

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume1– No.9, April 2012 – www.ijais.org

1

Approach for Transforming Monolingual Text Corpus
into XML Corpus

Deepak Sharma
Student

Department of Information Technology
Bharati Vidyapeeth College of Engineering & Research,

Pune 411043, India

 Prakash.R.Devale
Associate Professor

Department of Information Technology
Bharati Vidyapeeth College of Engineering & Research,

Pune 411043, India

ABSTRACT

In this paper, we are presenting the approach to convert the

text based monolingual corpus to Part-Of-Speech tagging

using an standard tagging tool in tagged file and then convert

tagged file in the XML format as per defined DTD (Document

Type Definition). The tagged text document is parsed through

the logic to generate the corpus in XML and also, it can be

further used for Information Retrieval, Text-To-Speech

conversion, Word Sense Disambiguation and also useful for

preprocessing step of parsing by providing unique tag to each

word which reduces the number of parses.

General Terms

Natural Language Processing

Keywords

Part-Of-Speech tagging, Java XML library, DOM Parser.

1. INTRODUCTION
In corpus linguistics, part-of-speech tagging (POS tagging),

also called word-category disambiguation or grammatical

tagging, is the process of marking up a word in a text (corpus)

as corresponding to a particular part of speech, based on both

its definition, as well as its context—i.e. relationship with

adjacent and related words in a phrase, sentence, or paragraph.

A simplified form of this is commonly taught to school-age

children, in the identification of words as nouns, verbs,

adjectives, adverbs, etc.

Once performed by hand, POS tagging is now done in the

context of computational linguistics, using algorithms which

associate discrete terms, as well as hidden parts of speech, in

accordance with a set of descriptive tags.

Definition: The process of assigning a part-of-speech or other

lexical class marker or tags to each word in a corpus is called

Part-Of-Speech. Figure 1.1 shows the example of Part-Of-

Speech tagging.

In this paper, we have implementing the logic to build the

corpus in XML as per user defined DTD for any

2. CLASSIFICATION OF PART-OF-

SPEECH TAGGING
The approach for Part-Of-Speech tagging is

classified into three types as follows:[1]

2.1 Rule-Based Tagging

Figure 1.1: Example of Part-Of-Speech Tags.

The basic idea behind in Rule based Tagging is to assign all

possible tags to all words. Remove tags according to set of

rules of type: if word+1 is an adj, adv, or quantifier and the

following is a sentence boundary and word-1 is not a verb like

―consider‖ then eliminate non-adv else eliminate adv.

Typically more than 1000 hand-written rules, but may be

machine-learned.

2.2 Stochastic Tagging
Based on probability of certain tag occurring given various

possibilities. In this approach for pos-tagging, it requires a

training corpus. There would be no probabilities for words not

in corpus. Also, Training corpus may be different from test

corpus. For stochastic tagging, choose most frequent tag in

training text for each word.

2.3 Transformation-Based Tagging
It is also as Brill-Tagging. This approach is a combination of

Rules-based and Stochastic tagging methodologies as:

a) Like rule-based because rules are used to specify tags in

a certain environment.

b) Like stochastic approach because machine learning is

used—with tagged corpus as input

The basic idea behind this approach as it Set the most

probable tag for each word as a start value. Also, Change tags

according to rules of type ―if word-1 is a determiner and word

is a verb then change the tag to noun‖ in a specific order.

Training is done on tagged corpus by write a set of rule

templates. Among the set of rules, find one with highest score

then continue from 2 until lowest score threshold is passed.

Keep the ordered set of rules, whereas rules make errors that

are corrected by later rules as: Tagger labels every word with

its most-likely tag. For example: race has the following

probabilities in the Brown corpus: P(NN|race) = .98 and

P(VB|race)= .02

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume1– No.9, April 2012 – www.ijais.org

2

3. PREPROCESSING TEXT CORPUS
Before converting the part-of-speech tagged text file into

XML. We need to follow some steps to achieve the desire

result. Prerequisite for tool: Java 1.5 or above must be

installed at your computer.

i. Download the standard part-of-speech tagger[2]

For English language from the following url:

http://nlp.stanford.edu/software/tagger.shtml#Download

From here download the ―Download basic English Stanford

Tagger version 3.1.0‖.

ii. Unzip the tagger ―Download basic English Stanford Tagger

version 3.1.0‖

iii. Prepare your corpus as input.txt as shown in Figure 3.1.

iv. Execute the following command using terminal as follows

to tag a file using the pre-trained bidirectional model:

java -mx300m -classpath stanford-postagger.jar

edu.stanford.nlp.tagger.maxent.MaxentTagger –model

models/english-bidirectional-distsim.tagger –textFile

input.txt > output.txt

Whereas,

–mx300m: It is used for JVM memory allocation depending

on the size of corpus.

–classpath: It is setting up the classpath.

–model: It is used for referencing a directory containing

trained POS taggers i.e. english-bidirectional-distsim.tagger.

–textFile: It is a input textFile format, as in this case it is .txt

file as shown in Figure 3.1.

2

Figure 3.1: Sample Input Text File (input.txt).

The English Stanford Tagger has three modes: tagging,

training, and testing. Tagging allows you to use a pre-trained

model (two English models are included) to assign part of

speech tags to unlabeled text. Training allows you to save a

new model based on a set of tagged data that you provide.

Testing allows you to see how well a tagger performs by

tagging labeled data and evaluating the results against the

correct tags. Here, we are only referring tagging mode for our

experimentation purpose. Figure 3.1 shows the sample input

text corpus file, which need to be preprocessed for XML

generation. After following the above steps by executing the

tagger as mentioned in step iv, we get an output tagged file as

shown in Figure 3.2. Now, the output file i.e. output.txt is

ready as an input for our XML generation.

The output file consists of the word and part-of-speech of

word separated by underscore ‘_’.

Figure 3.2: Sample Output Text File (ouput.txt).

Now, output.txt file is act as an input for XML Generation as

used in section 4.

4. XML GENERATION
Before designing any XML, we need to declare the Document

Type Definition (DTD) that defines the legal building blocks

of an XML document. Document Type Definition defines the

document structure with a list of legal element and attributes.

The DTD(Document Type Definition) as corpus.dtd for the

XML as shown below in Figure 4.1

<!ELEMENT corpus (s)*>

<!ELEMENT s (w)*>

<!ATTLIST s

 s_id CDATA #IMPLIED

>

<!ELEMENT w EMPTY>

<!ATTLIST w

 surface CDATA #REQUIRED

 pos CDATA #IMPLIED

>

Figure 4.1: DTD for XML Generation(corpus.dtd).

 Whereas,

surface: Surface form of a word, like each word in the

sentence "He went to the streets"

pos: Morphosyntactic category of a word, like each class

name (N-Noun, V-Verb, etc.) in the sentence "PP V P DT N"

We have been used the DOM Parser API for XML generation.

DOM Parser is a hierarchy-based parser that creates an object

model of the entire XML document, and hands that model to

us to work with. DOM Parser has tree-based API. It is easy to

navigate the tree model. Entire tree is loaded once into the

memory. It allows random access to XML document and

consists of rich set of API’s. [3]

DOM stands for Document Object Model. Many applications

want a tree representation of an XML document instead of a

series of callbacks from the parser. One API that provides

this is DOM. DOM is a standard produced by the W3C. As

of this writing, the current version is DOM Level 1, but Level

2 is a Proposed REC and should soon be a full REC.[4]

DOM based parsers load the entire XML stream into memory,

creating a hierarchical object that is referenced within the

application logic. [5]

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume1– No.9, April 2012 – www.ijais.org

3

From the section 3, we got a preprocessed tagged file as

output.txt, which can be used as an input file for the below

logic for xml generation.

import java.io.BufferedReader;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

import java.util.Scanner;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.transform.OutputKeys;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

import org.w3c.dom.Attr;

import org.w3c.dom.DOMException;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

public class Text2XMLConv {

 public static void main(String[] args) {

 new Text2XMLConv().doit();

 }

 public void doit(){

 try {

 int iSenCount=0;

 int iLoop;

 char ch;

 Scanner sn = null;

 String str;

 BufferedReader in=null;

 try {

 in = new BufferedReader(new FileReader("[Path of input tagged file]/output.txt"));

 }

 catch (FileNotFoundException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 DocumentBuilderFactory docFactory = DocumentBuilderFactory.newInstance();

 DocumentBuilder docBuilder = docFactory.newDocumentBuilder();

 // root elements

 Document doc = docBuilder.newDocument();

 Element rootElement = doc.createElement("corpus");

 doc.appendChild(rootElement);

 try {

 while ((str = in.readLine()) != null) {

 Element sen = doc.createElement("s");

 rootElement.appendChild(sen);

 Attr attr = doc.createAttribute("s_id");

 attr.setValue(""+iSenCount);

 sen.setAttributeNode(attr);

 String tokens[]=str.split(" ");

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume1– No.9, April 2012 – www.ijais.org

4

 for(iLoop=0;iLoop<tokens.length;iLoop++){

 Attr attrs=null;

 Attr attrp=null;

 Element word = doc.createElement("w");

 sen.appendChild(word);

 attrs = doc.createAttribute("surface");

 attrp = doc.createAttribute("pos");

 if(!"._.".equals(tokens[iLoop]) && !",_,".equals(tokens[iLoop])){

 sn = new Scanner(tokens[iLoop]).useDelimiter("_");

 while(sn.hasNext()){

 attrs.setValue(sn.next());

 attrp.setValue(sn.next());

 }

 }

 else{

 ch= tokens[iLoop].charAt(0);

 attrs.setValue(""+ch);

 attrp.setValue("PCT");

 }

 word.setAttributeNode(attrp);

 word.setAttributeNode(attrs);

 }

 iSenCount++;

 }

 } catch (DOMException e) {

/ TODO Auto-generated catch block

 e.printStackTrace();

 } catch (IOException e) {

/ TODO Auto-generated catch block

 e.printStackTrace();

 }

 // write the content into xml file

 TransformerFactory transformerFactory = TransformerFactory.newInstance();

 Transformer transformer = transformerFactory.newTransformer();

 transformer.setOutputProperty(OutputKeys.ENCODING, "UTF-8");//ISO-8859-1

 transformer.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM,"corpus.dtd");

 transformer.setOutputProperty("{http://xml.apache.org/xslt}indent-amount", "4");

 transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION,"yes");

 transformer.setOutputProperty(OutputKeys.INDENT, "yes");

 DOMSource source = new DOMSource(doc);

 StreamResult out = new StreamResult("[Path of output xml file]/corpus.xml");

 transformer.transform(source, out);

 System.out.println("File saved!");

 } catch (ParserConfigurationException pce) {

pce.printStackTrace();

 } catch (TransformerException tfe) {

 tfe.printStackTrace();

 }

 }

}

Figure 4.2: Java Code for XML Generation

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume1– No.9, April 2012 – www.ijais.org

5

On successful execution of code in Figure 4.2, we would get corpus.xml as shown below in Figure 4.3.

DOCTYPE corpus (View Source for full doctype...)>

 -<corpus>

 - <s s_id="0">

 <w pos="DT" surface="The" />

 <w pos="NNS" surface="licenses" />

 <w pos="IN" surface="for" />

 <w pos="JJS" surface

 <w pos="NN" surface="software" />

 <w pos="VBP" surface="are" />

 <w pos="VBN" surface="designed" />

 <w pos="TO" surface="to" />

 <w pos="VB" surface="take" />

 <w pos="RP" surface="away" />

 <w pos="PRP$" surface="your" />

 <w pos="NN" surface="freedom" />

 <w pos="TO" surface="to" />

 <w pos="VB" surface="share" />

 <w pos="CC" surface="and" />

 <w pos="VB" surface="change" />

 <w pos="PRP" surface="it" />

 <w pos="PCT" surface="." />

 </s>

 </corpus>

Figure 4.3: Resultant XML file as corpus.xml

5. CONCLUSION
We are presenting an approach for generating corpus in xml

format. It can be further used for Information Retrieval, Text-

To-Speech conversion, Word Sense Disambiguation and also

useful for preprocessing step of parsing by providing unique

tag to each word which reduces the number of parses. Also,

we are designing a toolkit for multiword extraction for a

monolingual corpus. This paper is simply an initial step for

the multiword extraction toolkit[6].

6. REFERENCES

[1] Andrew MacKinlay and Timothy Baldwin, ―POS

Tagging with a More Informative Tagset‖, at

Proceedings of the Australasian Language Technology

Workshop 2005, pages 40–48, Sydney, Australia,

December 2005.

[2] Christopher D. Manning, Part-Of-Speech Tagging From

97% To 100%: Is It Time For Some Linguistics?, in

CICLing2011.

[3] Su Cheng Haw, G. S. V. Radha Krishna Rao,,‖A

Comparative Study and Benchmarking on XML

Parsers‖, Faculty of Information Technology, Multimedia

University, 63100 Cyberjaya.

[4] Edwin Goei, Software Engineer, Sun Microsystems,‖

Java and XML Parsing Using Standard APIs‖,

September 11, 2000

[5] Nishchal Bhalla, Sahba Kazerooni,‖Web Services

Vulnerabilities‖, at Security Compass Inc 2007.

[6] C. Ramisch, A. Villavicencio, C. Boitet, Mwetoolkit: A

Framework For Multiword Expression Identification‖,

in: Proceedings of the Seventh International Conference

on Language Resources and Evaluation (LREC 2010),

Valetta, Malta, May 2010

