

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.8, April 2012 – www.ijais.org

5

Regression Optimizer

A Multi Coverage Criteria Test Suite Minimization
Technique

Saran Prasad

Cadence Design Systems India
Pvt. Ltd.

Mona Jain
Cadence Design Systems India

Pvt. Ltd.

Shradha Singh
Cadence Design Systems India

Pvt. Ltd.

C.Patvardhan
Department of Electrical Engineering,

Dayalbagh Educational Institute
Dayalbagh, Agra

ABSTRACT

Regression test suites are developed and maintained

throughout the lifetime of the software product. For testers, it

is common practice to add new testcases to the existing

regression test suite, with intent to test new features in the

software product or to capture any newly discovered fault.

Many a times the intention is to check whether the program is

sufficiently tested or not. This is done by measuring code

coverage. In case if not, then additional tests are added until

the test suite has achieved a specified coverage level

according to a specific criterion. Due to this continuous

addition of testcases, regression test suites tend to grow in

size. As a result, multiple testcases may exist which may test

the same feature or same set of requirements. Test Suite

minimization techniques identify redundant test cases from a

test suite based on some criterion. In this paper we propose a

novel test suite minimization technique which identifies

redundancy in a given test suite based on multiple coverage

criteria for example function, function call stack, line and

branch coverage of given test cases. Paper also talks about the

benefits of our approach over other existing test suite

minimization techniques.

General Terms

Regression test suite minimization technique.

Keywords

Software testing, regression testing, test-suite reduction, test-

suite minimization.

1. INTRODUCTION
Testing is an important activity during development of any

software system. In the testing process, it is common practice

to write testcases to test the specific functionality of the

software. Regression test suite is a test suite which contains

all the test cases to test the current functionality as well as the

previously working functionality of the software. In other

words, it is a test suite that can be used to perform testing of

the software after it is changed or modified due to addition of

new functionality. Regression test suites are an important

artifact of the software-development process and, and they are

maintained throughout the lifetime of a software product. In

order to limit the size of the test suites there are specific

techniques which are known as Test suite minimization

techniques. These techniques try to limit the size of the

regression test suite by identifying redundant testcases based

on some coverage criteria or by making use of traceability

matrix i.e. testcase to requirements mapping. These

techniques have two major drawbacks. One, they are

incapable of handling large size test suites because of

computational complexity of test case comparisons. Secondly,

while minimizing a test suite, they might reduce the ability of

the test suite to provide same coverage level according to a

specific adequacy criterion and same set of faults. Previous

studies have shown that sometimes this reduction is small, but

sometimes this reduction is significant. So there has to be a

technique which should be capable of doing it in a moderate

manner. Our approach has several features. It is capable of

operating in a live testing environment with test suites having

more than a million test cases. It identifies redundant test

cases without any loss of fault detection capability of reduced

test suite. The reduced test suite which is obtained with our

approach also provides the same coverage as the original test

suite. It is also innovative in the sense that it cuts short the

data set on the basis of some criteria in iterations and does

comparisons and helps in reducing the computational

complexity of test suite reduction problem.

2. BACKGROUND
Testers usually write new test cases to test new functionality

or feature in the software, and add them to the existing test

suite. As a result, these test suites grow in size with the

constant addition of test cases. In many practical scenarios

there is the absence of traceability matrix which maintains

testcase to requirement mapping. Ideally a tester should

review this matrix before adding the testcase into main test

suite, but in the absence of this mapping, testers simply write

and add test cases to the suite. Old test cases are not reviewed

before adding a new test case which may lead to redundancy.

Multiple test cases may exist in a test suite which may satisfy

the same requirements. There may be multiple set of two or

more testcases which may collectively satisfy same

requirement. In many practical cases, additional testcases are

added in the existing test suite until the test suite has achieved

a specified coverage level according to a specific criterion.

For example, to achieve sufficient statement coverage for a

program, one would add additional test cases to the test suite

until each statement in that program is executed by at least

one of the test cases. This again leads to redundancy and due

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.8, April 2012 – www.ijais.org

6

to existence of redundant testcases; size of the test suite grows

tremendously. And this is the point where problem arises.

Large test suite size is the pain area because test suite

execution can be very expensive both in terms of compute

resources as well as human resource time. More human

resources are needed to evaluate the failures and do root cause

analysis. There is wastage of resources, time, effort and

money by running too many test cases every time without

gaining any code coverage or capturing bugs. Large test suite

size is the pain area because test suites are run on servers; they

utilize compute resources. Test cases may also need human

intervention to check the output and set up other machinery.

So having too many test cases to run can be very expensive. If

the same problem is viewed from a developer‟s perspective

then practically, in any software company multiple developers

work on a project. These developers work on the code base

having millions lines of code which are maintained using

version control mechanism. It is also a common practice to

check in updated code into repository after regression test

suites is run. For a code base having million LOC, test suite

also contains million test cases. For a larger test suite,

execution time is longer and developers are required to wait

for a longer time for the code to be checked in. Large test

suite size is thus, major problem during test suite maintenance

and there is a requirement of techniques or mechanisms by

which redundant test cases can be eliminated from the test

suite.

3. LITERATURE REVIEW
A lot of research work has been done in the past to determine

redundant test cases in a given test suite. As per literature

work, the test-suite reduction problem may be stated as

follows [1, 3]:

Given: Test suite T, a set of test-case requirements r1; r2…rn

that must be satisfied to provide the desired test coverage of

the program, and subsets of T, T1; T2…Tn, one associated

with each of the ris such that any one of the test cases tj

belonging to Ti can be used to test ri.

Problem: Find a representative set of test cases from T that

satisfies all ris. The ris in the foregoing statement can

represent various test-case requirements, such as source code

statements, decisions, definition-use associations, or

specification items.

Piles of efforts have also been put into research on how to

reduce the test suite size of a previously acquired test suite

while maintaining its effectiveness. (Yanjun et al., 2010)

recommends Greedy algorithm and with the growth of test

size and suggests the usage of greedy evolution and GRE for

more general by analyzing the influencing factors and

performance the running time of algorithms of distinctions of

6 classical algorithms viz greedy, greedy evolution, heuristics,

GRE , ILP and GA. A method for test suite minimization that

uses an additional testing criterion to break the ties in the

minimization process, under specific conditions, their

proposed approach can also accelerate the process of

minimization [4].

Another work of Scott McMaster and Atif M. Memon [5]

explains that Test-suite reduction typically employs

sophisticated tools such as source-code analyzers and

instrumentors to reduce the number of test cases in a given

test suite; the obtained subset yields equivalent coverage with

respect to some criterion [3, 2, 1, 6, 7]. Emerging trends in

software development present new challenges for existing

reduction techniques that may limit their applicability. First,

developers rely heavily on reusable components. Source code

of these components is usually not available, limiting the

application of source-code level instrumentors and analyzers

[8]. Second, developers use a combination of programming

languages to implement systems. Certain static analyzers and

source-code instrumentors may not be available (or may be

too complex/expensive to execute) for some of these

languages. For example, some static analyses become

complex in object-oriented systems due to the presence of

virtual function calls. Even if analysis techniques are available

for each language, combining the results from different

analyses may become complex.

Another research work by S.Selvakumar [9] presents a novel

approach of model-based regression test minimization

(Dynamic Dependence Graph) that uses the EFSM model

dependence analysis to reduce a given regression test suite.

This approach claims that it has good fault detection ability

when compared to that of the Static Dependence Graph

approach, by considering all the interaction patterns instead of

ignoring the patterns of the same dependencies between

transitions which occur during the traversal of the model in an

iterative manner. Their initial experience shows that this

approach may significantly reduce the size of regression test

suites and also improve the fault detection capability [9].

Dennis Jeffrey and Neelam Gupta [10] in their work explain

that that test suite minimization with respect to a given testing

criterion can significantly diminish the fault detection

effectiveness (FDE) of suites. Their work presents a new

approach for test suite reduction that attempts to use

additional coverage information of test cases to selectively

keep some additional test cases in the reduced suites that are

redundant with respect to the testing criteria used for suite

minimization, with the goal of improving the FDE retention of

the reduced suites. We implemented our approach by

modifying an existing heuristic for test suite minimization.

Our experiments show that our approach can significantly

improve the FDE of reduced test suites without severely

affecting the extent of suite size reduction.

4. NEED FOR TEST SUITE

MINIMIZATION
When test suites become too large, they can be difficult to

manage and expensive to run. They need more compute

resources and more execution time. Thus there is a genuine

need of minimization techniques which can identify redundant

test cases from a given test suite and help in reducing the size

of a given test suite. Resultant test suite will be known as

“Reduced Test Suite”. Thus test suite minimization techniques

help in effective regression testing by:

 Reducing execution time

 Effective utilization of compute resources

 Reducing resource effort

 Cost saving.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.8, April 2012 – www.ijais.org

7

5. COMPLEXITY OF TEST SUITE

MINIMIZATION PROBLEM
Our requirement of having a new test suite reduction

technique does not mean that there are no existing techniques.

But the major area of concern with every test suite reduction

approach is that, are they capable to operate on live testing

environment or real world software programs? The main

reason behind this could be the computational complexity of

the test suite reduction problem.

The process of identifying redundancy among test cases is not

so trivial, because of huge regression suite size. In a typical

live testing environment a test suite may contain hundreds of

test cases - sometimes even more than 10,000 test cases or

even a million. In order to identify redundant test cases, each

test case needs to be compared with every other test case

which makes this a problem of O(𝐧𝟐) time complexity i.e.

time required to perform comparisons is directly proportional

to the square of the size of the number of test cases. Let‟s

consider a typical test suite for a live product to be of 1

million test cases then (𝟏 𝐦𝐢𝐥𝐥𝐢𝐨𝐧)𝟐 comparisons are

challenging.

This is further complicated by the fact that a test case to test

case comparison is not a simple operation but could have

multiple comparison criterions. For example test cases may be

compared on the basis of statement coverage, function

coverage, function call stack, branch or decision etc. With a

typical live product containing millions of LOC, the line

coverage comparison would be a time consuming operation.

By line coverage comparison we specifically mean

comparison of actual line numbers rather than comparison of

percentage line numbers. These comparisons are definitely too

time consuming that may limit the usability of the solution.

Hence to solve this we need to identify a test suite

minimization technique which can reduce the complexity of

the problem so that redundant test cases can be found within a

reasonable amount of time with an acceptable degree of

accuracy. Test Suite reduction should happen in such a way

that the reduced test suite should be able to provide same

coverage and capture same number of faults as the original

test suite. The technique should be capable to operate on real

testing environment with acceptable performance.

6. RESEARCH QUESTIONS
Few questions which needed a thorough research before

finalizing the reduction approach are being explained here:

6.1 Definition of “test case redundancy” as

per literature
The first step was naturally to define test case redundancy.

When do we regard two test cases as being similar and by

extension one of them as being redundant? The question is not

trivial as there have been several alternative approaches in the

literature. As per prior research works [11, 12, 13, 14, 15]

“Test Case Redundancy” mean removing test cases from a

test suite in such a way that reduced test suite should:

 Provide the same coverage (in terms of some

coverage criteria like function flow, statement, and

branch etc) of the software as the original test suite.

 Satisfy the same requirements as the original test

suite i.e. effectiveness of the test suite should not be

affected.

 Be capable to reveal same set of faults as the

original test suite.

6.2 Our definition of test case redundancy
We have defined redundancy as “Test cases TC1 and TC2 are

said to be redundant if they have same functional flow, same

line coverage and same branch coverage. Functional flow or

sequence of functions call should be same starting from the

first function”.

With this definition in place we are making sure that those test

cases which will come up as redundant as per our approach

will have same functional flow i.e. they will call same set of

functions that too in same sequence, same line coverage and

same branch coverage. Testcases whose execution generates

the same functional flow shows test cases in a suite which are

testing same features. So the probability that they are

redundant is higher. Along with functional flow we are also

comparing statement coverage and by same statement

coverage we mean comparison of actual line numbers which

got covered during test case execution. Although statement

coverage is a good coverage metric but it is insensitive to

control structures and does not adequately take into account

statements which involve branching and decision-making i.e.

the control structures. Because of this reason we have also

considered the criteria of same branch coverage. Same branch

coverage ensures same path during program execution.

6.3 Our definition of “Similar Testcases”
We have opted two definitions of “similar test cases”

 Test cases TC1 and TC2 are said to be similar if

they call same set of functions starting from the first

function OR

 Test case TC1 is similar to TC2 if functions called

by TC1 is a proper subset of functions called by

TC2, staring from the first function.

The similar test cases will get filtered at first step of our

algorithm and that is the reason for taking them into

consideration.

7. TEST SUITE MINIMIZATION

ALGORITHM
With our invention we are presenting a generic test suite

minimization approach for determining redundant test cases in

a given test suite based on multiple coverage criteria. Our

approach has the capability to operate on a real world testing

environment. It can identify redundant test cases from test

suites having multimillion test cases without any loss of fault

detection capability of reduced test suite that too in adequate

amount of time. It also ensures the same code coverage of the

reduced test suite as provided by the original test suite.

As it has already been explained in the problem statement that

the test suite reduction is a computationally expensive

operation because of number of comparisons among the test

cases, our approach tries to resolve it in steps. Rather than

comparing each test case with another in a single iteration, it

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.8, April 2012 – www.ijais.org

8

forms the cluster of similar test cases at first step and then

applies three coverage reduction criteria to identify redundant

ones within each cluster. In this way it breaks the bigger

problem into smaller chunks. Thus our algorithm identifies

redundant test cases on the basis of following reduction

criterion:

 Reduction Step 1: “Test case to Function” Binary

Matrix Generation”. This is done on the basis of

same set of functions called. The output of this step

is given as input to next step.

 Reduction Step 2: Use of Hierarchical Clustering to

form clusters of similar test cases in the given test

suite

 Reduction Step 3: Compare functional flow

(sequence of functions call) within the clusters of

similar test cases

 Reduction Step 4: Compare line coverage of test

cases obtained in step 3.

 Reduction Step 5: Compare branch coverage of test

cases obtained in step 4

Following section describes the reduction steps of our

approach along with the reasoning of how these reduction

steps helps in overcoming the limitations which persist in the

existing techniques.

7.1 Step1: Generate a binary matrix having

“Test case to Function” mapping
By “Testcase to Function Mapping” we mean “A relationship

between testcase and functions in terms of all the functions

that have been called during test case execution.”

Using this relationship a binary matrix is deduced with test

cases in the rows and functions in the column. A „1‟ entry in

the matrix indicates a call to the corresponding function

whereas a „0‟ indicates no function call.

In order to deduce this mapping, function coverage data is

needed. Function coverage data can be collected either from

Purecov or GCOV. There are other coverage analyzers also

but our approach supports data of these two coverage

analyzers. It can further be enhanced to support data from

other coverage tools.

We have implemented our approach in the form of a java

program. Our main program contains two parsers one for

Purecov data and another for GCOV data. These are being

explained in detail in next section.

7.1.1 Purecov Data Parser:
Output of Purecov coverage analyzer [16] is .pcv files i.e.

Purecov generates coverage data in the form of .pcv files.

Users are supposed to enable Purecov and generate

instrumented binaries of source program. When testcases are

run on these instrumented binaries then coverage results are

generated and written in .pcv files. Purecov has the ability to

generate individual .pcv file for every test case or a

consolidated .pcv file for a given set of test cases. Our

approach requires individual pcv files for every test case.

Detailed Steps:

 Our main program takes Purecov‟s .pcv file

directory path as input.

 This directory contains all <testcasename.pcv> files

generated by Purecov.

 Purecov parser converts each .pcv file into an export

format (human readable format) by using Purecov‟s

“–export” switch.

 It then reads each export file and picks all lines

which starts from –fu option with #calls >0, “fu”

provides information about a single function within

a file.

 It then generates a relationship and saves test case

name along with function name.

 Finally it generates binary matrix out of this

relationship.

7.1.2 GCOV Data Parser:
GCOV [17] is an open source software which is freely

available. When test cases are run on GCOV instrumented

binaries, then .gcov files are created for every source file.

These gcov files are in the human readable format. Users are

supposed to save the .gcov files for individual test cases in

different directories.

 Our main program takes path of above mentioned

directories having .gcov files as input.

 It then starts reading main .gcov file, parses each

line and picks function name from the line which

starts with function keyword.

The output of step 1 is a binary matrix of test case to function

mapping. This matrix is provided as input to program which

implements Hierarchical Clustering algorithm.

7.2 Step 2: Use of Hierarchical Clustering [18]

to form clusters of similar test cases in the given

test suite
Test suite reduction is not a trivial problem to solve because

of number of comparisons among test cases. If total test cases

are „n‟, then each test case needs to be compared with every

other test case to figure out the redundant one, hence there

will be n2 comparisons. Thus complexity becomes O (n2).

Let‟s consider a typical test suite for a live product to be of 1

million test cases then (1 million)2 comparisons are

challenging. Because of the said problem our approach works

in steps. Rather than taking the complete regression test suite

in single iteration and comparing each test case with another,

it forms the cluster of similar test cases at first step and then

applies some filters to identify redundant ones within each

Purecov

Data

Gcov Data

Purecov

Parser

Gcov Parser

Binary Matrix of

Testcase to Function

Mapping

Fig.1. Reduction Step 1 Reading of Coverage Data and

Its Conversion into Testcase to Function Mapping

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.8, April 2012 – www.ijais.org

9

cluster. To break the bigger problem into smaller chunks,

hierarchical clustering algorithm has been implemented. This

algorithm makes use of hamming distance [19] concept to

form clusters of similar test cases. For the implementation of

this step:

 A binary matrix of test case to function mapping is

required as input. This will be obtained from Step1.

 Testcases are grouped on the basis of functions

being called by testcase (using a threshold i.e. the

maximum number of allowable function calls

mismatch).

 Specifically for this work, clustering is done taking

threshold zero i.e. only those testcases are added to

one cluster if all the function calls are identical.

 Subset filtration is also done at this step which gives

the set of testcases with function calls being subset

to another test case.

Detailed Steps:

 Take binary matrix which is generated in step 1with

test cases as rows and functions as columns.

 Take a datastructure for saving final list of testcase

indexes, for e.g. create an ArrayList of ArraList of

Integer (say cluster).

 If there are n rows then for row i set i=0 and j=1

 Pick the row if j is not 0 (row 0 mean that

particular row is already added in the cluster. A

Boolean array is maintained with a flag value for

every testcase)

Note: Hamming Distance Calculation Condition :- No point in

calculating Hamming distance between rows i and j if they are

zero. A row equals to 0 means all the values within the row is

0 and that it has already been added in the cluster.

 Take a temp data structure. Create a temp arraylist

 Put i in the ArrayList

i. Calculate hamming distance between i

and j

ii. If distance is smaller than threshold ,

Merge ith and jth : For all places in the jth

row where the value is 1 make the value

at that place in the ith row equal to 1.

iii. Set the jth row zero (in Boolean array this

will make sure that the particular row has

already been added in the cluster)

iv. Put j (testcase index) in the ArrayList

temp () and set j=1 else increment j by 1

i.e. j=j+1

v. Repeat step i till j<n

 Once all the iterations from 6i to 6iv are done, all

the test case indexes which belong to one cluster

will be saved in “temp” arraylist. Put temp in the

ArraList of ArrayList of Integer cluster

 Increment i by 1 i.e. repeat all the steps for all the

remaining rows

 Go step 4 while i < n

 ArraList of ArrayList of Integer i.e. cluster will

have all clusters of similar test cases.

7.2.1 Merit of using hierarchical clustering:
The advantage of implementing hierarchical clustering

algorithm is that it outputs clusters of similar test cases

thereby helps in reducing the number of comparisons and

enhances the computational efficiency of the reduction

process. Once clusters of similar testcases are formed then test

cases within the individual clusters are compared based on

remaining coverage criteria e.g. function call stacks, line and

branch coverage. The implementation of hierarchical

clustering to form clusters of similar test cases is an

innovative way to curtail the computational effort of test case

comparisons.

7.3 Step 3: Compare functional flow (sequence

of functions call) within the clusters of similar

test cases

7.3.1 Call Stack
In a stack-based architecture, a thread in a running program

has a call stack as a part of its state. Informally, the call stack

is simply the series of currently active calls. Function

activation records are pushed onto the call stack when they are

called and popped when they return [5].

Next step of our reduction process is to compare function call

sequences among the clusters of similar test cases. Coverage

tools usually do not provide function call sequences. They

only provide function coverage. Purecov and GCOV also do

not generate function sequences. There are profilers and

debuggers available which can be used to determine function

call sequences during test case execution. In our case we have

made use of a debugger called gdb (GNU Debugger) [20] to

determine function sequences during test case execution. Few

wrappers using java programming language have been written

which automates the debugger running process and parses the

output of the debugger and writes the function sequence

neatly in output files which are further used for comparisons.

Our method is very smooth and quick which determines

recursive functional flow during test case execution. Normally

a debugger provides function call trace if the program

execution is broken and not every time. But our approach

makes use of debugger to print function call stack during

normal execution as well and helps in capturing the function

call sequences.

Binary Matrix of

Testcase to

Function

mapping

Hierarchical

Clustering

Algorithm

Clusters of

Similar

Testcases

Fig.2. Reduction Step 2 Formation of Clusters of Similar Test

Cases

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.8, April 2012 – www.ijais.org

10

7.4 Step 4: Compare line coverage of test cases

obtained in step 3
Testcases obtained in step 3 are further compared on the basis

of line coverage. By line coverage comparison we mean

comparison of actual line numbers of every function of

program source code which got hit during test case execution.

The % line coverage that should match depends upon a

threshold value which is configurable. Default threshold value

is 0 which shows exact match.

By comparing actual line numbers for every function our

approach makes sure that those two test cases are hitting same

set of statements thereby increasing the chances of their being

redundant.

7.5 Step 5: branch coverage of test cases

obtained in step 4
Testcases obtained in step 4 are further compared on the basis

of branch coverage. By branch coverage comparison we mean

comparison of all branches or paths in the program which got

taken during test case execution.

A branch is the outcome of a decision, it measures which

decision outcomes have been tested. Branch coverage criteria

give a more in-depth view of the program source code paths

than simple statement coverage. That is why we have

considered it at the final step of reduction.

By comparing branch coverage of two test cases our approach

makes sure that those two test cases are covering the same

paths in the program flow thereby increasing the chances of

their being redundant.

8. EXPERIMENTAL STUDY
As already mentioned earlier we have implemented the

reduction algorithms by using java programming language

and ran two experiments to evaluate our test suite reduction

technique. Our experiment was performed on a C Source with

2000 LOCs. Total number of test cases were 300 (randomly

generated inputs using model, in which 10 intentionally were

the copy and 10 were the superset of 20 text cases). Total time

taken to perform the experiment was < 30 seconds on 8 GB

intel core i7.

9. CONCLUSION
We have developed a new Test Suite Reduction approach

which is innovative in the sense that it cuts short the data set

on the basis of some criteria in iterations and does

comparisons and helps in reducing the computational

complexity of test suite reduction problem. It ensures to

reduce the real world regression test suites on the basis of

multiple coverage criteria namely function, function call

stack, line and branch coverage in a moderate amount of time

without any loss of percentage code coverage and fault

detection capability of reduced suite. The only limitation

which persists is the dependency of this approach on coverage

data.

10. REFERENCES
[1] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong.

Empirical studies of test-suite reduction. Journal of

Software Testing, Verification, and Reliability, V. 12,

no. 4, December, 2002.

[2] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. An

empirical study of the effects of minimization on the

fault detection capabilities of test suites. Proceedings of

the International Conference on Software Maintenance,

pages 34-43, November 1998.

[3] M. J. Harrold, R. Gupta, and M. L. Soffa. A

methodology for controlling the size of a test suite. ACM

Transactions on Software Engineering and Methodology

(TOSEM) July 1993 Volume 2 Issue 3.

[4] Selvakumar Subramanian and Ramaraj Natarajan. A

Tool for Generation and Minimization of Test Suite by

Mutant Gene Algorithm. Journal of Computer Science 7

(10): 1581-1589, 2011. ISSN 1549-3636, © 2011

Science Publications.

[5] Scott McMaster and Atif M. Memon. Call Stack

Coverage for Test Suite Reduction. Department of

Computer Science, University of Maryland, College

Park, MD 20742.

[6] W. Eric Wong, Joseph R. Horgan, Saul London, Aditya

P.Mathur. Effect of test set minimization on fault

detection effectiveness. Proceedings of the 17th

International Conference on Software Engineering, p.41-

50, 1995, Seattle, Washington, United States.

[7] W. E. Wong, J.R. Horgan, A. P. Mathur, and A.

Pasquini. Test set size minimization and fault detection

effectiveness: A case study in a space application.

Proceedings of the 21st Annual International Computer

Clusters of

similar test

cases

Get the

functional

flow

Compare

functional

flow

Set of testcases

having same

functional flow

Fig.3. Reduction Step 3 Comparison of Functional Flow

Set of testcases

having same

functional flow

Line coverage

data

Line coverage

comparator

Set of testcases

with same

functional flow

and same line

coverage

Fig.4. Reduction Step 4 Comparison of Line Coverage

Set of testcases

with same

functional flow

and same line

coverage

Branch

coverage data

Branch

coverage

comparator

Final candidate

redundant test

cases

Fig.5. Reduction Step 5 Comparison of Branch Coverage

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.8, April 2012 – www.ijais.org

11

Software and Applications Conference, pages 522-528,

August 1997.

[8] M. Morisio, C. B. Seaman, A. T. Parra, V. R. Basili, S.

E.Kraft and S. E. Condon. Investigating and improving a

COTS-based software development. Proceedings of the

22nd international conference on Software engineering,

pages 32-41, Limerick, Ireland, 2000.

[9] S. Selvakumar, N. Ramaraj. Regression Test Suite

Minimization Using Dynamic Interaction Patterns with

Improved FDE. European Journal of Scientific Research

ISSN 1450-216X Vol.49 No.3 (2011), pp.332 353 ©

EuroJournals Publishing, Inc. 2011.

http://www.eurojournals.com/ejsr.htm

[10] Dennis Jeffrey and Neelam Gupta. Improving Fault

Detection Capability by Selectively Retaining Test Cases

during Test Suite Reduction. IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING, VOL. 33, NO. 2,

FEBRUARY 2007

[11] Gordon Fraser and Franz Wotawa. Redundancy Based

Test-Suite Reduction, Institute for Software Technology

Graz University of Technology Inffeldgasse 16b/2 A-

8010 Graz, Austria.

[12] Hiroshi Inamura Ajay Chander Dinakar Dhurjati.

Method For Test Suite Reduction Through System Call

Coverage Criterion United States Patent Application

Publication. Publication Number US 2009/0070746 A1.

Pub. Date: Mar 12, 2009.

[13] Negar Koochakzadeh and Vahid Garousi. A Tester-

Assisted Methodology for Test Redundancy Detection.

Hindawi Publishing Corporation. Advances in Software

Engineering Volume 2010, Article ID 932686, 13 pages

DOI:10.1155/2010/932686

[14] Shin Yoo and Mark Harman. Pareto Efficient Multi-

Objective Test Case Selection. King‟s College London

Strand, London WC2R 2LS, UK

{Shin.Yoo,Mark.Harman}@kcl.ac.uk

[15] Emanuela G. Cartaxo, Francisco G. O. Neto, Patr´ıcia D.

L. Machado. Automated Test Case Selection Based on a

Similarity Function

[16] Rational Purecov Tool:

http://www.ing.iac.es/~docs/external/purify/purecov-

4_1.pdf

[17] GCOV: A Test Coverage Program

http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc_8.html

[18] Hierarchical Clustering:

http://www.stat.cmu.edu/~cshalizi/350/lectures/08/lectur

e-08.pdf;

http://en.wikipedia.org/wiki/Hierarchical_clustering

[19] Hamming Distance:

http://en.wikipedia.org/wiki/Hamming_distance.

[20] GDB: GNU Debugger http://www.gnu.org/s/gdb/

http://www.eurojournals.com/ejsr.htm
http://www.ing.iac.es/~docs/external/purify/purecov-4_1.pdf
http://www.ing.iac.es/~docs/external/purify/purecov-4_1.pdf
http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc_8.html
http://www.stat.cmu.edu/~cshalizi/350/lectures/08/lecture-08.pdf
http://www.stat.cmu.edu/~cshalizi/350/lectures/08/lecture-08.pdf
http://en.wikipedia.org/wiki/Hierarchical_clustering
http://en.wikipedia.org/wiki/Hamming_distance
http://www.gnu.org/s/gdb/
http://www.gnu.org/s/gdb/

