

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 2– No.1, May 2012 – www.ijais.org

39

Adaptive Web Prefetching Scheme using Link Anchor
Information

P. Venketesh R.Venkatesan

Assistant Professor (SG) Professor and Head
Department of CIS Department of CSE

PSG College of Technology PSG College of Technology
Coimbatore, India Coimbatore, India

ABSTRACT
Web prefetching provides an effective mechanism to mitigate

the user perceived latency when accessing the web pages. The

content of web pages provide useful information for generating

the predictions, which are used to prefetch the web objects for

satisfying the user‟s future requests. In this paper, we propose

fuzzy logic based web prefetching scheme that generates

effective predictions for prefetching the web objects.

Predictions are generated based on the anchor text information

associated with hyperlinks in a web page. Based on the user‟s

browsing pattern in each session, prediction engine dynamically

computes the value and generates the list of predictions. The

prefetched web objects are effectively utilized when user

browses the web pages for information related to specific topic

of interest. In long duration browsing sessions, useful

predictions are generated to efficiently minimize the user

perceived latency. The proposed scheme is compared with

existing prefetching algorithms and the results indicate that the

new scheme achieves improved cache-hit rate and precision

accuracy.

General Terms
Web Mining, Prefetching

Keywords
Prefetching, Predictions, Fuzzy Logic, hyperlinks, Anchor text

1. INTRODUCTION

The exponential growth in usage of World Wide Web (WWW)

and Internet for data dissemination often creates enormous

traffic in the network causing noticeable Web page rendering

delays when accessed by Web clients. Several factors

(bandwidth availability, request processing time at server, round

trip time, and object size) affect the user perceived latency

when downloading a web page. Latency can be reduced by

implementing cache repositories either remotely (in web server

or proxy server) or locally (in browser‟s cache or local proxy

server). The usage of cache repository is improved by applying

Web prefetching mechanism that acquires Web contents with

the anticipation that these contents will be requested by the

users in the near future. Web prefetching exploits the benefit of

spatial locality exhibited by the users when accessing the Web

objects.

Fuzzy logic has been applied in several domains over the years

such as expert systems, data mining and pattern recognition. It

deals with fuzzy sets [1] that allow partial membership in a set

represented by its degree of relevance. Fuzzy logic is capable of

handling approximate or vague notions that exist in several

information retrieval (IR) tasks [2] and helps to establish

meaningful and useful relationships among objects. In this

paper, we use fuzzy logic to compute the prediction value of

hyperlinks and use it to select the appropriate hyperlinks to be

prefetched. Client system decides to prefetch the Web objects

based on the following factors [3]: availability of Web object in

the cache and its current timestamp, user idleness for more than

the threshold interval, network bandwidth, size of Web object

and user preferences.

The proposed Web prefetching scheme uses the information

associated with hyperlinks in the current Web page to predict

the Web objects to be retrieved for satisfying user‟s future

requests. Prefetching is carried out during idle time period

between the user accesses to the Web pages. The prefetching

component is attached to the Web browser to determine the

Web objects to be prefetched. The working of proposed scheme

has the following steps: 1) Extract the hyperlinks and its

associated anchor text from the displayed Web page 2) Collect

set of tokens (keywords) from each anchor text 3) Compute the

prediction value for each hyperlink by applying fuzzy logic

over the set of tokens 4) Generate the predictions (hint list)

based on the computed prediction values 5) Prefetch the Web

objects based on the links listed in the hint list. When user

wishes to view a new Web page by clicking a hyperlink or

typing URL in the Web browser, prefetch cache is first accessed

to verify if it can satisfy the request before forwarding the

request to proxy or Web server. Prediction value of each

hyperlink is computed using the information stored in user-

accessed and predicted-unused repositories. The information in

predicted-unused repository is used to filter out hyperlinks that

are of less or no interest to the user. The experimental results

clearly indicate the efficiency of proposed Web prefetching

scheme in enhancing the cache hit-ratio and significantly

lowering the Web page access delay.

The rest of this paper is organized as follows: Section 2

discusses the related work in Web caching and prefetching.

Section 3 discusses the architecture and working of proposed

Web prefetching scheme. Section 4 presents the evaluation

details and the observed results. Finally, section 5 concludes the

paper.

2. RELATED WORK

There has been significant amount of research work carried out

in the past for enhancing the performance of Web caching and

prefetching. Several techniques were designed to be used at

client-side, server-side and hybrid client/server for enhancing

the delivery of Web pages to the user. User‟s browsing behavior

was analyzed to identify specific interest on a domain for

supporting services like Web personalization and prefetching.

The effectiveness of using link-based or content-based ranking

method in finding the Web sites was analyzed in [4] and the

results indicated that anchor texts were highly useful in site

finding. A text analysis method was discussed in [5] that used

text in and around the hypertext anchors of selected Web pages

to determine the user‟s interest in accessing the Web pages. In

[6] a keyword-based semantic prefetching approach was

proposed that applied neural networks to predict the future

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 2– No.1, May 2012 – www.ijais.org

40

requests based on the semantic preferences of past retrieved

Web documents. A personalization algorithm was designed in

[7] to combine the usage data and link analysis techniques for

ranking and recommending the Web pages to the end user. A

methodology to prefetch the Web objects of slower loading

Web pages by semantically bundling it with faster loading Web

pages was proposed in [8].

A Semantic Link Prefetcher was proposed [9] to utilize the

semantic link information associated with the current Web page

hyperlinks to predict the Web objects to be prefetched during

the limited view time interval of the current Web page. In [10] a

transparent and speculative algorithm was proposed for content

based Web page prefetching with the assumption that textual

information in both the visited pages and the followed links

were influential in determining the preferences of a user. A

novel non-intrusive Web prefetching system was presented in

[11] to avoid the interference between prefetch and demand

requests by effectively utilizing only the spare resources on the

servers and network. The system was deployed without making

any modifications to the Web browser, HTTP protocol and the

network. In [12] a client-based Web prefetching system was

proposed that used detection theory to determine the threshold

value for selecting the Web documents to be prefetched.

The path profiles of users stored in large Web logs provide

useful information for predicting the user‟s future requests. An

n-gram based model [13] used an efficient method to compress

the prediction model size to fit in main memory. It improved

the prediction accuracy substantially with a moderate decrease

in applicability. A history based prefetching algorithm [15]

achieved high prediction accuracy with limited memory by

storing only the useful request sequences and discarding those

that will not yield useful predictions. In [14] a methodology was

proposed to cluster related pages into different categories based

on the access patterns. Pages were further categorized into

levels based on the page rank and those pages that are placed in

the top levels had higher probability of being predicted and

prefetched. In [16] methods were proposed for modeling the

user navigation history by extracting knowledge from user

access sequences and Web page content.

PPM models were commonly used in Web prefetching for

predicting the user‟s next request by extracting useful

knowledge from historical user requests. Factors such as page

access frequency, prediction feedback, context length and

conditional probability influence the performance of PPM

models in prefetching. An online PPM model based on non

compact suffix tree was implemented in [17] that used

maximum entropy principle to improve the prefetching

performance. A novel PPM model based on stochastic gradient

descent was presented in [18] that defined a target function to

describe a node‟s prediction capability and then selected a node

with maximum function value to predict the next most probable

page.

Markov models were effectively used in Web prefetching by

utilizing the information gathered from Web logs. In [19]

different techniques were presented for intelligently selecting

the parts of different order Markov models to create a new

model with reduced state complexity and improved prediction

accuracy. Three schemes of pruning (support, confidence and

error) were presented to prune the states of All-Kth order

markov model. A Markov–Knapsack approach was proposed in

[20] that combined Multi-Markov Web-application centric

prefetch model with a Knapsack Web object selector for

enhancing the Web page rendering performance. An integration

model was designed [21] to combine clustering, association

rules and Markov models to achieve better prediction accuracy

with minimal state space complexity. Markov tree [22] was

used for effective page predictions and cache prefetching,

which used the training data set to construct the tree structure

for representing the Web page access patterns of users.

Domain ontology provides useful semantic information to be

used in next page prediction systems. In [23] two methods were

discussed to integrate the semantic information into Markov

models for prediction. The methods allowed low order Markov

models to make intelligent accurate predictions with less

complexity than the higher order models. An approach for Web

page prediction through linear regression was proposed in [24]

that depended on the transition probability and ranking of links

in the current Web page for the prediction accuracy.

To effectively reduce the user-perceived latency, prediction

algorithm need to consider the structure of current Web pages

when generating the predictions. This issue was addressed in

[25] by developing a Double Dependency Graph (DDG)

algorithm that differentiated HTML and embedded objects to

create a new prediction model according to the structure of

current Web. In [26] a decision method was presented to select

the training data by monitoring the prediction precision, where

the user access sequences were partitioned into different data

blocks based on the access time of requests.

3. PROPOSED METHODOLOGY

The architecture of a basic Web system consists of clients that

are used to access the Web and Web servers that respond to

user‟s requests using the stored or generated information. In

demanding situations, proxy server is deployed between clients

and Web server to minimize Web server load and user access

latency. Web prefetching can be integrated into the existing

architecture by implementing two important components:

Prediction and Prefetching engine. These two components can

be deployed in any part of the Web architecture (i.e. client,

proxy or server) to minimize the user perceived latency. Based

on the deployment of prediction engine in the Web architecture,

it uses different information to generate the predictions. When it

is deployed at client, it uses information specific to a particular

user. When deployed at proxy server, it uses information related

to group of users. When deployed at Web server, it uses

information from wide range of clients.

In the proposed Web prefetching scheme, both the prediction

and prefetching engine are deployed at the client machine to

minimize user perceived latency. Prediction engine uses the

information associated with hyperlinks of a Web page to

generate the predictions (i.e. hint list) and supply as input to the

prefetching engine. Prefetching engine uses the hint list

information to prefetch the Web objects and store it in the

prefetch cache maintained at the client to satisfy the user

requests.

Figure 1 illustrates the process of gathering relevant hyperlinks

from the Web pages to generate the hint list for prefetching the

Web objects. The proposed scheme is designed to efficiently

identify set of hyperlinks in a Web page that reflect user‟s

interest and prefetch them before the user actually requests

those pages.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 2– No.1, May 2012 – www.ijais.org

41

Figure 1: Process of Predicting and Prefetching the Web objects

The steps shown in Figure1 are explained as follows:

1. User initially requests a Web page by typing its URL

in the Web browser.

2. The requested Web page gets displayed on the

browser after its contents were downloaded from the

Web server.

3. The displayed Web page is parsed to extract all the

hyperlinks and its associated anchor text for

computing the prediction value.

4. Each anchor text is treated as set of tokens, where

token represents a meaningful word in the anchor

text.

5. When user visits a new Web page by clicking

hyperlink in the current Web page, then tokens of that

anchor text are added to the user-accessed repository.

6. Count value of tokens gets updated in the user-

accessed repository whenever user visits a new Web

page by clicking hyperlinks.

7. Prediction value of each hyperlink is computed by

applying fuzzy logic over the information stored in

user-accessed and predicted-unused repository.

Initially the predicted-unused repository remains

empty and then it is loaded with tokens once the

prediction activity is started.

8. Based on the computed prediction value, hyperlinks

are sorted (highest to lowest) to create a hint list.

9. Prefetch engine retrieves Web objects from the server

using the hyperlinks in the hint list and stores them in

the prefetch cache.

10. When user wishes to view a new Web page by

clicking hyperlink in current Web page or typing

URL in the Web browser, contents of prefetch cache

will be verified to check if they can satisfy the user

request.

11. When the user requested Web page is available in the

prefetch cache, then it gets displayed in the Web

browser with minimal latency.

12. In case the requested Web page is not available in the

prefetch cache, then it will be retrieved from the Web

server and displayed to the user.

13. Tokens of hyperlinks in the hint list that were not

used by the users will be moved to predicted-unused

repository.

14. When user visits a new Web page, hint list will be

populated with new set of hyperlinks using which the

prefetching activity is carried out. Count value of

tokens gets updated in the predicted-unused

repository whenever unused links are identified and

their tokens moved to the repository.

3.1 Prediction Engine

It is responsible for computing the prediction value of

hyperlinks by applying fuzzy logic over the set of tokens related

to hyperlinks. The prediction engine uses tokenizer and

7

12

11

Fuzzy Logic

6

13

14

10 9

8

5

4

3

2

1

Web Browser

User enters the URL

Display Web page

Extract Hyperlinks

1.

2.

3.

Convert Anchor text

to Tokens

User-Accessed

Repository

Token Count

Compute Prediction value

Preference List

1.

2.

3.

Prefetch Cache

Display web page Internet

Predicted -Unused

Repository

Token Count

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 2– No.1, May 2012 – www.ijais.org

42

repositories (user-accessed and predicted-unused) in computing

the prediction value and creating the hint list that is given as

input to the prefetching engine.

3.1.1 Tokenizer

When user views a Web page in the browser, the Tokenizer

parses that Web page to extract all the hyperlinks (URL) and its

associated anchor text. Anchor text refers to the text that

surrounds hyperlink definitions (hrefs) in Web pages [6]. In our

scheme, we consider the text between the tags <a> and .

Each anchor text is represented as set of tokens, where token is

a meaningful word within the anchor text of a link. When user

clicks a hyperlink in the current Web page to view the next

Web page, then the tokens of its anchor text are stored in the

user-accessed repository. Tokenizer eliminates trivial characters

and tokens such as prepositions and conjunctions present in the

anchor text and consider only the meaningful words as tokens

and store it in user-accessed repository. Stemming is applied

over the tokens of anchor text to eliminate the word suffixes, so

that the number of entries in the repository gets minimized. The

commonly used Porter stemmer [27] algorithm is applied to

perform the stemming operation.

3.1.2 User-Accessed repository

It maintains tokens with their occurrence count that gets

incremented each time it is present in the anchor text of

hyperlinks used by the user. Each token has an initial count

value of 1. The information maintained in this repository is used

for computing the prediction value of each hyperlink. The

repository reveals both user and session characteristics, where a

session indicates the time interval between start and end of

user‟s browsing instance.

3.1.3 Predicted- Unused Repository

The tokens of hyperlinks that are predicted but not used by the

users are stored in this repository. It provides feedback to the

prediction engine that helps to refine the hint list generated

from the Web pages. The repository provides two major

benefits: a) Minimize the influence of tokens in the user-

accessed repository that are of less or no interest to the user

when computing prediction value b) Minimize the number of

predictions generated per page. For each Web page „n‟ number

of predictions are generated, but when the user navigates from

current Web page to the next page only one from the prediction

list will match the user‟s interests. The remaining hyperlinks in

the hint list do not reflect the user‟s interests and their tokens

are stored in this repository.

The process of adding tokens to the predicted-unused repository

are:

1. The prediction engine recommends set of hyperlinks

(hint list) for a Web page based on the computed

prediction values.

2. From the recommended set of hyperlinks, tokens are

collected and stored in a temporary buffer.

3. Check if the hyperlink used to navigate from the

current Web page to the next page matches with any

of the hyperlink in the hint list. If there is a match, go

to step 4 else step 6.

4. The tokens of hyperlink that match with the user used

hyperlink are moved from the temporary buffer to the

user-accessed repository.

5. The tokens of unmatched hyperlinks are moved from

the temporary buffer to the predicted-unused

repository. To create new hint list for the next web

page, go to step 1.

6. All the tokens stored in the temporary buffer are

moved to the predicted-unused repository. To create

new hint list for the next web page, go to step 1.

3.1.4 Implementing Repositories

The repositories (user-accessed and predicted-unused) are

implemented as a table with three fields: token, token-count and

last-updated time. Token field is used to store the tokens

extracted from the anchor texts. Token-count field indicates the

number of times each token is updated in the repository. Last-

updated time field indicates the time when the token was last

added to the repository. Both the repositories are of fixed size

and new tokens are added into it by eliminating the old tokens

whenever the repositories reach their maximum limit. Based on

the last-updated time field, the tokens are selected for

elimination from the repositories. The repository size should be

selected carefully in order to avoid the legitimate tokens from

being eliminated and to prevent the trivial tokens from

occupying the allotted space. We set the size of each repository

to be 100.

3.1.5 Computing Prediction Values

The anchor text is represented as set of tokens arranged in a

specific order.

Anchor text = {T1, T2, T3 . . . Tn}, n = number of tokens

The system is modeled by applying fuzzy logic over the tokens

of anchor text by associating it with a fuzzy set (i.e. repository

holding the tokens). Tokens of anchor text are related to fuzzy

set with similarity degree in the range 0 to 1.

The membership value of each token Ti is computed by

dividing the token count in repository R1 with sum of token

count in the repositories R1(user-accessed repository) and

R2(predicted-unused repository).

The membership value of token Ti relative to repository R2 will

be:

 µR2 (Ti) = 1 - µR1 (Ti) [i = 1 to n | n = no. of tokens]

The membership value of token Ti will be 1, if the token is

available in only a single repository (i.e. R1 or R2).

 µR1 (Ti) = Membership of token Ti relative to repository R1

 µR2 (Ti) = Membership of token Ti relative to repository R2

 (TCi)R1 = Token Count of Ti in repository R1

 (TCi)R2 = Token Count of Ti in repository R2

After computing the membership value of each token Ti relative

to the repositories R1 and R2, the values are compared to decide

whether token Ti is included for computing the prediction value

of a hyperlink.

 If µR1 (Ti) > µR2 (Ti)

µR1 (Ti) =
(TCi)R1

(TCi)R1 + (TCi)R2

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 2– No.1, May 2012 – www.ijais.org

43

 then

 TAi =1

 else

 TAi = 0

The value of TAi will be 1, when the membership value of

token Ti relative to R1 is greater than R2; else the value of TAi

will be 0. For token Ti with TAi =1, compute token popularity

(TPi) in the repository R1 by dividing its count value with

maximum token count value in R1.

For token Ti with TAi = 0, its token popularity (TPi) will be

zero.

Finally, the prediction value (PV) of hyperlink will be

 n = no. of valid tokens in the anchor text

3.1.6 Hint List

Based on the computed prediction value, the hyperlinks are

selected to create a hint list. The hint list is managed using a

priority queue that arranges the hyperlinks according to its

prediction value (highest to lowest). Prefetching engine uses the

hyperlinks stored in the hint list to prefetch the Web objects

during browser‟s idle time period. When user visits a new Web

page, the contents of hint list will be cleared and then populated

with new set of hyperlinks to perform prefetching. It helps to

prevent prefetching of irrelevant hyperlinks during a browsing

session. Figure 2 illustrates the process of adding hyperlinks to

the hint list.

 where TAi = Token Acceptance

Figure 2: Creation of Hint List for Prefetching

3.2 PREFETCHING ENGINE

It uses the hyperlinks listed in the hint list to prefetch the Web

objects during browser idle time to avoid interference with

regular user requests. When a user requested Web object is

available in the prefetch cache, then it is served quickly with

minimal retrieval time. The prefetching engine will not retrieve

all the predicted Web objects from the server due to the

following reasons: a) Lack of idle time due to faster navigation

between the Web pages by users b) Few predicted objects

already exists in the regular cache and c) Few predicted objects

already demand requested by the users. The prediction engine

needs to generate useful hint list to avoid wastage of user and

server resources that may lead to performance degradation.

Prefetch requests are given low priority than the regular user

requests to allow the Web browser to utilize the entire available

bandwidth for satisfying the user requests. Whenever user

initiates any page loading activity in the browser, prefetching

activity gets terminated and the remaining information in the

hint list will be discarded.

The downloaded Web objects from the server are stored in the

prefetch cache for satisfying the user‟s future requests. Prefetch

cache is implemented separately from the browser‟s regular

cache to eliminate the caching effect due to temporal locality in

the user‟s browsing patterns. LRU algorithm is used to manage

the Web objects stored in the prefetch cache by selecting least

recently accessed Web objects for purging to provide space for

accommodating newly prefetched Web objects. When a

demand requested Web object resides in prefetch cache, then it

is moved to the regular cache. Web objects will not be stored in

both the caches (regular and prefetch) at the same time.

4. EVALUATION

The performance of proposed prefetching scheme cannot be

evaluated using trace based simulations, because the Web traces

will not give a comprehensive view of the client‟s browsing

interests. An effective way to gather the required information

will be to capture the user‟s interest at the client side by

analyzing the browsing pattern in each session. User can view

the Web page in two ways: a) Type the required URL in Web

browser and b) Click hyperlinks present in the current Web

page. The proposed scheme extracts user‟s interests by

observing the information associated with hyperlinks used to

view the Web pages in each browsing session.

Evaluation of the proposed scheme is carried out by performing

Web browsing that focuses on information specific to particular

topic of user‟s interest. Experimentation carried out using open

source Web browser- CXBrowser [28] developed in c#

language. The prediction/prefetching engine implemented as an

add-on to the Web browser that allows user to configure the

PV =
1

n

 n

 TPi
i=1

TPi =
(TCi)R1

max [(TC)R1]

Hint List

(Priority Queue)

Hyperlink, Prediction value

(Computes Prediction value)
Anchor Text

Hyperlink Prediction Engine

Link1 Link 2 Link 3 Link 4 Link 5 Link 6 Link 7

0.98 0.93 0.86 0.85 0.75 0.71 0.65

Prefetching Engine

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 2– No.1, May 2012 – www.ijais.org

44

prefetch settings based on the requirements. Each browsing

session has active and idle periods, where the user switches

between them based on his access pattern. Active period

indicates the phase where the Web objects are demand

requested by the user. Idle period indicates the phase where the

displayed Web objects are viewed by user. The retrieval of

main html file followed by its embedded objects initiates the

active period. In idle period, prefetching engine uses the hint

list to prefetch Web objects and stores it in the prefetch cache.

Log file is used to record the user‟s requests during the

browsing session, which is used for analyzing the system

performance.

When user initially starts the browsing session, user-accessed

and predicted-unused repositories remain empty and they

cannot be used to predict the Web objects to be prefetched. The

user-accessed repository will be filled with tokens as the user

starts browsing Web pages using the hyperlinks. The predicted-

unused repository will be filled with tokens of hyperlinks that

are predicted but not used either to prefetch the Web objects or

to satisfy the user‟s future requests. The user navigation time

partitioned into four discrete intervals [29]: passing, simple

viewing, normal viewing and preferred viewing. The amount of

time user spends reading a Web page influence the number of

links that can be prefetched. It was considered an important

attribute in predicting the user‟s interests [30, 31, 32]. If user

spends more time reading a Web page, browser idle time will

be more allowing several hyperlinks in the hint list to be

prefetched.

When a Web page viewed by the user contains information that

is less relevant to his/her interests, then hint list for that Web

page contains zero or minimal number of hyperlinks. Web

objects that are demand requested by the user will be first

verified in the local cache (regular or prefetch cache) for its

availability. Web or proxy server is contacted only when the

local cache does not hold the requested Web objects.

4.1 Experimental Results

The performance of proposed Web prefetching scheme depends

on the reading interest of individual users and hence the results

from different users are incomparable. The results are taken by

observing several browsing sessions carried out for a period of

six weeks. Performance of the proposed scheme is compared

with Top-down approach [34], Naïve-Bayes approach [33] and

Bigrams in Link approach [10]. Cache hit rate and Accuracy are

the metrics used for evaluation.

Cache hit-rate indicates the percentage of user requests served

using the contents of prefetch cache against the total number of

user requests. High hit-rate effectively minimizes the user

perceived latency, since most of the user requests are served

from the local cache.

Accuracy indicates the percentage of prefetched Web pages

requested by the user against the total number of Web pages

prefetched by the system. It reflects the useful Web predictions

generated during the browsing sessions.

The comparison of cache hit-rate for various schemes is shown

in Figure 3. The number of links prefetched per page using the

predictions is varied between 2 to 10. When more links are

prefetched, it improves the hit-rate significantly. The proposed

scheme achieves better hit-rate in all the cases, since it can fine

tune the predictions based on the access pattern of user. It

effectively filters out the unwanted hyperlinks when generating

the predictions using the information from predicted-unused

repository. Tokens of anchor text that has higher presence in the

user-accessed repository than predicted-unused repository are

the ones used for computing the prediction value of hyperlinks.

Figure 4 shows the comparison of prediction accuracy for

various prefetching schemes. Prefetching two links per page

could not satisfy the user requests effectively, resulting in

minimal usage of prefetched pages during the browsing

sessions. When the number of links prefetched per page varies

between 4 and 6, the contents were effectively used to satisfy

the user requests. When eight or more links are prefetched per

page, it improves the hit rate but it leads to prefetching of

unwanted links that wastes network resources. The proposed

scheme outperforms other approaches in accurately generating

the predictions.

5. CONCLUSION

In this paper we have discussed Web prefetching scheme that

used fuzzy logic to compute the prediction value of hyperlinks,

which was used to decide the Web objects to be prefetched.

Information available in the user-accessed and predicted-unused

repositories was used to compute the prediction value of

hyperlinks, which improved the prediction accuracy and

minimized user perceived latency. It generated effective

predictions during the browsing sessions, when user visited

Web pages seeking information relevant to specific topic of

interest. The proposed scheme was experimentally evaluated by

observing the results over several user browsing sessions.

Results indicate that the proposed scheme provides good hit rate

and precision accuracy, when compared to other existing

algorithms.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10

number of prefetched links

C
a
c
h

e
 h

it
 r

a
ti

o

Top-dow n Naive-bayes Bigrams-Link Proposed Scheme

Figure 3: Hit-Rate of various prefetching schemes

Accuracy =

Prefetch Hits

Total Prefetchs

Hit Rate =

Prefetch Hits

Total User Requests

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 2– No.1, May 2012 – www.ijais.org

45

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8

number of prefetched links

A
c

c
u

r
a

c
y

Top-dow n Naive-bayes Bigrams-Link Proposed-Scheme

Figure 4: Accuracy of various prefetching schemes

6. REFERENCES

[1] L.A.Zadeh, “Fuzzy Sets”, Information and Control,

Vol.8, pp.338-353, 1965

[2] H. Chris Tseng, “Internet Applications with Fuzzy

Logic and Neural Networks: A Survey”, Journal of

Engineering, Computing and Architecture, Volume 1,

Issue 2, 2007

[3] J.C.Mogul, “Method for predictive prefetching of

information over a communications network”, Patent

No.5,802,292, 1998

[4] N. Craswell, D. Hawking, S.E. Robertson, “Effective

Site Finding Using Link Anchor Information”,

Proceedings of International ACM SIGIR Conference

on Research and Development in Information Retrieval,

2001

[5] B.D.Davison, “Predicting web actions from HTML

content”, Proceedings of 13th ACM Conference on

Hypertext and Hypermedia, 2002

[6] Cheng-Zhong Xu and Tamer I. Ibrahim, “A Keyword-

Based Semantic Prefetching Approach in Internet News

Services”, IEEE Transactions on Knowledge and Data

Engineering, Vol. 16, No. 5, pp.601 -611, 2004

[7] Magdalini Eirinaki, Michalis Vazirgiannis, “Usage-

based PageRank for Web Personalization”, In

proceedings of 5th IEEE International Conference on

Data Mining (ICDM), 2005

[8] Alexander P. Pons, “Semantic prefetching objects of

slower web site pages”, The Journal of Systems and

Software, Vol.79, pp.1715–1724, 2006

[9] Alexander P. Pons, “Object Prefetching Using Semantic

Links”, ACM SIGMIS Database, Vol.37 Issue 1, pp. 97

– 109, 2006.

[10] A. Georgakis, H. Li, “User behavior modeling and

content based speculative web page prefetching”, Data

and Knowledge Engineering - Elsevier, vol.59, pp.770 -

788, 2006

[11] Ravi Kokku, Praveen Yalagandula, Arun

Venkataramani and Michael Dahlin, “NPS: A non-

interfering deployable web prefetching system”, In

Proceedings of the USENIX Symposium on Internet

Technologies and Systems, Palo Alto, USA, 2003

[12] Kelvin Lau, Yiu-Kai Ng, “A Client-based Web

Prefetching Management System Based on Detection

Theory”, Lecture Notes in Computer Science- Springer,

vol. 3293, pp. 129-143, 2004.

[13] Zhong Su, Qiang Yang, Hong-Jiang Zhang, “A

Prediction System for Multimedia Pre-fetching in

Internet”, in Proceedings of the eighth ACM

international conference on Multimedia, pp. 3 – 11,

2000

[14] Debajyoti Mukhopadhyay,

Priyanka Mishra,

Dwaipayan

Saha,

Young-Chon Kim, “A Dynamic Web Page

Prediction Model Based on Access Patterns to Offer

Better User Latency” , in Proceedings of the 6th

International Workshop (MSPT- 2006), pp. 59–64,

November 2006

[15] Qinghui Liu, Roberto Solis-Oba, “Web Prefetching with

High Accuracy and Low Memory Cost”, Applied

Computing Conference (ACC '08), Istanbul, Turkey,

May 27-30, 2008.

[16] Costantinos Dimopoulos, Christos Makris, Yannis

Panagis, Evangelos Theodoridis,Athanasios Tsakalidis,

“A web page usage prediction scheme using sequence

indexing and clustering techniques”, Data & Knowledge

Engineering-Elsevier, vol.69, pp.371–382, 2010

[17] Zhijie Ban, Zhimin Gu, and Yu Jin, “An online ppm

prediction model for web prefetching”, In proceedings

of the 9th annual ACM international workshop on Web

information and data management, Lisbon, Portugal,

2007.

[18] Zhijie Ban, Zhimin Gu, and Yu Jin, “A PPM prediction

model based on stochastic gradient descent for web

prefetching”, In proceedings of the 22nd International

Conference on Advanced Information Networking and

Applications, Okinawa, Japan, 2008.

[19] Mukund Deshpande and George Karypis, "Selective

Markov Models for Predicting Web Page Accesses",

ACM Transactions on Internet Technology, Vol. 4, No.

2, pp.163-184, May 2004

[20] Alexander P. Pons, “Improving the performance of

client web object retrieval”, Journal of Systems and

Software, vol.74, No.3, 2005.

[21] Khalil, F., Li, J. and Wang, H., “An integrated model

for next page access prediction”, International Journal of

Knowledge and Web Intelligence, Vol. 1, Nos. 1/2,

pp.48–80, 2009

[22] Wenying Feng, Shushuang Man and Gongzhu Hu,

“Markov Tree Prediction on Web Cache Prefetching”,

In Proceedings of Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed

Computing, pp. 105-120, 2009.

[23] Nizar R. Mabroukeh and C. I. Ezeife, “Semantic-rich

Markov Models for Web Prefetching”, in proceedings of

IEEE International Conference on Data Mining

Workshops, 2009

[24] Ruma Dutta, Anirban Kundu, Rana Dattagupta,

Debajyoti Mukhopadhyay, “An Approach to Web Page

Prediction Using Markov Model and Web Page

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

Volume 2– No.1, May 2012 – www.ijais.org

46

Ranking”, International Journal of Convergence

Information Technology, Korea, Vol.4, No.4, pp. 61–

67, December 2009.

[25] J. Domenech, J.A. Gil, J. Sahuquillo, A. Pont, "Using

current web page structure to improve prefetching

performance", Computer Networks, vol.54, pp.1404–

1417, 2010.

[26] Zhijie Ban, Feilong Bao, “Decision Method of Training

Data for Web Prefetching”, in proceedings of the Sixth

International Conference on Internet and Web

Applications and Services (ICIW), 2011

[27] M.F. Porter, An algorithm for suffix stripping, Program,

vol.14, no.3, pp.130–137, 1980

[28] CxBrowser – http://cxbrowser.sourceforge.net

[29] Dongshan Xing and Junyi Shen, “Efficient data mining

for web navigation patterns”, Information & Software

Technology, vol.46, no.1, pp.55–63, 2004

[30] Ting-Peng Liang and Hung-Jen Lai, “Discovering User

Interests from Web Browsing Behavior: An Application

to Internet News Services”, Proceedings of the 35th

Hawaii International Conference on System Sciences,

2002

[31] S. Gunduz and M. Ozsu, “A web page prediction model

based on click-stream tree representation of user

behavior”, In Proceedings of the 9th ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, pp. 535–540, 2003

[32] Yong Zhen Guo, Kotagiri Ramamohanarao and

Laurence A. F. Park, “Personalized PageRank for Web

Page Prediction Based on Access Time-Length and

Frequency”, In proceedings of IEEE/WIC/ACM

International Conference on Web Intelligence, 2007

 [33] P.Venketesh, R, Venkatesan, L.Arunprakash, “Semantic

Web Prefetching Scheme Using Naïve Bayes

Classifier”, in International Journal of Computer

Science and Applications, Vol. 7, No. 1, pp. 66 – 78,

2010

[34] E.P. Markatos, C. Chronaki, “A top-10 approach to

prefetching on the Web”, in Proceedings of INET‟98,

1998.

