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ABSTRACT 
This paper studies the two-dimensional state M/G/1 

queue with multiple working vacations in which the 

server works with different service rate rather than 

completely terminating the service during a working 

vacation period, also the server is following non-

exhaustive service policy i.e. the server may go on 

vacation even if there are some customers present in 

the system. We assume that the server begins the 

working vacation when the system is empty. The 

service time during busy period is having general 

distribution whereas the service time during working 

vacation period, working vacation time and vacation 

time of the server are assumed to be exponentially 

distributed. Explicit probabilities of exact number of 

arrivals & departures by a given time are obtained. 

Number of units arrive by time t, number of units 

depart by time t, waiting time distribution, cumulative 

distribution for sojourn time, server’s utilization time 

are also presented numerically and graphically both. 

Some particular cases are derived there from.  

Keywords 
Two-Dimensional State model, Multiple Working 

vacation, Non-exhaustive service, Laplace Transform, 

Supplementary Variable Technique 

1. INTRODUCTION 
The vast literature of queueing theory abounds in 

results of considerable theoretical elegance and 

significance. Our main objective is to study the 

transient solution of a two-dimensional state non-

markovian queueing system with multiple working 

vacations and non-exhaustive service policy. Studying 

the transient solution of queueing models analytically is 

usually very difficult even for simple cases. Pegden and 

Rosenshine [7] first obtained the transient solution for 

two-dimensional state M/M/1 queue. But the problem 

becomes complicated when the concept of non-

exhaustive service and multiple working vacations are 

included in it. 

In a queueing system with server vacations; vacations 

may start when queue is empty or may start when there 

are customers in the queue. In literature, a time interval 

when the server is either  

unavailable (for various reasons) or idle is called a 

vacation period. A vacation period may contain a 

number of vacations just as a busy period contains a 

number of busy periods. A multiple vacation policy 

requires the server to keep taking vacations until it 

finds at least one customer waiting in the system at a 

vacation completion instant.  

In the classical vacation queueing models, during the vacation 

period the server doesn’t continue on the original work and 

such policy may cause the loss or dissatisfaction of the 

customers. For the multiple working vacation policy, the 

server can still work during the vacation and may accomplish 

other assistant work simultaneously. So the working vacation 

is more reasonable than the classical vacation in some cases.  

In a non-exhaustive service and multiple vacation policy, the 

server may go on vacation even if there are some customers 

waiting for service. It is assumed that the server completes the 

service in hand before the interruption. This feature is not 

available in exhaustive service systems. Takagi [10] and Tian 

and Zhang [11] presented various vacation models with 

exhaustive and non-exhaustive service. Sharda and Indra [9] 

considered queueing models with exhaustive and non-

exhaustive service and multiple vacations. Recently, Indra and 

Vijay [5] obtained the explicit transient solution of two-state 

markovian queueing model with exhaustive and non-

exhaustive service in which arrivals or departures or both are 

occurring in batches of variable sizes. However, in the 

literature, there is no published work on queues with both non-

exhaustive service and multiple working vacations. 

Queueing models with server working vacations have 

attracted much attention from numerous researchers since 

Servi and Finn [8]. They obtained the probability generating 

function of the queue length and the LST of the waiting time, 

and applied their results to performance analysis of a gateway 

router in fiber communication networks. Subsequently, Kim, 

Choi and Chae [6] and Wu and Tagaki [12] generalized the 

study in [8] to an M/G/1 queue with working vacations. Baba 

[1] extended the study to a GI/M/1 queue with working 

vacations by matrix-analytic method.  

Although the existing results of working vacation queues 

reported in literature are obtained by different methods, we 

base our analysis of non-markovian working vacation queue 

on two-dimensional state model in which the state of the 

system is given by (i , j), where ‘i’ is the number of arrivals 

and ‘j’ is the number of departures until time t. we denote the 

state probabilities for the model as (t)P ji,
. (t)P ji,

is the 

probability that exactly i arrivals and j departures have 

occurred by time t. The solution for (t)P ji,
 provides 

considerable information concerning the transient behaviour 

of the queueing model. 

In the model studied here, we assume that customers arrive 

according to a poisson process with rate λ . The service time 

during busy period is assumed to be generally distributed with 

probability density function D1(x) and 1η (x)Δ is the first 

order probability that the corresponding service time will be 

completed in time (x, x+ Δ ) provided the same had not been 

completed till time x. And  
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As soon as the system becomes empty, the server 

begins a working vacation of random length with 

probability one and serve a customer at a lower rate 

rather than completely stopping service during working 

vacation period. If the server returns from the working 

vacation to find the system not empty, the server shifts 

to higher service rate and starts to work immediately. If 

upon return from working vacation, the server finds no 

customer waiting, it begins another working vacation 

immediately and continues in this manner until it finds 

at least one customer waiting. Also the server may go 

on vacation (non-exhaustive service) even if there are 

some customers waiting for service. The service time 

during working vacation period, working vacation 

times and vacation times are assumed to follow 

exponential distribution with parameters Vμ , w and v 

respectively. The arriving customers form a single 

waiting line based on the order of their arrivals, i.e., a 

‘first-come, first-served’ discipline is followed. As only 

one customer can be served at a time, customers have 

to wait in the queue when they enter the service facility 

and find that the server is busy. All the stochastic 

processes involved in the system are assumed to be 

statistically independent. 

1.1 Notations. The following notation and 

probabilities are used throughout the paper. 

 

Let I denote the state of the server 

as





  vacation.on working isserver  V,

customers.  toservice
 providingin busy  is and operating isserver  B,I

λ = mean arrival rate of customers. 

1/w= mean start up duration when the system is empty 

i.e. w is the probability of change of state from working 

vacation to busy. 

Vμ = mean service rate during the working vacation 

period. 

D1(x) = distribution function of service time during 

busy period. 

1η (x) = probability density function of busy period. 
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s)(x,P Bj,i, Laplace – Stieltjes transform of     t)(x,P Bj,i,
. 

(s)P Vj,i, LST of (t)P Vj,i, . 

(s)P Fj,i, LST of (t)P Fj,i,
. 

(s)P ji, LST of (t)P ji,
. 

k, k1, k2 are simply notations over summations used 

in section (2). 

2. FORMULATION AND TRANSIENT 

SOLUTION OF THE PROBLEM 
We first establish the mathematical equations that govern the 

system, by using the remaining service time during busy 

period as the supplementary variable. Next, we develop a 

recursive method to derive the transient probabilities of exact 

number of ‘i’ arrivals and ‘j’ departures in the system in busy, 

working vacation and vacation states. 

Let us define 

t)(x,P Bj,i,
= The probability that there are exactly i arrivals 

and j departures by time t and the server is busy in relation to 

the queue and elapsed service time lies between x & x+ ;                 
                                                                                            ij   

(t)P Vj,i,
= The probability that there are exactly i arrivals and 

j departures by time t and the server is on working vacation;                                             

                                                                                           ij         

(t)P Fj,i,
 = The probability that there are exactly i arrivals and j 

departures by time t and the server is free in relation to the 

queue;                                            ij   

(t)P ji,  = The probability that there are exactly i arrivals and j 

departures by time t;                           ij                                                    

From the defined probabilities the difference-differential 

equations governing the system are  

)δt)(1(x,λP

t)(x,(x))Pη(λt)(x,P
x

t)(x,P
t

j1,iBj,1,i

Bj,i,1Bj,i,Bj,i,

 










                                                          

                                                            0ji ;    (2.1) 
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The appropriate boundary condition is 
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We introduce the following Laplace - Stieljes transform 
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, 
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Further, we define that the system starts when there are 

no units in the system and the server is on working 

vacation, i.e. 

1(0)P V0,0,  , 0(0,0)P B0,0,   and 0(0)P F0,0,        (2.7) 

Taking the LST on both sides of equations (2.1) to 

(2.4), it yields  
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Similarly, proceeding in the usual manner with oundary 
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Our main task is to find the transient probabilities 
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vwλ
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)!kj(i
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1
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1
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                                                       ;  0  j  i      (2.28) 

 

 

 

 

 

3. VERIFICATION OF THE MODEL 
3.1 The Laplace transform (s)Pi, of the probability (t)Pi,

that 

exactly i units arrive by time t is  

 


 
i

0j

ji,Fj,i,Vj,i,ji,Bj,i,i, )δ-(s)(1P(s)P)δ-(s)(1P(s)P

     
1i

i

λ)(s

λ


                                                 0i;    (3.1) 

and hence 

i!

et)(λ
(t)P

λti

i,



                                                 0i;     (3.2) 

The arrivals follow Poisson distribution as the probability of 

total number of arrivals is not affected by the working 

vacation time and vacation time of the server. 

3.2 The Laplace Transform (s)P j,  of the probability (t)P j,
 

that exactly j units depart by time t is 

 




 
ji

ji,Fj,i,ji,Bj,i,Vj,i,j, )δ-(s)(1P)δ-(s)(1P(s)P(s)P

                                                                                            (3.3) 

And 

 




 
ji

ji,Fj,i,ji,Bj,i,Vj,i,j, )δ-(t)(1P)δ-(t)(1P(t)P(t)P

                                                                                            (3.4) 

3.3 From (2.15) to (2.21), it is seen that 

 
s

1
)δ-(s)(1P)δ-(s)(1P(s)P

0i

i

0j

ji,Fj,i,ji,Bj,i,Vj,i, 


 

and hence 

  1)δ-(t)(1P)δ-(t)(1P(t)P
0i

i

0j

ji,Fj,i,ji,Bj,i,Vj,i, 


 

 

a verification. 

 

4. SPECIAL CASE 
Results for the case, when the service time during busy period 

is exponential, i.e. B1 μ(x)η  . Substituting 
B1 μ(x)η   

in equations (2.22) to (2.28).  

(t)P V0,0,
remains same as in equation (2.22).  

(t)Fλ(t)P
w,0μλλ,

i,01,

i

Vi,0,
V

                               ;i 0    (4.1) 
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                                                                      ;i j 0    (4.5) 
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                                                          0ji;       (4.6) 

Equations (2.22), (4.1) to (4.6) are same as equations 

(20) to (25) of Indra & Ruchi (2010). 

 

SUBCASES  

Subcase I 

When the server is following exhaustive service policy 

only i.e. letting v in equations (4.1) to (4.6), the 

results obtained agree with eqns. (10) to (13) of Indra 

& Ruchi [4]. 

Subcase II 
Along with subcase I, when there is no service during 

working vacation period, i.e. 0μV  . Substituting 

0μV   in the results of subcase I, the results 

obtained coincide with eqns. (1.2.15) to (1.2.20) of 

Indra [3]. 

Subcase III 
When server is instantaneously available and he does 

not go for a vacation i.e. the mean vacation time w-1 is 

zero. Letting w , v and 0μV  in 

equations (4.1) to (4.6), we have 

λt
V0,0,0,0 e(t)P(t)P                                 (4.7) 
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(4.7) to (4.9) coincide with eqn. (5) of Pegden and 

Rosenshine [7]. 

5.  NUMERICAL RESULTS 
In this section, to demonstrate the efficiency of our 

analytical results we perform numerical experiment by 

using MATLAB. We study a special case of 

exponential service time during busy period, and 

probabilities of exact number of arrivals in the transient 

state are obtained. 

The numerical result for the probabilities of exact 

number of arrivals  

(i) by a given time i.e.
i

i,j i,•

j 0

P (t)=P (t)


  

(ii) during busy period i.e. 
i

i,j,B i,•,B

j 0

P (t) P (t)


  

(iii) during working vacation period i.e. 
i

i,j,V i,•,V

j 0

P (t)=P (t)


  

(iv) and during vacation period i.e. 
i

i,j,F i,•,F

j=0

P (t)=P (t)  

are computed for different sets of parameter and is 

summarized in Table – I. The Table – I shows complete 

agreement with the Table – I of Pegden & Rosenshine [7]. In 

addition, the columns having probabilities of arrivals during 

busy period, working vacation period and vacation period are 

obtained. 

 Table-I is based on the relationship 

Pr {i arrivals in (0, t)} = 
i!

t)(λe iλt
=



0j

ji, (t)P
   

where (t)P ji,
is defined in eqn.(2.6). 

Figure 1(a) to 1(d) indicates the changing curve 

of (t)P B,i,
, (t)P V,i,

, 
i, ,FP (t)

 and (t)Pi,
with the increasing 

of the arrival rate λ when the parameters 

B Vμ 2,μ 1,w 1,.v=1and t 1    . 

Table – I 

w & v=1 

 

 

λ
 

 

Bμ

 

 

Vμ

 

 

t 

 

i i!

t)(λe iλt

=




i

0j

ji, (t)P

 




i

0j

Bj,i, (t)P

 




i

0j

Vj,i, (t)P
 



i

0j

Fj ,i, (t)P

 

1 2 1 3 1 0.14936

1 
0.012231 0.137130 0.0 

1 2 1 3 3 0.22404

2 
0.054104 0.123345 0.046592 

1 2 1 3 5 0.10081

9 
0.031480 0.026436 0.042903 

2 2 1 3 1 0.01487

3 

0.001218 0.013655 0.0 

2 2 1 3 3 0.08923

5 
0.021549 0.049128 0.018557 

2 2 1 3 5 0.16062

3 
0.050153 0.042118 0.068353 

1 2 1 4 1 0.07326

3 
0.004565 0.068697 0.0 

1 2 1 4 3 0.19536

7 
0.040020 0.123365 0.031982 

1 2 1 4 5 0.15629

3 
0.046405 0.046201 0.063688 

2 2 1 4 3 0.02862

6 
0.005864 0.018076 0.004686 

2 2 1 4 5 0.09160

4 
0.027198 0.027078 0.037327 

2 4 2 4 5 0.09160

4 
0.012199 0.053888 0.025516 

1 2 1 4 4 0.19536

7 
0.050982 0.087027 0.057358 

1 2 1 3 6 0.05040

9 
0.016322 0.009591 0.024497 
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6. EXPRESSING VARIOUS 

PERFORMANCE MEASURES 

USING (t)P ji,  

6.1 The departure process from the M/M/1 queue has 

the distribution function (t)P j,
, the probability that 

exactly j customers have been served by time t. In 

terms of (t)P ji,
, we have      






 
ji

ji,j, (t)P(t)P         &        

(t)P(t)P(t)P(t)P Fj,,Vj,,Bj,,j,    

 where 






 
ji

Bj,i,Bj,, (t)P(t)P
, 





 
ji

Vj,i,Vj,, (t)P(t)P   

and 




 
ji

Fj,i,Fj,, (t)P(t)P  

Figs. 2(a) – 2(d) display the effect of different values of 

λ  on (t)P&(t)P (t),P(t),P j,Fj,,Vj,,Bj,, 
. 

6.2 The probability of n customers in the system at time 

t, denoted by (t)Pn
can be expressed in terms of 

(t)P ji,
as 







0j

jn,jn (t)P(t)P      &     

)t(P(t)P(t)P(t)P Fn,Vn,Bn,n   

Where  
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0j
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0j

Vj,n,jVn, (t)P(t)P  & 







0j

Fj,n,jFn, (t)P(t)P  

Figs. 3(a) – 3(d) depict the effect of different values of 

λ  on (t)P&(t)P,(t)P(t),P nFn,Vn,Bn,
. 

6.3 The waiting time distribution for a customer is 

defined as P(W> τ |t), the probability that a customer 

waits more than τ  time units in the system, given that 

the customer arrives at time t, is given by 







0n

1)n  τby time services ofP(number (t)Pn
  

 = 
 
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s!
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e n
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n

0s

s
μτ
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 


 

Fig. 4 depicts waiting time for different values of τ .     

 

6.4 The cumulative distribution for the sojourn time in 

the system is P(W τ |t) and the sojourn time is the 

waiting time plus the service time of a customer. Thus, 

we have  

P(W τ |t) = 1-
 

(t)P
s!

μτ
e n

0n

n

0s

s
μτ



 


 

6.5 The system utilization, i.e. the fraction of time the 

server is busy until time t can also be expressed in 

terms of (t)P ji, . Thus the fraction of the time the 

system is empty and consequently the server is on working 

vacation is 




 


0i

i

0j

Vj,i,v (t)P(t)U   

and the fraction of time that the system is non-empty and 

hence the server utilized is 




 


0i

i

0j

Bj,i,B (t)P(t)U  and 


 


0i

i

0j

Fj,i,F (t)P(t)U  

And thus the total utilization time of server is given by 

(t)U(t)U(t)UU(t) FVB             

0 2 4 6

Number of arrivals (i)

Fig-1(a)

0

0.02

0.04

0.06

P
ro

b
a

b
il
it

y
 o

f 
a
rr

iv
a

ls
 d

u
ri

n
g

 
b

u
s
y
 p

e
ri

o
d







 

0 2 4 6

Number of arrivals (i)

Fig-1(b)

0

0.04

0.08

0.12

0.16

0.2

P
ro

b
a
b

il
it

y
 o

f 
a
rr

iv
a
ls

 d
u

ri
n

g
V

a
c
a
ti

o
n

 p
e
ri

o
d







 

 



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 1– No.8, April 2012 – www.ijais.org 

 

42 

0 2 4 6

Number of arrivals (i)

Fig-1(c)

0

0.02

0.04

0.06

0.08

P
ro

b
a

b
il

it
y
 o

f 
a

rr
iv

a
ls

 d
u

ri
n

g
 

N
o

n
-E

x
h

a
u

s
ti

v
e
 s

e
rv

ic
e







 

  

0 2 4 6

Number of arrivals(i)

Fig-1(d)

0

0.05

0.1

0.15

0.2

0.25

P
ro

b
a
b

il
it

y
 o

f 
a
rr

iv
a
ls

 







                           

0 1 2 3 4 5

Number of departures (j)

Fig-2(a)

0

0.02

0.04

0.06

0.08

0.1

P
ro

b
a

b
il

it
y
 o

f 
d

e
p

a
rt

u
re

s
 d

u
ri

n
g

b
u

s
y
 p

e
ri

o
d







                            

 

0 2 4 6

Number of departures (j)

Fig-2(b)

0

0.04

0.08

0.12

0.16

0.2

P
ro

b
a

b
il

it
y
 o

f 
d

e
p

a
rt

u
re

s
 d

u
ri

n
g

V
a

c
a

ti
o

n
 p

e
ri

o
d







    

0 1 2 3 4 5

Number of departures (j)

Fig-2(c)

0

0.02

0.04

0.06

0.08

0.1

P
ro

b
a
b

il
it

y
 o

f 
d

e
p

a
rt

u
re

 d
u

ri
n

g
N

o
n

-E
x

h
a
u

s
ti

v
e

 S
e
rv

ic
e







                    

0 2 4 6

Number of departures (j)

Fig-2(d)

0

0.1

0.2

0.3

0.4

P
ro

b
a
b

il
it

y
 o

f 
d

e
p

a
rt

u
re

s







  



 

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868  

Foundation of Computer Science FCS, New York, USA 

Volume 1– No.8, April 2012 – www.ijais.org 

 

43 

        

0 2 4 6

Number of customers (n)

Fig-3(b)

0

0.1

0.2

0.3

0.4

P
ro

b
a
b

il
it

y
 o

f 
n

 c
u

s
to

m
e
rs

 d
u

ri
n

g
V

a
c
a

ti
o

n
 p

e
ri

o
d 





                  

0 1 2 3 4 5

Number of customers (n)

Fig-3(c)

0

0.02

0.04

0.06

0.08

P
ro

b
a
b

il
it

y
 o

f 
n

 c
u

s
to

m
e
rs

 d
u

ri
n

g
N

o
n

-E
x
h

a
u

s
ti

v
e
 S

e
rv

ic
e







                        

0 2 4 6

Number of customers (n)

Fig-3(d)

0

0.1

0.2

0.3

0.4

P
ro

b
a
b

il
it

y
 o

f 
n

 c
u

s
to

m
e
rs







 

1 2 3 4 5 6

Time (

Fig-4

0

0.2

0.4

0.6

0.8

W
a
it

in
g

 t
im

e
 d

is
tr

ib
u

ti
o

n

Waiting time 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         
 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.  CONCLUSION 
The Two-dimensional state M/G/1 queueing system with 

working vacation and non-exhaustive service has been 

investigated. The numerical analysis clearly demonstrates the 

meaningful impact of the working vacations and non-

exhaustive service on the system performances. The present 

investigation can be extended by incorporating bulk 

input/service. 
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