−𝑦)𝑛
𝑖=1

      (𝑛−1)
 

 

wherex is the mean of the data (n equals the number of 

objects in the data set). Principal Component Analysis (PCA) 

is based on the projection of correlated high-dimensional data 

onto a hyperplane. This mapping uses only the  first few q 

nonzero eigenvalues and the corresponding eigenvectors of 

the Covariance matrix. The matrix formed by taking the first 

eigen vectors is called feature vector. Then the feature vector 

is applied to normalized data set to find the reduced data set. 

 

3.3 Self Organizing Map 
Kohonen Self Organizing Feature Maps, or SOMs provide a 

way of representing multidimensional data in much lower 

dimensional spaces - usually one or two dimensions. This 

process, of reducing the dimensionality of vectors, is 

essentially a data compression technique known as vector 

quantization. In addition, the Kohonen technique creates a 

network that stores information in such a way that any 

topological relationships within the training set are 

maintained. One of the most interesting aspects of SOMs is 

that they learn to classify data without any external 

supervision whatsoever.  It consists of neurons or map units, 

each having a location in a continuous multi- dimensional 

measurement space as well as in a discrete two dimensional 

data collection is repeatedly presented to the SOM until a 

topology preserving mapping from the multi dimensional 

measurement space into the two dimensional output space is 

obtained. This dimensionality reduction property of the SOM 

makes it especially suitable for data visualization. 

There are „m‟ cluster unit, arranged in a one or two 

dimensional array and the input signals are n-tuples. The 

weight vector for a cluster unit is the exemplar of the input 

patterns associated with that cluster. In self organizing 

process, the cluster unit whose weight vector matches the 

input pattern closely is selected as the winner. The winning 

and the neighboring units update their weights. 

c = mini X − mi  

In which mi  is the location of the ith map unit in the 

measurement space and c is the index of the winner map unit 

in the output grid of SOM. 

After the winner search, the locations of the map units in the 

measurement space are updated according to the rule: 
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mi t + 1 = mi t + α t hci (t) x t − mi(t)  

 

In which 0<α(t)<1 is a learning rate factor and hci (t) is 

usually the Gaussian neighborhood  function. 

 

hci  t = exp⁡ −
 rc − ri 

2σ2 t 
  

 

Where rc is the location of the winner unit and ri is the location 

of the ith map unit in the discrete output grid of SOM. The 

learning rate factor α(t) and the radius σ(t) are monotonically 

decreasing functions of time t. 

 

As mention earlier the original K-Means algorithm does not 

work well for high dimensions. And we have seen some of its 

weaknesses, such as sensitive to initialization, unknown 

number of clusters needed, and complexity problem. So to 

overcome its entire problem we proposed the Kohonen K-

Mean. Where we basically apply KSOM on the dataset for 

reducing the dimension keeping intact the topological 

structure of the data. The KSOM, not only it reduce the 

dimension but it gives us a clear confirmation on the number 

of clusters. To the resulting reduced data set we then applied 

the GA for obtaining the initial centroid and finally the data‟s 

are group into cluster using the modified K-Means algorithm. 

 

3.4 Genetic Algorithm 
It is an optimization algorithm and can be used in any 

algorithm to optimize  the result. The algorithm begins by 

creating a random initial population. The algorithm then 

creates a sequence of new populations. At each step, the 

algorithm uses the individuals in the current generation to 

create the next population. To create the new population, the 

algorithm performs the following steps: 

 

a. Stores each member of the current population by 

computing its fitness value. 

b. Scales the raw fitness scores to convert them into a more 
usable range of values. 

c. Selects members, called parents, based on their fitness. 

d. Some of the individuals in the current population that 

have lower fitness are chosen and are passed to the next 

population.  

e. Produces children from the parents(members having best 

fitness value). Children are produced either by making 

random changes to a single parent—mutation—or by 

combining the vector entries of a pair of parents—

crossover. 

f. Replaces the current population with the children to form 
the next generation. 

 

 

 

 

 

             

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                    Fig 1:  Block diagram of KSOM 
 

4. PROPOSED ALGORITHM 
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4.1 Subsequent Pages 
For pages other than the first page, start at the top of the page, 

and continue in double-column format.  The two columns on 

the last page should be as close to equal length as possible. 

To the reduced low dimensional 

data apply GA to obtain the 

initial centroids. 

Lastly after getting the value of 

K and initial centroid apply the 

K-Means algorithm to get the 

resultant clusters. 

Apply KSOM algorithm to the 

high dimensional data set to 

reduce the datat set and obtained 

the number of clusters 

Calculation of          

Accuracy   and number of 

Iteration 

Dij =    xik − xjk  
2

N

k=1

 

𝑚𝑖 𝑡 + 1 = 𝑚𝑖 𝑡 + 𝛼 𝑡 ℎ𝑐𝑖(𝑡) 𝑥 𝑡 − 𝑚𝑖(𝑡)  

Input: X = {d1, d2,……..,dn} // set of n data items 

Step1. Each node's weights are initialized. 

Step2 A vector is chosen at random from the set of training 

data and presented to the lattice. 

Step3. Every node is examined to calculate which one's 

weights are most like the input vector. The winning node is 

commonly known as the Best Matching Unit (BMU). 

Euclidean Distance is used to find similarity 

Step 4. The radius of the neighborhood of the BMU is now 

calculated. This is a value that starts large, typically set to the 

'radius' of the lattice, but diminishes each time-step. Any nodes 

found within this radius are deemed to be inside the BMU's 

neighborhood.  

Step 5. Each neighboring node's (the nodes found in step 4) 

weights are adjusted to make them more like the input vector. 

The closer a node is to the BMU; the more its weights get 

altered. 

Step 6. Repeat step 2 for N iterations. 
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4.1 Genetic Algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

4.2 Modified K-Means Algorithm 

 

 

 

 

 

 

 

 

 

5. EXPERIMENTAL ANALYSIS 
The experimental analysis is performed on an iris data set 

which we can get from UCI Repository of Machine Learning 

Databases. The data set contains 5 dimensions of three types 

of flower species setosa,virsicolor and virginica. Based on the 

length and width of sepal and petal we are to cluster these 

different flower species.  

Step1: 

To start with the first stage is using SOM on the iris dataset 

mainly for two purposes. One for dimensional reduction and 

the other to visualize and analyze the exact number of cluster 

needed. On applying KSOM we found out the quantization 

error and the topographic error to  be  0.393 and 0.013 which 

gives us the clear cut idea of the original data and how much 

the transformation from high dimension to low dimension has 

affected the data‟s. The other important aspect that SOM got 

is that it not only does reduce the dimension of the data set but 

it also group together data‟s of similar properties close to one 

another. This unique property of SOM is what makes it so 

powerful in terms of defining the number of clusters. 

 

From the Figure.2 below the U-Matrix and component planes 

and labels are shown. Clearly some of the conclusions that 

can be drawn from the fig below are: 

 

There are essentially two clusters 

1.  PetalL and PetalW are highly correlated 

 

2. SepalL is somewhat correlated to PetalL and 

PetalW 

 

 

3.  One cluster corresponds to the Setosa species and 

exhibits small petals and short but wide sepals 

 

4. The other cluster corresponds to Virginica and 

Versicolor 

 

5.  Such that Versicolor has smaller leaves (both sepal 

and petal) than Virginica 

 

6. Inside both clusters, SepalL and SepalW are highly 

correlated 

 

 

      
 

               Fig 2: Visual inspection of the map 

 

Now from the above U matrix the distance information can be 

extracted and projection can be done to visualize the inter 

relation of data‟s and confirms the number of clusters. The 

projection given in fig 2 below confirms the existence of two 

clusters seem to divide the Virginica flowers into two classes, 

the difference being in the size of sepal leaves. From the third 

figure we can get a detail description  on the various things we 

have observed before. Original data points are in the upper 

triangle, map prototype values on the lower triangle, and 

histograms on the diagonal: black for the data set and red for 

the map prototype values . 

This distributions of single and pairs of variables both in the 

data and in the map shows a lot of information. For example 

there are two clusters: 'Setosa' (blue, dark green) and 

Virginica','Versicolor' (light green, yellow, reds). 

 

- The PetalL and PetalW have a high linear correlation (see 

subplots 4,3 and 3,4) 

 

- SepalL is correlated (at least in the bigger cluster) with 

PetalL and PetalW (in subplots 1,3; 1,4; 3,1 and 4,1) 

 

- SepalL and SepalW have a clear linear correlation, but it is 

slightly different for the two main clusters (ii subplots 2,1 and 

1,2) 

 

Input: A resulting reduced data set W from KSOM 

Output: a set of K variables  for initial centroids 

t=0; 

Initialize P(t); 

Evaluate P(t); 

While not (termination condition) 

 Begin 

 t=t+1; 

Select P(t) from P(t-1); 

Recombine pairs in P(t); 

Mutate P(t); 

Evaluate P(t); 

End 

 

Input:  

 W //set of n data points. 

 K // number of desired clusters 

Output: a set of K clusters. 

Steps: 

 K initial centroids from genetic algorithm. 

Iterative process: 

Assign each point ai, to the cluster which has the closest 

centroid. Calculate the new mean for each cluster 

UNTIL the convergence criteria is met. 
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Fig 3: Principal Component Projection of map 

 

       Fig 4: Confirmation of number of clusters 

 

The above figure-4 confirmed the existence of two clusters. 

Step 2: 
After dimension reduction and determining the K value for K-

Means clustering the initialization is done using Genetic 

Algorithm (GA) which gives the best fitted value compared to 

all the values as initial centroid. 

 

Step 3: 
Lastly but not the least from the K value obtained from step 1 

and initial centroid outputted by step 2 the reduced dataset is 

clustered using the modified K-Means algorithm. 

 

The results obtained are listed in the table below and the 

clusters are shown in the fig below. The result is compared 

with some of the well known high dimensional clustering 

algorithm and found out to have better performance in terms 

of accuracy and speed. 

                                                                                                                

Table 1. comparison of Kohonen K-Means with PCA and 

Sammon mapping 

 

 

             Fig 5: Comparison of Time complexity 

 

 
            Fig 6: Comparison Of Quantization Error 

 

 
 

                Fig 7: Comparison of Accuracy 

6
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9

no.of iteration

no.of iteration

0

0.5

1

Quntaization Error

Quntaization 
Error

60
80

100

Accuracy in %

Accuracy in %

Algorith

ms 

Quantizatio

n 

Error 

Number 

of 

Iteration 

Accuracy 

in % 

Kohonen 

K-Means 

0.393 7 91.25 

PCA 0.77 8 78.11 

Sammon 

mapping 

0.73 8 81.37 
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Fig -8 Clusters using  Kohonen K-Means 

 

6. CONCLUSION 
In this paper we have proposed the Kohonen K-Means 

algorithm using   KSOM for dimension reduction and for 

determining number of clusters and GA is used for 

optimization of centroid obtained from KSOM with modified 

K-Means algorithm. Not only we found out that it has better 

performance but also that it omits many of the problem that 

standard K-Means algorithm faced such as unknown  number 

of clusters and the sensitivity to initial centroid. Further 

research can be done to use a more accurate method in finding 

initial number of centroid and use better optimization 

technique for good clustering purposes. 
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