

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.2, May 2012 – www.ijais.org

9

A Productive Method for Improving Test Effectiveness

Saran Prasad
Cadence Design Systems

India Pvt. Ltd.

Mona Jain
Cadence Design Systems

India Pvt. Ltd.

Shradha Singh
Cadence Design Systems

India Pvt. Ltd.

C.Patvardhan

Department of Electrical Engineering, Dayalbagh Educational Institute
Dayalbagh, Agra

ABSTRACT

Automated testing of software products has greatly expanded

over the past few years. Ever increasing test suites have been

developed, along with the computing infrastructure to support

them. While the capacity for testing has grown, the

environment is not infinitely scalable - eventually capital

spending is capped. Methodologies need to be explored that

improve the overall effectiveness of the test cases that are run.

Furthermore, these methodologies need to be as independent

from the test suites as possible: the size of the test suites

render solutions that are tightly bound to them ineffective for

widespread utilization. Problem associated with these huge

numbers of test cases is that whenever the code is changed,

the entire suites of test cases need to be run.

One idea is to run fewer tests on an ongoing basis, reserving

full regression test runs for key milestones in the development

lifecycle. This is workable if the limited tests produce a

similar result in the short term.

In this paper, we present a new approach for test suite

selection that focuses on improving test effectiveness. The

methodology described produces a pruned list of test cases

required to test an application. The method has three

components, the predictive component which makes use of

statistical data, coverage based method digs the delta from the

code to produce a pruned list of test cases, and decision based

technique that prioritizes important test cases. Our

experiments show that our approach results in a better

utilization of compute resources and also decreases validation

cycle thus reducing time to market.

General Terms

Testcase prioritization and selection

Keywords

Software testing, regression testing, test case prioritization,

test-case selection..

1. INTRODUCTION
Testing is the dominating verification technique used in

industry today, and many man-hours and resources are

invested in the testing of software products. Research has

shown that at least 50% of the total software cost is comprised

of testing activities. Companies are often faced with lack of

resources, which limits their ability to effectively complete

testing efforts. To cut down the cost of testing, automated test

execution becomes more and more popular. However, which

test cases to be run first i.e. the selection of which tests to be

executed is still mainly a manual process that is error prone,

and often without sufficient guarantee that the system will be

systematically tested. In many a cases, instead of test case

selection whole regression test suite is run whenever a new

piece of functionality needs to be tested. This is

computationally expensive task as well as wastage of resource

time and effort. There is no point in running all testcases to

test a small enhanced feature or functionality. Similarly to

perform systematic regression testing is to ensure that the tests

satisfy a required criterion. The criteria could be coverage

criteria or it could be the fulfillment of some requirement or it

may be the capturing of bugs. The stop criterion used is either

available testing time or a sufficiently stable product.

Whatever criterion is taken, the test process should be as

efficient as possible to remove as many defects as possible i.e.

methodologies need to be explored that improve the overall

effectiveness of the regression testing.

One solution could be to run fewer tests on an ongoing basis,

reserving full regression test runs for key milestones in the

development lifecycle. This is workable if the limited tests

produce a similar result in the short term.

Alternatively a Product Validation Engineer's experience can

be used to identify test cases that need to be run to test

specific functionality. This methodology however, is heavily

dependent on the experience of the Product Validation

engineer and his familiarity with the code and is more prone

towards introducing serious bugs.

The key solution is test case selection and prioritization

mechanisms. Therefore, there is a requirement of a test case

selection mechanism that can be used to select a list of test

cases from the given ones.

This paper presents a new tool for test suite selection and

prioritization that focuses on improving test effectiveness. The

tool functions in such a way that it produces a pruned list of

test cases required to test an application from the given

regression test suite. The tool operates in three modes:

 Predictive method which makes use of statistical

data

 Coverage method digs the delta from the code to

produce a pruned list of test cases

 Decision based method that prioritizes important

test cases.

Our experiments show that the usage of this tool results in a

better utilization of compute resources and also decreases

validation cycle thus reduces time to market. Results indicate

that test case selection and prioritization can significantly

improve the rate of fault detection of test suites.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.2, May 2012 – www.ijais.org

10

2. PROBLEM STATEMENT
Test engineers usually write new test cases to test new

functionality or feature in the software, and add them to the

existing test suite. As a result, these test suites grow in size

with the constant addition of test cases. In many practical

scenarios there is the absence of traceability matrix which

maintains testcase to requirement mapping. Ideally a tester

should review this matrix before adding the testcase into main

test suite, but in the absence of this mapping, testers simply

write and add test cases to the suite. Old test cases are not

reviewed before adding a new test case which may lead to

redundancy. Multiple test cases may exist in a test suite which

may satisfy the same requirements. There may be multiple set

of two or more testcases which may collectively satisfy same

requirement. This again leads to redundancy and due to

existence of redundant testcases; size of the test suite grows

tremendously. And this is the point where problem arises.

Large test suite size is the pain area because test suite

execution can be very expensive both in terms of compute

resources as well as human resource time. More human

resources are needed to evaluate the failures and do root cause

analysis. There is wastage of resources, time, effort and

money by running too many test cases every time without

gaining any code coverage or capturing bugs. Large test suite

size is the pain area because test suites are run on servers; they

utilize compute resources. Test cases may also need human

intervention to check the output and set up other machinery.

So having too many test cases to run can be very expensive. If

the same problem is viewed from a developer's perspective

then practically, in any software company multiple developers

work on a project. These developers work on the code base

having millions lines of code which are maintained using

version control mechanism. It is also a common practice to

check in updated code into repository after regression test

suites is run. For a code base having million LOC, test suite

also contains million test cases. For a larger test suite,

execution time is longer and developers are required to wait

for a longer time for the code to be checked in.

Execution of whole regression test suite is thus, major

problem during regression testing and there is a requirement

of techniques or mechanisms which can pick test cases

selectively from the regression test suite as well as prioritize

test cases in the given test suite. Those which are more prone

to failure should be run first rather than running them all

every time.

3. LITERATURE REVIEW
As per literature there are methodologies that are related to

regression testing. There are four methodologies that are

available for regression testing. These methods are [2, 4, 5]

 Retest all

 Regression Test Selection

 Test Suite Reduction

 Test Case Prioritization

[10] Test case prioritization is a method to prioritize and

schedule test cases. The technique is developed in order to run

test cases of higher priority in order to minimize time, cost

and effort during software testing phase.

Rothermel [11], [12] gave an interesting example as follows:

“one of the industrial collaborators reports that for one of its

products that contains approximately 20,000 lines of code,

running the entire test suite requires seven weeks. In such

cases, testers may want to order their test cases so that those

test cases with the highest priority, according to some

criterion, are run first”. This has proven that prioritizing and

scheduling test cases are one of the most important tasks

during regression testing process.

Additionally, Rothermel [11], [13] mentioned that the test

case prioritization process is required for software testing

because: (a) the regression testing phase consumes a lot of

time and cost to run, and (b) there is not enough time or

resources to run the entire test suite, therefore (c) there is a

need to decide which test cases to run first.

The literature review shows that many researchers propose

many methods to prioritize and reduce the effort, time and

cost in the software testing phase, such as test case

prioritization methods, regression selection techniques and

test case reduction approaches. As per [10] there are many

research challenges and gaps in the test case prioritization

area. Those challenges and gaps can give the research

direction in this field. However, the research issues that

motivated this study are:

 No existing prioritization techniques address the

problem of multiple cases with same weight values.

The existing test case prioritization techniques use a

random approach to prioritize those cases to resolve

that problem. The problem may lead to a poor

performance of an ability to prioritize and schedule

test cases.

 Existing test case prioritization techniques assume

explicitly that there is only a single test suite. The

test suite is a collection of a set of test cases. There

are no prioritization techniques to resolve the

problem of multiple test suites.

Siripong Roongruangsuwan, Jirapun Daengdej in [10]

proposes two methods to resolve the above research issues.

The first method aims to improve the ability to prioritize a set

of test cases in case that there are multiple cases with the same

priority weight values. The second method is developed to

prioritize multiple test suites, which they contains a set of test

cases.

Rothermel at el. [2, 3] defines the test case prioritization

problem as follows:

Given: T, a test suite; PT, the set of permutations of T; f, a

function from PT to the real numbers.

Problem: Find T’ belongs to PT such that (for all T”) (T”

belongs to PT) (T” ≠ T’) [f (T’) ≥ f (T”)].

Here, PT represents the set of all possible prioritizations

(orderings) of T and f is a function that, applied to any such

ordering, yields an award value for that ordering [2,7].

An automatic strategy to test case selection was presented by

Emanuela G. Cartaxo, Francisco G. O. Neto, Patrıcia D. L.

Machado in [6]. The strategy is based on similarity between

test cases. The main goal of this strategy is, by observing the

similarity between test cases, to minimize redundancy and

assure adequate transition coverage.

A research work by C. Jard and T. Jeron [7] explains a Test

Generation with Verification technology (TGV) tool which is

a conformance test generator. This tool selects test cases from

model. The test cases are selected from a test purpose, that is a

specific objective that a tester would like to test, and can be

seen as a specification of a test case. Even though a test

purpose targets the test at a particular functionality, reducing

the final test suite size, the result can still be a huge

exhaustive test suite.

Another research work by F. Basanieri, A. Bertolino, and E.

Marchetti describes “The Cow Suite” tool which derive test

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.2, May 2012 – www.ijais.org

11

cases from UML sequence diagrams and use case diagrams

[8]. Their test generation algorithm is exhaustive. For each

diagram a weight function indicating the functional

importance is attributed. This way the test case selection

strategy chooses the most important set of test cases.

SPACES [9] describe another research work. It is a tool for

functional component testing. In this tool, weights are

associated to the model’s transitions. According to the

weights the most important set of test cases are selected.

In literature there is a description for Cost effective-based

techniques. [10] These are methods to prioritize test cases

based on costs, such as cost of analysis and cost of

prioritization. Many researchers have researched this area, for

instance, Malishevsky [14], Alexey [15], and Elbaum [16].

The objective of this research is to develop a test case

prioritization technique that prioritizes test cases on the basis

of execution result history i.e. pass/fail history of test cases

which is predictive model. Another model is coverage model

which generates a list of affected test cases due to change in

source code file. Third one is weight model which generates a

list of test cases on the basis of weight which is assigned to

each testcase. Details are given in next sections.

4. NEED FOR TESTCASE SELECTION

AND PRIORITIZATION
Testcase selection and test case prioritization problem is also

a computationally expensive problem. In order to overcome

the computational complexity of the problem in hand, we

need to identify a test suite selection and prioritization

technique which can select and prioritize test cases from a

given regression test suite within a reasonable amount of time

with an acceptable degree of accuracy. Test Suite selection

and prioritization should happen in such a way that the

selected list of testcases should capture same number of faults

as the original test suite. The technique should be capable to

operate on real testing environment with acceptable

performance.

5. OVERVIEW OF OUR APPROACH
Software testing and retesting occurs continuously during the

software development lifecycle. As software grows and

evolves, new test cases are generated and added to a test suite

to exercise the latest modifications to the software. Since the

number of test cases is huge one requires high compute power

and longer cycles for these regressions to finish. This paper

presents a productive method for improving test effectiveness.

Test cases either produce a positive (pass) or negative (fail)

result. While both results are important in that key

information is gained, test failures are more useful because

defects in the software and/or test are positively identified.

Further action can be pinpointed by the test failure to improve

the software and/or the test. Failures yield an actionable item.

When resources are constrained and only a limited set of test

cases can be invoked, then those that are more likely to

produce failure results should be selected.

The productive methodology on which our tool is based has

three main components that work independently or in

combination to produce a list of testcases which are more

likely to fail.

 Predictive mode: It is Statistical data based

technique makes sure that test cases that failed most

are more likely to run.

 Coverage mode: It is Coverage based technique

which works on capturing code coverage tool data

and using it to map parts of code with test cases.

 Weight mode: It is Decision based technique that

works on an optimal algorithm which prioritizes

most important test cases to run first.

It is capable of operating in live testing environment in

reasonable amount of time. Tool will not delete the test cases

from the test suite; rather it will present the new pruned list of

test cases to user for execution.

6. DETAILED DESCRIPTION OF OUR

APPROACH

6.1 Predictive Model (Statistical Analysis

Methodology for Test Case Selection)
The The fundamental premise of this method is that the

historical failure behavior of individual test cases can be used

to govern the frequency of test invocation. Those tests that fail

more frequently are run more frequently, while those that

generally pass are run less frequently. This increases the

effectiveness of test cases by reducing the resources needed to

yield a statistically similar test outcome.

This method does not suggest that only limited test runs be

invoked - in fact, periodic re-sampling is an important part of

this method.

This method has four general parts:

 The characterization of failure behavior.

 Accounting for change.

 The mapping of failure behavior to action.

 The correlation of usage of this method to results..

6.1.1 Charaterization of Failure Behavior
For The characterization of the failure behavior of any one

test can be stated as:

C = p/d.

Where p is the probability of failure of the test, and d is the

failure distance of the test. p is calculated by the test's

previous track record:

p = f/t

f represents the number of failures.

t represents the total number of test runs.

For example, if a test x has failed 1 time out of 30 attempts;

its probability of failure is 1/30, or roughly 3.3%.

Normally, this would be a sufficient characterization of the

failure behavior. However, regression tests are running in an

environment where the software and the tests are constantly

changing. Therefore, the failure distance needs to be factored

into the characterization.

Failure distance is the notion that more recent failures for a

test indicate a higher need to exercise the test. Recent failures

could be the start of a trend of failures for the test. Taking the

previous example of 1 failure out of 30 attempts, it is a much

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.2, May 2012 – www.ijais.org

12

different characterization if the failure occurred the first time

the test was run, than if it failed during the most recent test

run.

Therefore, more recent failures (those have a near distance)

should induce test invocation more than those that are further

in the past (those having a far distance).

While a simple temporal calculation appears sufficient to

measure the failure distance, it is not. Determining the delta

between the present and the point in time when the test last

failed does not account for the possibility that the test hasn't

been run in the intervening time period. Rather, the

measurement of failure distance is the number of consecutive

successes of the test, regardless of when the test was run.

Continuing the previous example, the case where the failure

occurred the first time the test was run would have a failure

distance d of 29. The second case would have a failure

distance d of 0.

The failure characterization C is represented by a number

where larger numbers signify a greater need for invoking a

test. A failure distance of 0 is treated as special case, meaning

always run the test.

This implements the notion of "When in doubt, run the test."

6.1.2 Accounting for change
When regression testing software, there are three areas which

affect the results:

 The software itself

 The test

 The environment

When a test fails, the cause may be in one (or more) of these

areas. This variability of causality is further compounded

since these three areas are not static - they are constantly

changing.

The predictive method reduces the number of tests run by

focusing on the failure characteristic of the test. However, it

needs to account for changes in the software, test suite and

environment that may cause new failures. This is done via re-

sampling.

Re-sampling is the act of invoking the test regardless of its

failure characteristic. This refreshes the calculation of the

failure characteristic, insuring that failures due to change are

not undetected.

There are a number of ways to govern the re-sampling of

tests. The simplest is an interval based mechanism for

example, re-sample all tests every nth test invocation, this

means run all the tests that were not run for last 'n' times.

For example, assume 3 is the re-sampling interval of test

invocation. A test x was not run for 3 time out of 10 attempts.

Based on Interval based re-sampling mechanism, the test will

be selected to run in the next cycle.

In essence, the re-sampling control mechanism is the binding

function between the predictive method, and dependency

models.

6.1.3 Mapping to Action
The process for using the failure characterization is a two step

process for each test suite:

 Calculate the current failure characterization (C) for each

test in the test suite.

 At the point of running each test, compare its failure

characterization (C) with an input threshold.

The threshold value itself is quite simple: it is an arbitrary

number that C must be greater than if the test is to be run. The

greater power lies in the flexibility.

Threshold values can be calculated from the user defined

maximum and minimum failure distance values for a test

suite.

Th=100/d(d+1)

Th represents threshold

d represents failure distance.

Maximum threshold value is calculated from minimum failure

distance and minimum threshold value is calculated from

maximum failure distance. Above formula is derived from

failure characterization formula only.

6.1.4 Correlation to Results
This method attempts to look at the history of any test, and

predict whether or not the test should be run. This method is

successful if it can limit the run tests to those that fail. This is

difficult to measure since the outcome of the tests not run isn’t

known.

Still, there are ways to determine the viability of this

predictive method. The data can be surveyed, and predictions

made at particular points in the test history. Then, since the

outcome is known, the method can be measured as to its

effectiveness.

6.2 Coverage Model (Delta Methodology

for test case selection)
In real testing world, coverage analyzers are normally used to

make sure that the program source code is completely covered

by the test cases in the regression test suite and no part is left.

Coverage could be statement coverage, function coverage,

branch coverage and call stack coverage. Mostly statement

and function coverage is captured by real world testing teams

by making use of coverage analyzer. One such coverage

analyzer is Rational Purecov. Our tool currently supports

Purecov. Purecov generates output in the form of .pcv file. It

contains source file name, line number and number of times

the line got executed during test case execution. Our tool’s

coverage model makes use of Purecov output files for

individual test cases and utilizes them for functionality driven

coverage.

It reads each coverage data file and captures all source file

names and their lines with hit count >0. It then captures

relevant information like total lines, used lines, file names and

stores this information into a database against the test case

which got executed. In a way it maintains test case to file

mapping. It also maintains filename to coverage string

mapping. One coverage string is created for each file. It is

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.2, May 2012 – www.ijais.org

13

actually the concatenation of coverage string for every

function within the file.

6.2.1 Coverage String
Coverage string for a function is created as line number

followed by “,” followed by total number of lines which got

hit followed by#. Coverage strings of two functions are

concatenated by “##”. Thus, coverage string for a file is the

concatenated coverage string of various functions within the

file. For example: 23,2#37,4##53,1#82,5##

Thus if a file file1.cpp has two functions f1 and f2, then this

coverage string shows:

In function f1 line numbers 23, 24, 25 got hit. In function f2

line numbers 53, 54 got hit and in function f3, line numbers

82, 83, 84,85,86,87 got hit during test case execution.

Whenever users want to extract testcases from the database

corresponding to touched .c/.cpp files, they will just have to

run a simple command which in terms of PMT is known as

“Query” to the system. This query extracts testcases from

database based on testcase to file mapping and corresponding

coverage string. Thus query generates a list of affected test

cases due to change in source code file.

6.3 Weight Model (Decision Based

Approach for Test Case Prioritization)
Our tool uses “Decision based method” for test case

prioritization. Test case weight is considered as prioritizing

attribute for this method. The algorithm used, first calculates

weight for each test case. In our case, “Weight” is derived on

the basis of number of bugs captured by the test case and test

case execution time. Our tool makes use of a Change

Management System which is used to file Change Requests

against a product. Each Change Request is given a CCR Id

and it corresponds to a bug filed against a product. Tool

makes use of this mapping between test cases and CCR Ids or

bugs captured. Testcases are categorized into 3 different test

suites.

6.3.1 R&D suite contains “High” weight

testcases
Testcases whose weight lies in high range are added to R&D

suite.

6.3.2 Daily Yellow suite contains “Middle”

weight testcases
Testcases whose weight lies in middle range are added to

Daily Yellow suite.

6.3.3 QA test suite contains “Low” weight

testcases
Testcases whose weight lies in middle range are added to QA

test suite.

Each test suite has a pre-defined maximum run time. User can

request the type of the test suite they would like PMT system

to generate. Once weight calculation is done and based on the

user’s request, run time of each test case is compared with the

suite’s maximum run time. Formula used is:

Tr < Tmax

Or

Tmax<Tr<1.5Tmax

Where:

Tr is test case run time.

Tmax is test suite maximum run time.

Instrumented

Binary

Test 1

Test 2

Test 3

Test n

Individual

test cases

Testcase 1

Testcase 2

Testcase 3

Testcase n

Individual

test cases

Testcase 1
F1.cpp
F2.cpp
F5.cpp
F20.cpp
F30.cpp

Testcase

to files

Testcase n
F11.cpp
F21.cpp
F51.cpp
F24.cpp
F35.cpp

F1.cpp:Test1, Test3, Test5
F2.cpp:Test1, Test33, Test53
………

………

Fn.cpp:Test51, Test93, Test n

File to test cases

Fig 1: PMT Coverage

Model

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.2, May 2012 – www.ijais.org

14

All those testcases satisfying either of the above 2 equations

are selected for the next cycle. A weight sorted list of the

selected test cases is returned to the user.

7. IMPLEMENTATION OVERVIEW
The Productive Method for Testing System (PMT) has the

following architectural aspects:

 API based independent system

 Client/server architecture

 Portability features

 GUI frontend for administration and reporting

7.1 API Based Independent System
A key concept of the predictive method is that it is decoupled

from the tests: the only linkage with the tests is the pass/fail

history. By providing an independent system, many benefits

may be realized, including:

 Wider deployment opportunities

 Ease of integration with existing test systems

 Ease of enhancement

 Better performance management

The PMT system is broken into two parts: a common/generic

processing engine, and an API. The processing engine

contains a database, holding all the pertinent data concerning

a test’s pass/fail history, cpu run time, CCRs filed, mapping

with souce code file along with the line numbers. The

processing engine performs all of the calculations necessary

for tests based on the technique used.

A web interface to the processing engine is also provided.

This allows an interface for performance tuning, as well as

centralized reports.

PMT has a modular architecture based on plug-in model. Test

systems access PMT via shell and/or plug-in wrapper. In

essence, the test systems only view the PMT system through

the shell/plug-in wrapper abstraction: no knowledge of the

underlying system is necessary. A Unix shell wrapper over

java API can easily be called by any test system. Predictive

method API is directly invoked by unix shell wrapper. Plug-in

wrappers are written for Coverage based and Decision based

methods. These wrappers first extract test case data from their

regression hierarchy and then calls unix shell wrapper to

invoke PMT API.

7.2 Client Server Architecture
The PMT system uses client/server architecture. A centralized

machine hosts the processing engine. Centralized hosts can be

deployed in a site or group specific basis.

Client/server architecture allows for better management of the

PMT system. It keeps PMT processing separate from the test

systems, reserving processing capacity on the test systems for

testing.

PMT system has a server and various clients. Server runs on

the PMT host machine as a background process, which is

setup for a group or site or can be a centralized machine. This

process will run always and listen to client requests. Clients

can be installed for various test setups & they can send

requests to the server. Client server architecture here uses

XML-RPC with HTTP as the transport protocol and XML as

the encoding.

7.2.1 Portability Aspects
Since the PMT system must be able to service a wide variety

of test systems, portability is a key concern. The PMT system

provides portability through its independent, UNIX shell

wrapper based architecture. The implementation details (i.e.

language and OS) in no way affect the test systems using it.

The UNIX shell wrapper, calling PMT API is Java based,

employing an XML-RPC /HTTP communication protocol

with the processing engine. Given the API’s abstraction layer,

it can be re-implemented in different languages and for

different OS’s as necessary.

7.3 Extensions to Predictive Concept
There are certain extensions to basic predictive concept. They

are:

 One Port Logic

 Priority Based Sorting

 Run Always/Run Next

7.3.1 One Port Logic
The Predictive Method is not perfect in the sense it cannot

guarantee every failing test will always be recommended to

user for review. There is a fair probability for some testing

teams that PMT system may not identify all failing tests.

The “One Port Logic” mechanism ensures that all tests are run

on at least one platform.

7.3.2 Priority Based Sorting
The Predictive Method is based on the notion that failure of a

test is valuable, actionable information. A natural extension is

to consider that there’s an ordering of failure information –

the failure of some tests is more important than the failure of

others.

To handle this, a sorting scheme was devised. The PMT can

sort test cases based on their C value. Test systems can then

choose to run tests having a higher probability of failure first.

In a constrained test system this allows engineers to get failure

results sooner, so remedial action can start.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.2, May 2012 – www.ijais.org

15

7.4 Run Always/Run Next
Sometimes it is advantageous to run a test regardless of its

failure characterization. The Predictive Method provides the

“Run Always” and “Run Next” features to handle this

situation.

The “Run Always” attribute if set for a test case disables the

operation of PMT on that test case and that test case will

always be recommended by the PMT system.

The “Run Next” attribute if set for a test case ensures that the

testcase will be recommended by the PMT system, regardless

of the failure characterization calculated by the PMT – but

this will happen only for the next singular invocation of the

test. This is effectively a temporary “Run Always” marking.

The “Run Next” feature is useful for key test runs in the

development lifecycle, such as prior to a release or major

milestone.

8. DESCRIPTION IN DETAIL

8.1 Data Elements
The primary data element in the PMT system is the test object

or test case. The test object is an abstraction of the notion of a

test. By providing an abstraction layer, the PMT system

allows for a great deal of flexibility in considering what might

be a “test”: test objects can be used to represent individual

tests, test suites (banks or groups), or sub-divisions of

individual tests.

Test cases are uniquely identified by a set of attributes. This

set is flexible, and can vary depending upon the requirement

of the user:

Test case information can be attributes such as:

 Full storage path (It can be path to the test case directory

or it can be path of a file having absolute path of test

cases).

 Product

 Release

 OS/Platform (Linux, Solaris, AIX)

 OS Bit (32/64)

A number of data attributes are associated with each test case.

8.1.1

8.1.1 Test Case Attributes for Predictive

approach:
 Failure distance (Threshold) levels

 Skip levels

 Test result history
o Number of test invocations

o Number of failures

Threshold levels are the trigger value for determining whether

or not a test object should be considered for recommendation

to user.

Skip levels are the number of times the PMT system is

permitted to not run a test object consecutively.

The test result history is an ordered set of pass/fail results for

the test object. This includes the number of times the test

object was invoked, the number of times it failed and the

number of times it did not run i.e. it did not come for

registration. From this information, the failure

characterization of the test object is calculated, including the

failure distance.

8.1.2 Test Case Attributes for Coverage

approach:
 Source code file (.c/.cpp file)

 Line coverage

 Pass/fail status

 Run time

8.1.3 Test Case Attributes for Weight approach:
 CCR Ids (Change Request Ids generated by the Change

Management System. Change Requests are used to show

an enhancement in the system under test as a result of

bug captured by the test case). CCR Ids are used to

maintain a mapping between the test case and the

number of bugs captured by the test case.

 Run time: This is test case execution time.

8.1.4 Processing
The following are the main elements of the PMT system:

Instrumented

Binary
Wrapper

PMT System

Database
Web

Interface

Test System Wrapper

Test System

Wrapper

Fig 2: PMT System: Top Level Architecture

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.2, May 2012 – www.ijais.org

16

 The API

 Calculations & Logic

The API

PMT API is very simple. PMT system interacts with the test

system at two points:

 PMT API Query

 PMT API Registration

Although test systems may vary, the query interface is used

whenever user requires a PMT recommended list of test cases

for execution.

In order to update the PMT system database with the test case

information, the registration interface is used.

Calculations & Logic

The Predictive system calculates the failure characterization

(C) for each test object using the basic mathematical

calculation. This is based on the pass/fail/did not run data.

In order to determine whether or not to run test objects the

Predictive system employs threshold levels. There are two

levels – an upper and lower threshold. The logic used is:

C > th1 –> run the test

th2 < C < th1–> run every Sk2 time

C < th2 –> run every Sk1 time

Where:

C represents the failure characterization

th1 is the upper threshold

th2 threshold is the lower threshold

Sk1 is the upper skip limit

Sk2 is the lower skip limit

9. PREREQUISITES TO USE OUR

APPROACH
In order to use the PMT system in an already exiting real

world testing environment, the test system must be able to do

the following:

 In order to use the Coverage model, code coverage data

for individual test cases is required. PMT system

currently supports Rational’s Purecov but system is

configurable and can be enhanced to support any other

Coverage analyzer.

 Test cases should be defined based on some key
attributes for example:

o Testcase name

o Unique key (Any value that can identify
uniqueness of a test case)

o OS/OS Bit

o Pass/Fail Status

o Product Name/Release

o Test Banks: This attribute is used to

maintain the hierarchy within test cases (if
any).

 PMT system requires all these attributes for each test

case in the form of an input file.

 PMT system provides result on a per test object basis and

writes the recommended list into a output file as per the
requirement of test system.

10. FEATURES

10.1 Load balancing
In order to balance the load on server farms i.e. for equal

distribution of test cases on server farm for execution, a load

balancing feature exists in PMT system. By enabling this

feature the system internally does some processing and

divides the recommended list of test cases into different

chunks. In this way the system returns a chunk, having

approximately same number of tests to the user for some

consecutive days.

10.2 Deregister Last

Consolidated/Registered Run
Using “Deregister” mechanism user can deregister the last

consolidated or registered run from the system.

10.3 Inputs for max and min Failure

Distance
User can provide these values as input which is used to
calculate threshold range.

11. EXPERIMENTAL STUDY
This section discusses an evaluation result of our approach.

Our predictive model is capable to operate in real world

testing environment. It gives best results in more stable

software products. For the software code base which changes

frequently we would recommend to use coverage model.

Savings by Priority sorting only (Time saved) : 1.5 hours

saved per run, out of 7 hours required to collect & analyze all

failures.

Predictive model Savings (i.e. – percent fewer tests run): 61%

to 73% while finding all bugs.

12. CONCLUSION
Reducing cost and duration of a test phase is of utmost

importance to stakeholders. The capabilities of the testing

team can greatly affect the success, or failure, of the testing

effort. An effective testing team not only includes a mixture

of technical and domain expertise but also efficient testing

techniques and tools necessary to perform the actual tests. The

capabilities of the testing teams can be greatly enhanced by

the usage of PMT System. By performing test case selection

and test case prioritization, the costs of executing, validating,

and maintaining test suites over future releases of the software

can be greatly reduced. Our approach results in better

utilization of compute resources and also decreases validation

cycle thus reducing time to market. The statistical approach of

our PMT system proves better for testing of stable products

and their test suites, however coverage based approach proves

better for frequently changing test suites.

13. REFERENCES
[1] Praveen Ranjan Srivastava, TEST CASE

PRIORITIZATION. Computer Science and Information

System Group, BITS Pilani, India-333031. Journal of

Theoretical and Applied Information Technology,

©2005-2008 JATIT. All rights reserved. Link:

www.jatit.org

[2] S. Elbaum, A. Malishevsky, and G.Rothermel Test case

prioritization: A family of empirical studies. IEEE

Transactions on Software Engineering, February 2002.

[3] G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold,

“Prioritizing Test Cases for Regression Testing,” IEEE

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.2, May 2012 – www.ijais.org

17

Trans. Software Eng., vol. 27, no. 10, pp. 929-948, Oct.

2001

[4] Aditya P.Mathur, Foundation of software testing,

Pearson Education 1st edition.

[5] Maruan Khoury, Cost-Effective Regression Testing,

2006.

[6] Emanuela G. Cartaxo, Francisco G. O. Neto, Patrıcia D.

L. Machado Automated Test Case Selection Based on a

Similarity

Function,{emanuela,netojin,patricia}@dsc.ufcg.edu.br.

[7] C. Jard and T. J´eron. TGV: theory, principles and

algorithms, A tool for the automatic synthesis of

conformance test cases for non-deterministic reactive

systems. Software Tools for Technology Transfer

(STTT), 6, 2004.

[8] F. Basanieri, A. Bertolino, and E. Marchetti. The Cow

Suite Approach to Planning and Deriving Test Suites in

UML Projects. In UML 2002 - The Unified Modeling

Language. Model Engineering, Languages, Concepts,

and Tools. LNCS. Springer, 2002.

[9] D. L. Barbosa, H. S. Lima, P. D. L. Machado, J. C. A.

Figueiredo, M. A. Juca, and W. L. Andrade. Automating

Functional Testing of Components from UML

Specifications. Int. Journal of Software Eng. and

Knowledge Engineering, 2007.

[10] SIRIPONG ROONGRUANGSUWAN, JIRAPUN

DAENGDEJ. TEST CASE PRIORITIZATION

TECHNIQUES. Journal of Theoretical and Applied

Information Technology, © 2005 - 2010 JATIT & LLS.

All rights reserved. www.jatit.org.

[11] B. Korel and J. Laski, “Algorithmic software fault

localization”, Annual Hawaii International Conference

on System Sciences, pages 246–252, 1991.

[12] Cem Kaner, “Exploratory Testing”, Florida Institute of

Technology, Quality Assurance Institute Worldwide

Annual Software Testing Conference, Orlando, FL,

2006.

[13] Dennis Jeffrey and Neelam Gupta, “Test Case

Prioritization Using Relevant Slices”, In Proceedings of

the 30th Annual International Computer Software and

Applications Conference,Volume 01, 2006, pages 411-

420, 2006.

[14] A. Srivastava, A. Edwards, and H. Vo., “Vulcan: Binary

Transformation in a Distributed Environment”, Microsoft

Research Technical Report, MSR-TR-2001-50, 2001.

[15] Alexey G. Malishevsky, Gregg Rothermel and Sebastian

Elbaum, “Modeling the Cost-Benefits Tradeoffs for

Regression Testing Techniques”, Proceedings of the

International Conference on Software Maintenance

(ICSM’02), 2002.

[16] James A. Jones and Mary Jean Harrold, “Test-Suite

Reduction and Prioritization for Modified

Condition/Decision Coverage”, In Proceedings of the

International Conference on Software Maintenance,

2001.

http://www.jatit.org/

