

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.1, May 2012 – www.ijais.org

34

Learning Framework with Load Balancing and Fault

Tolerance using Cache-based Architecture

K. Zafar, Q. S. Haq, J. Kansi, A. Khan, S. Zafar, Z. Halim
National University of Computer & Emerging Sciences

Islamabad

ABSTRACT
Most of the universities around the world are offering online

distance learning programs. A framework is required that can

handle huge amount of network traffic at the servers and also

cater for the autonomous, robust, intelligent load balancing

and fault tolerance. In order to handle large number of

transactions at the server, high performance server

architecture is required. The proposed framework is tested

using a virtual online university that can handle huge amount

of user requests. With the availability of high bandwidth and

low cost hardware, the optimum performance can be achieved

easily. The frame work is tested under heavy network traffic

and proved to robust, scalable and reliable approach.

Keywords

Distance learning, cache, fault tolerance

1. INTRODUCTION
The handling of large number of clients on a web server has

been an area of interest since many years. For the requirement

of an online university with hundreds of users as clients, a

high performance transaction processing server is required.

This frame work will have a reconfiguration module that will

solve the traffic congestion problem at the database server.

The users for such a system can be categorized as students,

teachers and administrator. The role of the administrator can

be ignored as there server hits are the least. The teachers and

the students are the main users that can cause network

congestion. This system provides an intelligent teacher-

student interface with the capabilities of chat, video

conferencing, interactive tutorials and robust examination

module. The handling of video conference with hundred of

users simultaneously along with real time testing module are

the main focus of this research as discussed in [1-3]. The

students are the main concern as they are the main clients that

will be located anywhere in the world and will be using the

system through high speed internet. The server will be busy

most of the time for handling online exams and video sessions

for the lectures.

2. TRAFFIC CONGESTION AND

PERFORMANCE
The first client of the system architecture as shown in Fig.1 is

the administrator. The interaction with the server is not

frequent. The role of an administrator can be ignored as far as

traffic congestion and performance is concerned. The reason

is the number of accesses they would make at any time. Since

there role is only to provide facilities like adding new users,

starting new courses and performing other administrative jobs.

The second type of client is the teacher. The number of

teachers is relatively higher then administrative staff, but at

the same time it is relatively small as compared to students

count. The main role of the teacher is to deliver a video

lecture and creating exams. The exams are checked and

evaluated by the system autonomously. The teacher can create

exam, upload lecture slides, schedule the lecture and exam

sessions. For one thousand students there will be around 50

teachers if each teacher is teaching on average 3 courses then

each teacher will create 30 exams in one semester (six

months). And hence fifty teachers will create 50*30 = 1500

exams at maximum. This figure also shows number of

transactions that will be made in database. This is not a huge

number of transactions in 6*30=180 days. Hence this can be

neglected as well.

The third clients are the students that are the main focus in the

development of this framework. They require the maximum

number of hits to the server.

The first type of transaction that a student will make to the

server is lectures. This is something that will not affect the

performance of the server at any time. As discussed above for

teacher, student’s situation will be quite same. The main role

of server and database will be to authenticate the client and

then teacher and student direct interaction will start. After

this, main problem will be bandwidth required for video

streaming at student’s end. The next and most critical

transaction type is exam and quizzes. We know that there are

three exams (including midterms) on average and around ten

quizzes on average in one semester. Suppose there are 50

students enrolled in one course (actual number might be

higher than this because of online university). If there are

twenty lectures going on simultaneously, and all of them are

taking a quiz, then there will be 20*50 = 1000 students

accessing the server at same time and all of them accessing

database as exams and quizzes will be stored in main

database. This will create a severe problem for the server. The

response will be extremely slow and it might even crash due

to high load. This is just one example, actual problem might

be even worse.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.1, May 2012 – www.ijais.org

35

 Figure.1. System architecture

Students might also access server for checking their grades,

submitting assignments, viewing notice board, registering in

courses, chatting, messages, etc. Number of these transactions

will also be high and affect the performance of the server.

One thing that must be noticed here that main problem arises

when exams or quizzes are going on. It must also be noticed

that at such a time most of transactions to the database will be

for retrieving exam data/questions from database and also that

since exam will be taken by all students of a course, all these

queries will be same and would run again and again. This

research will use this logic for improving efficiency of the

server as discussed in literature review from the papers [4-7].

3. LITERATURE REVIEW

3.1 Tech-Brief Extreme Networks
The architecture presented in this paper [3] as shown in Fig.2

has special requirements for hardware. The integrated server

approach allows high speed data transfer and disaster

recovery. The system performs efficiently on local network by

utilizing potentials of connecting medium. Such architecture

can’t be used in web based systems, as in our case the

requirement is load balancing and fault tolerance.

Figure.2. Tech-Brief extreme network

3.2 Web Distribution Systems: Caching and

Database Replication
This paper [4] gives idea of using Multicast based protocols to

perform caching and replication. The problem is that neither

can be used in isolation. Increasingly, caching and replication

systems are being setup to reduce network latency in the

backbone. Among caching products proxy server caches have

a cost advantage over Appliances, even though the later

display better performance. The concept of cluster based

caching is not very useful for a web server whose core

requirement is load balancing and fault tolerance. Especially

in case of a database for an online university, maintaining

such a cache would require extra effort in terms of

synchronization and constant updates.

3.3 Web Server Accelerator Design
In paper [2], authors presented a technique for improving the

performance given by this paper is to cache data at the site so

that frequently requested pages are served from a cache which

has significantly less overhead than a Web server. This may

be desirable for several reasons as shown in Fig. 3:

 Multiple nodes provide more cache memory. Web

server accelerators have to be extremely fast.

 Multiple processors provide higher throughputs than

a single node.

 Multiple processors functioning as accelerators can

offer high availability.

The architecture presented in the paper is good for high

performance web site connectivity, but this design is not

suitable for dynamic web servers. As in our case load

balancing is a problem at back end, not an issue of storing

contents of web pages.

Figure.3. Web server accelerator

Server

Authentication

Video streaming

Teacher Students

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.1, May 2012 – www.ijais.org

36

3.4 Dynamic load balancing of web servers

in geographically distributed heterogeneous

environment
This paper [1], presents architecture for load balancing and

high speed data recovery in a web server. The problem with

this architecture is that it is not suitable for our domain

problem. This architecture improves efficiency by utilizing

potentials of scheduling algorithms to distribute load among

different servers that are geographically apart.

4. ARCHITECTURES ANALYSIS
To improve the performance of the server in situations as

discussed above, different design structures of the server were

developed, analyzed and tested to find the best possible design

for the server that will address all issues of traffic congestion

and for increasing performance and efficiency of the server.

 4.1. Single server
This is the simplest and easiest design to implement. It

involves a single server where all users will login. This design

still has the above mentioned issues. The database will reside

on the server and IIS will run on the same machine as well.

The number of users will affect performance of this server.

4.2. Single server with cache
To improve the performance of the single server, cache can be

incorporated. As discussed in previous topic, most of queries

at the time of examination would be same. If the results of

query are in cache, the user request can be handled more than

once. This will save a lot of time that was previously wasted

by accessing database again and again for same query. This

design still does not solve problem of high number of users.

One thing must be kept in mind that cache is used only for

search queries, not for insert or update queries. If we want to

use cache for all kind of database queries then it requires

synchronization between database and the cache, which is

very costly as number of update and insert queries is high and

almost equivalent to search queries. The benefit of cache will

fade out due to constant synchronization all the time.

4.3. Multiple servers with database

replication
The key idea is to have more than one server to handle clients

at one time and each server has its own database which is

replica of master database as shown in Fig. 4.

Figure.4. Multiple servers with database replication

The benefits for this design are:

1. Clients will divide and hence lesser traffic on

any one server

2. Each server will have its own database and

hence lesser time will be spent on database

query transactions

Although such a design has many benefits, but at the same

time it also has huge problems associated with it, solving

these problems create more performance and efficiency

problems.

The replication of a database is not an easy task, especially

when there is one master and multiple slave replicas. If there

is a change in one database it must be changed on all

databases simultaneously.

This effectively reduces efficiency of the whole system. And

since there will be changes almost all the time, the time taken

by these changes will be much higher than the time saved by

introducing multiple servers. Hence this is not a good design

and solution to our problem.

4.4. Multiple servers with database

replication and cache
In single server with cache design, the introduction of a cache

module increases performance of the server by reducing the

time wasted on running same queries on database again and

again. The introduction of cache in the design with multiple

servers with database replication and cache as shown in Fig.5,

the performance of the server increases effectively, as most of

the queries running in the system at the time of examination

are almost same, especially in case of students with the same

course.

End

Users

IIDDLLSS

 MMaaiinn

SSeerrvveerr

MMyySSQQLL Server 1

Server 2

Server 3

MMyySSQQLL

MMyySSQQLL

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.1, May 2012 – www.ijais.org

37

Figure.5. Multiple servers with database replication and

cache

This design still does not solve problem of database

replication. One thing must be kept in mind that cache is used

only for search queries, not for insert or update queries. If we

want to use cache for all kind of database queries then we will

need synchronization between database and this cache, which

is very costly as number of update and insert queries is as high

as search queries. And the benefit of cache will fade out due

to constant synchronization all the time. As only cache is

introduced and this will only enhance the search queries time

for database transaction, not insert or update queries.

4.5. Multiple servers with single database

and cache at two levels
This is the final and most efficient design for our problem. We

will use all the benefits of multiple servers and cache to solve

problems of traffic congestion and low performance. At same

time we will not use database replication idea and hence will

not need to solve problems associated with database

replication.

Two level caches have been used to reduce the database

transaction time. The details as shown in Fig.6 are discussed

below.

Figure.6. Multiple servers with single database and cache

at two levels

As discussed earlier the two main issues to resolve are client

requests load and data load. The first problem is handled

using multiple servers instead of just stand alone web server

and the second issue is resolved using two level cache and

single database server.

4.5.1 Multiple servers

The key idea is to have more than one server to handle clients

at one time. When a request comes from user (connection to

server), this is directly forwarded to main server. Main server

has detail of all the servers running at the back end and uses

round robin algorithm to shoes among these servers running at

back end. It must be noticed that the job of this main server is

only to route the client requests to server that has minimum

number of clients connected to it. There will be added benefit

for having such kind of design i.e. clients will be divided

among all sub servers and hence lesser traffic on any one

server at a time. When users are connected to sub servers, user

can use the online facilities and do any kind of transactions.

Since there are multiple servers running here, there won’t be

any problem of traffic congestion. And we can add as much

servers as we want to tackle growing number of students of

online university. Adding a new server is very easy, we only

need to inform main server the address of new server and the

main server will start automatically routing clients to this new

server.

4.5.2 Database server

The main idea for having a separate database server is to get

rid of problems of database replication and still have multiple

servers. This separate server will have web service running on

it, which will provide interface for sub servers to use the main

database. Now all the servers will request this server for any

data they need from database. Although all these servers are

on same network and there won’t be issue of machine-to-

machine time laps but there will still be some time

consumption between request and reply mechanism of web

service and surely network will have to be fast enough to

support such kind of mechanism. To solve this problem the

paper proposes the idea of multiple level caches that will

reduce database time consumption by storing query results at

two levels.

4.5.3 Two level Cache

What happens when server needs to fetch data from database?

The answer is not simple; this query has to go through many

levels before actually reaching database. At first step the

server will check that if data is available in its cache or not, if

it is available in the cache then it is simply returned to the

HTTP page, otherwise this query is forwarded to a different

server which is specially designed for database transactions.

Database server has a cache for further improving database

retrieval time. As discussed earlier most of queries at time of

exams will be same so if same queries are coming from

different servers then this cache will help in saving time of

running same query again and again

5. IMPLEMENTATION
The architecture presented in the paper was implemented

using Dot Net Tools. A web application “router” was created

to provide interface for clients. All clients first connect to this

application; the main job of router was to select a sub server

End

Users

IIDDLLSS

 MMaaiinn

SSeerrvveerr

MMyySSQQ

LL
Server 1

 Server 2

 Server 3

MMyySSQQ

LL

MMyySSQQ

LL

Cach

e

Cach

e

Cach

e

End Users

IIDDLLSS

 MMaaiinn

SSeerrvveerr

Server 1

 Server 2

 Server 3

MMyySSQQ

LL

Cache

Cache

Cache

Cache

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 2– No.1, May 2012 – www.ijais.org

38

which has lowest number of clients connected to it, after this

router simply forward the request to sub server. Web services

are used to connect router and sub servers to database server.

The host database server receive queries as strings and return

results in form of dataset, which is serialize able in XML.

Third part of this architecture is sub server, which are actually

replicas of same server. Clients at each server can perform any

kind of operation which they are authorized to.

5.1 Comparison of architectures
The architectures are implemented and analyzed to give clear

picture of optimized results as shown in Fig. 7. A graph below

shows a small comparison of different scenarios and

respective behaviors of architectures.

Comparision

0

10

20

30

40

50 100 150 200

No. of users

R
es

p
o

n
se

 t
im

e

single server with cache

multiple server with database replication

Multiple servers with single database server and cache

Figure.7. Comparison of architectures

5.2 Autonomous Traffic Monitor
The architecture has many components, which can increase

the failure point as compared to single server. Since it is

possible that traffic congestion might occur due to extra load

on one server, so there must be some mechanism to actively

monitor the process at all times. To solve this problem, a

module as shown in Fig.8 is designed to provide facilities of

monitoring the architecture. The module is independent and

takes decisions on its own, but human interference is also

allowed for oracle involvement. If clients on one server

exceed a threshold set by administrator, then that server is

temporarily shutdown. Shutdown does not mean machine

power off, but it means that no more clients will be routed to

this server until the load is balanced among all the sub servers.

After the load is balanced, this server is allowed to take

requests again.

Figure.8. Overloading of server

6. CONCLUSION
Traffic congestion is a problem that is always faced when

number of clients accessing a web server increases beyond

limit. In case of an online university, where there are special

problems and needs specific solution. The presented

framework design given in this paper has been formulated

after careful analysis of the problem and also looking at

different aspects of its implementation. The presented

framework is implemented and tested. It is proved to be

robust, scalable and reliable.

7. REFERENCES

[1] M. Yu, P. S. Cardellini, V. D. Sistemistica. 1998.

Dynamic load balancing in geographically distributed

heterogeneous Web servers. In proceedings of 18th

International Conference on Distributed Computing

Systems, p.295–302.

[2] Cardellini, V. Colajanni, M. Yu. 1999. Dynamic load

balancing on web-server systems. In Proceedings of

IEEE International Conference on Internet Computing.

[3] Dias, D. M. Kish, W. Wukherjee, R. Tewari. 1996. A

scalable and highly available web server. In Proceedings

of International Conference on Technologies for the

Information Superhighway, Compcon.

[4] D. Skeen. 1982. A Quorum-Based Commit Protocol. In

Proceedings of the workshop on Distributed Data

Management and Computer Network, p.69 - 80.

[5] R. Thomas. 1999. A Majority Consensus Approach to

Concurrency Control for Multiple Copy Databases. In

ACM Transactions on Database Systems.

[6] M. Harchol-Balter, B. Schroeder, N. Bansal, M. Agrawal.

2001. Size-based scheduling to improve web

performance. ACM, New York, NY, USA.

[7] K. Park, V. S. Pai. 2006. Scale and Performance in the Co-

Blitz Large-File Distribution Service. In Proceedings of

the 3rd Symposium on Networked Systems Design and

Implementation, San Jose, CA, NSDI.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3582
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3582
http://portal.acm.org/results.cfm?query=author%3AP202840&querydisp=author%3AMor%20Harchol%2DBalter&coll=ACM&dl=ACM&CFID=74539897&CFTOKEN=17130773
http://portal.acm.org/results.cfm?query=author%3AP505198&querydisp=author%3ABianca%20Schroeder&coll=ACM&dl=ACM&CFID=74539897&CFTOKEN=17130773
http://portal.acm.org/results.cfm?query=author%3AP335019&querydisp=author%3ANikhil%20Bansal&coll=ACM&dl=ACM&CFID=74539897&CFTOKEN=17130773
http://portal.acm.org/results.cfm?query=author%3AP482340&querydisp=author%3AMukesh%20Agrawal&coll=ACM&dl=ACM&CFID=74539897&CFTOKEN=17130773

