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ABSTRACT 
The effects of radiation on transient natural convection of a 

viscous incompressible fluid confined between vertical walls 

have been studied. We have considered the two different cases (i) 

flow due to the impulsive motion and (ii) flow due to accelerated 

motion of one of the walls. The governing equations are solved 

analytically using the Laplace transform technique. The 

variations of velocity and fluid temperature are presented 

graphically. It is observed that the velocity increases for both the 

impulsive motion as well as the accelerated motion of one of the 

walls with an increase in radiation parameter. It is also observed 

that the velocity decreases with an increase in either Prandtl 

number or time for both the impulsive motion as well as the 

accelerated motion. An increase in Grashof number leads to a fall 

in velocity due to enhancement in buoyancy force. An increase in 

the radiation parameter leads to increase the temperature of the 

flow field. Further, the shear stress at the moving wall increases 

for both the impulsive motion as well as the accelerated motion 

of one of the walls with an increase in radiation parameter. The 

rate of heat transfer increases with an increase in either radiation 

parameter or Prandtl number while it decreases with an increase 

in time. 
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1. INTRODUCTION 
 
 

In space technology applications and at higher operating 

temperatures, radiation effects can be quite significant. Since 

radiation is quite complicated, many aspects of its effect on free 

convection or combined convection have not been studied in 

recent years. Radiative convective flows are frequently 

encountered in many scientific and environmental processes 

such as astrophysical flows, water evaporation from open 

reservoirs, heating and cooling of chambers and solar power 

technology. Heat transfer by simultaneous radiation and 

convection has applications in numerous technological problems 

including combustion, furnace design, the design of high 

temperature gas cooled nuclear reactors, nuclear reactor safety, 

fluidized bed heat exchanger, fire spreads, solar fans, solar 

collectors, natural convection in cavities, turbid water bodies, 

photo chemical reactors and many others. Joshi [1] has studied 

the transient effects in natural convection cooling of vertical 

parallel plates. Singh [2] has studied the effect of free convection 

in unsteady Couette motion between two vertical parallel plates. 

The transient free convection flow between two vertical parallel 

plates has been investigated by Singh et al. [3]. Jha et al. [4] have 

studied the transient free convection flow in a vertical channel 

due to symmetric heating. A transient study of coupled natural 

convection and radiation in a porous vertical channel have been 

studied by Slimi et al. [5]. Singh and Paul [6] have described the 

transient natural convection between two vertical walls 

heated/cooled asymmetrically. The combined radiative and 

convective heat transfer in a divided channel have been 

investigated by Bouali and Mezrhab [7]. Thermal radiation effect 

on fully developed mixed convection flow in a vertical channel 

has been studied by Grosan and Pop [8]. Rao[9] has analyzed the 

interaction of surface radiation with conduction and convection 

from a vertical channel with multiple discrete heat sources in the 

left wall.  The natural convection in unsteady Couette flow 

between two vertical parallel plates in the presence of constant 

heat flux and radiation has been presented by Narahari [10]. Attia 

[11]  has discussed the effect of variable properties on the 

unsteady Couette flow with heat transfer considering the Hall 

effect. Al-Amri et al. [12] have studied the combined forced 

convection and surface radiation between two parallel plates. 

Narahari [13] has investigated the effects of thermal radiation 

and free convection currents on the unsteady Couette flow 

between two vertical parallel plates with constant heat flux at one 

boundary. The radiation effects on free convection MHD 

Couette flow started exponentially with variable wall 

temperature in presence of heat generation have been studied by 

Das et al. [14]. 

 

  The object of the present investigation is to study the effects of 

radiation on transient natural convection of a viscous 

incompressible fluid confined between two infinite vertical walls 

. It is observed that the velocity 
1u  increases for both impulsive 

motion as well as for accelerated motion of one of the walls with 

an increase in radiation parameter. It is also observed that the 

velocity decreases with an increase in either Prandtl number Pr  

or time   for both impulsive motion as well as for accelerated 

motion. An increase in Grashof number Gr  leads to a fall in the 

values of velocity due to enhancement in buoyancy force. An 

increase in the radiation parameter R  leads to an increase in the 

temperature. Further, it is seen that the shear stress 
x  at the 

moving wall increases for both impulsive motion as well as for 

accelerated motion of one of the walls with an increase in 

radiation parameter R . The rate of heat transfer (0)  at the 

wall = 0  increases with an increase in either radiation 

parameter R  or Prandtl number Pr  while it decreases with an 

increase in time  . 

 

2. FORMULATION OF THE PROBLEM 

AND ITS SOLUTIONS 
 

Consider the unsteady natural convective flow of a viscous 

incompressible radiating fluid between two infinite vertical 

parallel walls separated by a distance h . Choose a cartesian 
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co-ordinates system with the x - axis along one of the walls in 

the vertically upward direction and the y - axis normal to the 

walls [See Fig.1]. Initially, at time 0t  , the two walls and the 

fluid are assumed to be at the same temperature 
hT  and 

stationary. At time > 0t , the wall at = 0y  starts moving in its 

own plane with a velocity ( )U t  and is heated with temperature 

0T  whereas the wall at =y h  is stationary and maintained at a 

constant temperature 
hT . It is also assumed that the radiative 

heat flux in the x - direction is negligible as compared to that in 

the y - direction. As the walls are infinitely long, the velocity 

and temperature fields are functions of y  and t  only. 

        
 

 Fig 1 : Geometry of the problem  
 

The Boussinesq approximation is assumed to hold and for the 

evaluation of the gravitational body force, the density is assumed 

to depend on the temperature according to the equation of state  

  0= 1 ( ) ,hT T   
                

(1) 

where T  is the fluid temperature,   the fluid density,   the 

coefficient of thermal expansion and 
0  the temperature at the 

entrance of the channel. 

Then under the usual Boussinesq's approximation, the flow of a 

radiating fluid is shown to be governed by the following system 

of equations:  
2

2

1
= ( ) ,h

u p u
g T T

t x y
 



  
   

  
               

(2) 

2

2
= ,r

p

T T q
c k

t y y


  


  
                            

(3) 

where u  is the fluid velocity in the x -direction, g  the 

acceleration due to gravity,   the kinematic coefficient of 

viscosity,   the fluid density, k  the thermal conductivity, 

pc  the specific heat at constant pressure and 
rq  the radiative 

heat flux. 

The initial and the boundary conditions for velocity and 

temperature distributions are  

0, for 0 and 0,hu T T y h t      

0( ), at 0 for > 0,u U t T T y t  
             

(4) 

0, at for > 0.hu T T y h t    

It has been shown by Cogley et al.[15] that in the optically thin 

limit for a non-gray gas near equilibrium, the following relation 

holds  

0
4( ) ,r h

h
h

h

q e
T T K d

y T


 

  
   

  


   

(5) 

where hK  is the absorption coefficient,   is the wave 

length, 
he  is the Plank's function and subscript 'h  indicates 

that all quantities have been evaluated at the temperature 
hT  

which is the temperature of the wall at time 0t  . Thus our 

study is limited to small difference of wall temperature to the 

fluid temperature. 

 

On the use of the equation (5), equation (3) becomes  

  
2

2
4 ,p h

T T
c k T T I

t y


 
  

 
   

(6) 

where  

 
0

= .
p

h
h

e
I K d

T



 
  

 
 


      

(7) 

We introduce non-dimensionless variables  

  
1 02

0 0

, , , , ( ) ( ).h

h

y t u T T
u U t U f

h h U T T


   


    


   

(8) 

On the use of (8), equations (2) and (6) become  
2

1 1

2
= ,

u u
Gr P

 

 
 

                             

(9) 

2

2
= ,Pr R

 


 

 


                               

(10) 

where 
24

=
I h

R
k

 the radiation parameter, 

2

0

0

( )
= hg T T h

Gr
U






 the Grashof number, =

pc
Pr

k


 the 

Prandtl number and 

2

0

=
h p

P
h x





 the non-dimensional 

pressure. 

The corresponding initial and boundary conditions for 
1u  and 

  are  

1 0, 0 for 0 1 and 0,u         

1 ( ), 1 at 0 for > 0,u f      
           

(11) 

1 0, 0 at 1 for > 0.u       

Taking Laplace transformation of the equations (9) and (10), we 

get  
2

1
1 2

= ,
d u P

su Gr
d s




 

                         

(12) 

2

2
= ,

d
Prs R

d


 




                              

(13) 

 where  

   
1 1

0 0
( , ) ( , ) and ( , ) ( , ) .s su s u s e d s s e d        

 
    (14) 

 

The corresponding boundary conditions for 
1u  and   are  

1

1
(0, ) = ( ), (0, ) = ,u s f s s

s
  

1(1, ) = 0, (1, ) = 0,u s s
                        

(15) 

where ( )f s is the Laplace transform of the function ( )f t . 

The solution of the equations (13) and (12) subject to the 

boundary conditions (15) are easily obtained and are given by  
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1 sinh (1 )
( , ) = where = ,

sinh
s R sPr

s

 
  






  
(16) 

 
1

sinh (1 )
( , ) = ( )

sinh

s
u s f s

s




   

     
2

sinh sinh (1 )
1

sinh sinh

P s s

s s s

  
   

  
 

        
 ( 1)

Gr

s R Pr s


 
 

     sinh (1 ) sinh (1 )
.

sinh sinh

s R sPr

s R sPr

    
  

  

 (17) 

 

Now, we shall considered the following cases: 

(i)  When one of the plate ( = 0)  started impulsively: 

In this case ( ) =1f  , i.e. 
1

( ) =f s
s

. Then the inverse 

transforms of equations (16) and (17) give the solution for the 

temperature and the velocity distributions as  

 

1

=1 1

sinh (1 )
( , ) = 2 ( 1) sin ,

sinh

s

n

n

R e
n n

PrsR




    


 
        

(18) 

 

1

1 sinh (1 )
( , ) = (1 ) (1 ) (1 )

2 sinh

Gr R
u P

R R


     

 
      

  

 

        

2

=1 2 2 2

( 1)
2 1

s n

n

e P P
n

s s s




   

    
  

  

       

 

2 1

2 2 1 1

sin ,
[ ( 1) ] ( 1)

s s
e e

Gr n
s R Pr s Prs R Pr s

 


  

   
        

                                                            

(19) 

where  
2 2

2 2

1 2= , =
n R

s s n
Pr





 

                    
(20) 

and the value of the pressure P is evaluated from the condition  

   

1

1
0

= 1 .u d                                    
(21) 

  In the steady state ( )  , equations (18) and (19) become  

      

s i n h ( 1 )
( ) = ,

s i n h

R

R


 



                             

(22) 

      

1

1
( ) = (1 ) (1 )

2
u P     

 

       s i n h ( 1 )
( 1 ) .

s i n h

G r R

R R




 
   

  
        (23) 

(ii) When one of the plate ( = 0) started accelerately: 

In this case ( ) =f   , i.e. 
2

1
( ) =f s

s
. Then the inverse 

transforms of equations (16) and (17) yield  

 

1

=1 1

sinh (1 )
( , ) = 2 ( 1) sin ,

sinh

s

n

n

R e
n n

PrsR




    


 
      

(24)
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6
u            
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
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     
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         
2

2
=1 2

2 1 ( 1)

s

n
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e
n P P

s




 

   


  

    
 

2 1

2 2 1 1

sin ,
[ ( 1) ] ( 1)

s s
e e

Gr n
s R Pr s Prs R Pr s

 


  

   
        

(25) 

where 
1s  and 

2s  are given by (20) and the pressure P  is 

evaluated from the condition (21). 

  In the steady state ( )  , the values of the temperature and 

the velocity distributions are given by  

sinh (1 )
( ) = ,

sinh

R

R


 



                          

(26) 

1

1 1
( ) = (1 ) (1 )( 2) (1 )

6 2
u P              

      
sinh (1 )

(1 ) .
sinh

Gr R

R R




 
   

              

(27) 

3. EVALUATION OF PRESSURE 
 

On the use of the equation (19), equation (21) gives the pressure 

P  of the fluid due to impulsive motion of the wall at ( = 0)  as  

 

1 1 1 cosh
=

2 2 sinh

Gr R
P

R R R

  
    

  
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s s

n

n
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    
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 
1 22

2
=11 1 2

1
/ 2 ( 1) 1 .

[ ( 1) ] 12

s s

n

n

e e
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   
     

      


  

(28) 

  In the steady state motion, we have  

1 1 1 cosh
= 12 .

2 2 sinh

Gr R
P

R R R

  
    

                 

(29) 

  Similarly, for the accelerated start of the wall at ( = 0) , the 

fluid pressure P  is obtained by using equation (25) in the 

equation (21) as  
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P

R R R
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e e
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     

      
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(30) 

and for steady state motion, we get  

1 1 cosh
= 12 1 .

2 2 sinh

Gr R
P

R R R

  
     

              

(31) 

 

3. RESULTS AND DISCUSSION 
We have presented the non-dimensional velocity and 

temperature distributions for several values of radiation 

parameter R , Prandtl number Pr , Grashof number Gr  and 

time   in Figs.2-8 after evaluation of P  from equations (28) 

and (30) for both the impulsive motion as well as the accelerated 

motion of one of the walls. Figs.2-5 represent the velocity 
1u  

against   for several values of R , Pr , Gr  and  . It is seen 
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from Fig.2 that the velocity 
1u  increases for both impulsive 

motion and accelerated motion of one of the wall with an 

increase in radiation parameter R . Fig.3 shows that the velocity 

1u  decreases for both impulsive motion as well as for 

accelerated motion with an increase in Prandtl number Pr . 

Physically, this is true because the increase in the Prandtl number 

is due to increase in the viscosity of the fluid which makes the 

fluid thick and hence causes a decrease in the velocity of the 

fluid. It is observed from Fig.4 that an increase in Gr  leads to 

fall in the values of velocity 
1u  due to enhancement in 

buoyancy force. It is seen from Fig.5 that the velocity 
1u  

decreases for both impulsive motion and accelerated motion of 

one of the wall with an increase in time  . Figs.2-5 show that 

the velocity in case of accelerated start of one of the wall is larger 

than that of the impulsive start. It is seen from Fig.6 that the 

temperature   decreases as the radiation parameter R  

increases. This result qualitatively agrees with expectations, 

since the effect of radiation is to decrease the rate of energy 

transport to the fluid, thereby decreasing the temperature of the 

fluid. It is observed from Fig.7 that the temperature   

decreases with an increase in Prandtl number Pr . This implies 

that an increase in Prandtl number leads to fall the thermal 

boundary layer flow. The effect of the Prandtl number is very 

important in the temperature field. A fall in temperature occurs 

due to an increasing value of the Prandtl number. This is in 

agreement with the physical fact that the thermal boundary layer 

thickness decreases with increasing Pr . Fig.8 reveals that the 

temperature  increases with an increase in time  which 

implies that there is an enhancement in fluid temperature as time 

progresses. 

Fig 2: Velocity profiles for R  when = 0.71Pr , = 5Gr  

and = 0.5  

Fig 3: Velocity profiles for Pr when = 2R , = 5Gr  and 

= 0.5  

Fig4: Velocity profiles Gr  when = 0.71Pr , = 2R  and 

= 0.5  

Fig 5: Velocity profiles for   when = 0.71Pr , = 2R  and 

= 5Gr  
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Fig 6: Temperature profiles for R  when = 0.71Pr  and 

= 0.5  

Fig.7: Temperature profiles for Pr  when = 2R , = 1  

and = 0.2  

Fig 8: Temperature profiles for time   when = 0.71Pr  

and = 2R  

Numerical values of fluid pressure P calculated from equations 

(28) and (30) due to the flow are presented in Tables 1-3 for 

several values of radiation parameter R , Prandtl number Pr , 

Grashof number Gr  and time  . Table 1 shows that for both 

impulsive as well as the accelerated start of one of the walls, the 

fluid pressure P  increases with an increase in R  while it 

decreases with an increase in Gr  for fixed values of Pr and 

time  . It is observed form Table 2 that for both impulsive as 

well as accelerated start of one of the walls, the fluid pressure P  

decreases with an increase in Pr  for fixed values of Gr  and 

 . Further, Table 3 shows that the fluid pressure P  increases 

with an increase in time   for both the impulsive as well as the 

accelerated start of the wall at = 0 . 

Table 1. Variation of pressure P  when = 0.71Pr  and = 0.5  

  

 Impulsive Motion 

 

Accelerated  motion 

\R Gr  4 6 8 10 4 6 8 10 

2 

4 

6 

8 

0.43407 

0.45792 

0.47575 

0.48959 

0.35029 

0.38606 

0.41281 

0.43357 

0.26651 

0.31420 

0.34986 

0.37755 

0.18273 

0.24234 

0.28692 

0.32153 

0.73545 

0.75929 

0.77712 

0.79097 

0.65167 

0.68743 

0.71418 

0.73495 

0.56788 

0.61557 

0.65124 

0.67893 

0.48410 

0.54371 

0.58830 

0.62291 

  

  

Table 2. Variation of pressure P  when = 5Gr  and = 0.5  

  

 Impulsive Motion 

 

Accelerated  motion 

\R Pr  0.71 2 4 5 0.71 2 4 5 

2 

4 

6 

8 

0.39218 

0.42199 

0.44428 

0.46158 

0.39012 

0.42070 

0.44345 

0.46103 

0.38597 

0.41755 

0.44103 

0.45917 

0.38437 

0.41621 

0.43992 

0.45824 

0.69356 

0.72336 

0.74565 

0.76296 

0.69149 

0.72208 

0.74483 

0.76241 

0.68735 

0.71892 

0.74241 

0.76054 

0.68575 

0.71759 

0.74130 

0.75961 
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Table 3. Variation of pressure P  when = 0.71Pr  and = 5Gr  

  

 Impulsive Motion Accelerated  motion 

 

\R  0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 

2.0 

4.0 

6.0 

8.0 

0.35967 

0.39037 

0.41330 

0.43106 

0.37723 

0.40779 

0.43055 

0.44817 

0.38655 

0.41672 

0.43922 

0.45666 

0.39058 

0.42050 

0.44286 

0.46020 

0.90187 

0.93258 

0.95550 

0.97327 

0.85990 

0.89046 

0.91322 

0.93084 

0.80883 

0.83900 

0.86150 

0.87894 

0.75237 

0.78229 

0.80465 

0.82199 

 

   The rate of heat transfer at the wall = 0  is obtained as  

      
1

2 2

=1 10

(0) coth 2 ,

s

n

e
R R n

s






 








    




 

(32) 

where 
1s  is given by (20). 

   Numerical results of the rate of heat transfer at the wall 

= 0  against the radiation parameter R  are presented in the 

Figs.9-10 for various values of Prandtl number Pr  and time  . 

Fig.9 shows that the rate of heat transfer (0)  increases with 

an increase in either radiation parameter R  or Prandtl number 

Pr . It is observed from Fig.10 that for fixed value of R , the rate 

of heat transfer (0)  decreases with an increase in timer  . 

 Fig 9: Rate of heat transfer (0)  for Pr  when = 0.5  

Fig 10: Rate of heat transfer (0)  for time   when 

= 0.71Pr  

  For impulsive motion, the non-dimensional shear stress at the 

plate = 0  is give by  

 1

=0

1
= = 1 1 coth

2
x

u Gr
P R R

R






   


 

2
2 2

=1 2 2 2

( 1)
2 1
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n

e P P
n

s s s




   

    
  

  

2 1

2 2 1 1

.
[ ( 1) ] [ ( 1) ]

s s
e e

Gr
s R Pr s Prs R Pr s

    
   

         

(33) 

  For steady state, 
x  is given by  

1
= 1 [1 coth ].

2
x

Gr
P R R

R
    

        
(34) 

  For accelerated motion, the non-dimensional shear stress at the 

plate = 0  is obtained as  

        

 1

=0

1 1
= = 1 coth

3 2
x

u Gr
P R R

R


 
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    


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2 2

2
=1 2

2 1 ( 1)
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n P P
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


 

   


  

2 1

2 2 1 1

,
[ ( 1) ] [ ( 1) ]

s s
e e

Gr
s R Pr s Prs R Pr s

    
   

      

(35) 

where 
1s  and 

2s  are given by (20). 

  For steady state, 
x  is given by  

 

1 1
= [1 coth ].

3 2
x

Gr
P R R

R
     

       
(36) 

Numerical results of the non-dimensional shear stress at the wall 

( = 0)  are presented in Figs.11-13 against Grashof number 

Gr  for various values of radiation parameter R , Prandtl number 

Pr  and time  . Fig.11 shows that the shear stress 
x  

increases for both impulsive as well as accelerated start of one of 

the walls with an increase in either Grashof number Gr  or 

radiation parameter R . Fig.12 displays that the shear stress
x  

decreases with an increase in Prandtl number Pr for both the 

cases of impulsive and accelerated motions of one of the walls. It 

is observed from Fig.13 that for both the impulsive as well as the 

accelerated start of one of the walls the shear stress 
x  

decreases with an increase in time  . Further, it is observed 

from Figs.11-13 that the shear stress 
x  at the plate ( = 0)  

for the accelerated start of one of the wall is greater than that of 

the impulsive start. These results are in agrement with the fact 

that the velocity increases with an increase in Gr  while it 

decreases with an increases in either Pr  or  .  
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Fig 11: Shear stress 
x

  for R  when = 0.71Pr  and 

= 0.5  

Fig 12: Shear stress 
x

  for Pr  when = 2R  and = 0.5  

Fig 13: Shear stress 
x

  for time   when = 0.71Pr  and 

= 2R  

5. CONCLUSION 
The radiation effects on transient natural convection flow 

confined between two infinitely long vertical walls have been 

studied. It is observed that for both the impulsive motion as well 

as for the accelerated motion of one of the walls the fluid velocity 

1u  increases  with an increase in radiation parameter. It is also 

observed that the fluid velocity 
1u  decreases with an increase in 

either Prandtl number Pr  or time   for both the impulsive 

motion as well as for the accelerated motion. An increase in 

Grashof number Gr  leads to a fall in the fluid velocity 
1u  due 

to enhancement in buoyancy force. An increase in the radiation 

parameter R leads to rise in the fluid temperature. The effect of 

the Prandtl number is very important in the temperature field. 

Further, the shear stress 
x  at the moving wall at = 0  

increases for both the impulsive motion as well as for the 

accelerated motion with an increase in radiation parameter R . 

The rate of heat transfer (0)  at the wall at = 0  increases 

with an increase in either radiation parameter R  or Prandtl 

number Pr  while it decreases with an increase in time  . 
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