

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

26

An Efficient Concept-based Mining Model for

Deriving User Profiles

 P. Sasikala V. Vidhya
 PG Research Scholar Faculty of Computer Science and Engineering
 Sri Venkateswara College of Sri Venkateswara College of
 Engineering Engineering

ABSTRACT

User profiling forms the basis for search engine

personalization applications. Search engines are personalized

so that they optimize the retrieval quality of user queries. User

profiling done through concept-based mining identifies terms

that render conceptual meaning as well as unimportant terms.

Both positive and negative preferences from such conceptual

terms are used in creating the user profiles and such profiles

built based on both the preferences of a user reflect his/her

interests at finer details.

Based on these accurate and up-to-date user profiles,

relationships between users can be mined to perform

Collaborative Filtering (CF) thereby allowing users with the

same interests to share their profiles. Collaborative filtering

filters information about a user based on a collection of user

profiles that are already built from the extracted preferences.

Users having similar profiles may share similar interests. The

concept-based search enhanced by Collaborative Filtering

improves the relevancy of search results by making automatic

predictions about the interests of a user by collecting similar

user profiles.

General Terms

Information retrieval, Search engine personalization, Web

mining

Keywords

Clustering, Collaborative Filtering, Personalization, Query

formulation, User profiles, Personality diagnosis

1. INTRODUCTION
Today’s web search engines are still following the

paradigm of keyword-based search. This is the best choice for

large scale search engines in terms of throughput and

scalability but it inherently limits the ability to accomplish

more meaningful query tasks. It captures only user’s

document preferences but the most relevant documents to a

query may not have the query keyword at all and hence the

user may not be able to retrieve these documents even when

they were much more relevant to the searched query.

Also most commercial search engines return roughly the same

results repeatedly for the same query without considering the

user’s real interest. Most of the queries submitted to search

engines tend to be short and ambiguous and hence they are

not likely to be able to express the user’s precise needs. For

example, a person may use the query “apple” to find

information about the fruit apple, while it also refers to apple

computer. So depending on the user’s search interest, the most

relevant document pertaining to his search must be retrieved.

This is the key feature of search engine personalization.

Search Engine Personalization aims to improve the retrieval

quality of search engines. The key success factors of a search

are Reliability, Ease/Speed of use.

A good user profiling strategy is an essential and fundamental

component in search engine personalization and thus helps in

improving the relevancy of search results.

Most personalization methods focused on the creation of a

single profile for a user and applied the same profile to all of

the user’s queries. Different queries from a user should be

handled differently because a user’s preferences may vary

across queries. Personalization strategies such as [1], [2], [7],

[9], [12], [13], [14] employed a single user profile for each

user in the personalization process.

Existing click through based user profiling strategies can be

categorized into document-based and concept-based

approaches. They both assume that user clicks can be used to

learn about users’ interests. Document-based profiling

methods try to estimate users’ document preferences (i.e.,

users are interested in some documents more than others)[1],

[2], [7], [9], [13].

On the other hand, concept-based profiling methods aim to

derive topics or concepts that users are highly interested in

[12], [14]. Concept-based search captures user’s conceptual

needs and provides the user with more relevant documents to

the searched query.

Most existing user profiling strategies only consider

documents that users are interested in (i.e., users’ positive

preferences) but ignore documents that users dislike (i.e.,

users’ negative preferences). In reality, positive preferences

are not enough to capture the fine grain interests of a user.

There are document-based methods that consider both users’

positive and negative preferences but there are very few

concept-based methods that considered both positive and

negative preferences in deriving user’s topical interests[18].

Personalization strategies such as [9], [13], [15] include

negative preferences in the personalization process, but they

all are document-based, and thus, cannot reflect users’ general

topical interests. Profiles built on both positive and negative

user preferences can represent user interests at finer details.

Profiles with negative preferences can increase the separation

between similar and dissimilar queries.

This paper improves the relevancy of search results by

combining concept-based user profiling strategies with

collaborative filtering.

Collaborative filtering (CF) makes automatic predictions

(filtering) about the interests of a user by collecting

preferences from several users. The underlying assumption of

the CF approach is that those who agreed in the past tend to

agree again in the future. For example, a collaborative

filtering for buying movie DVDs could make predictions

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

27

about which DVD a user should like given a partial list of that

user's tastes.

Memory-based collaborative filtering mechanism uses user

preferences to compute similarity between several users.

Typical examples of this mechanism are neighborhood based

CF and item-based or user-based top-N recommendations.

The advantages with this approach include: It is easy to create

and use, new data can be added easily and incrementally.

Several disadvantages with this approach: It depends on

human preferences and its performance decreases when data

gets sparse. This prevents the scalability of this approach and

has problems with large datasets. It iterates through all the

known users making the whole process complex.

Model–based collaborative filtering uses the existing users as

models for the active user but thus iterates through all the

known users. Hence to reduce complexity, iterations are done

over only a selected portion of the existing users. Models are

Bayesian Networks, clustering models, latent semantic models

such as singular value decomposition, probabilistic latent

semantic analysis, Multiple Multiplicative Factor, Latent

Dirichlet allocation and markov decision process based

models.

Several advantages of this approach are:

 1) It works for sparse data. This improves scalability with

large data sets.

2) It improves the prediction performance and are used to

make predictions for real data.

The disadvantage with this approach is the cost involved in

building the model.

Hybrid collaborative filtering combines the memory-based

and the model-based CF algorithms. The limitations of native

CF approaches are counteracted in hybrid CF. It improves the

prediction performance and overcomes the CF problems such

as sparsity and loss of information.

2. USER PROFILING
Evaluating user preferences from web search results obtained

by issuing a query to the search engine is crucial for search

engine development, deployment and maintenance. The

browsing behaviors of web search users are analysed to

predict user preferences. Accurate modeling and interpretation

of user behavior helps in ranking, web search personalization

and other tasks.

User profiling strategies can be broadly classified into two

approaches: document-based profiles and concept-based

profiles.

2.1 Document Based Methods
Document based profiling methods try to identify users’

document preferences i.e., those documents that the users are

more interested in than others. They do not reflect user’s

topical interests.

2.1.1 Joachims Method

Joachims’ method assumes that when a user is provided with

a set of search results for his current query, the user would

scan the search results from top to bottom. If a user has

skipped a document 𝑑𝑖 at rank i before clicking on document

𝑑𝑗 at rank j, it implies that the user must have scanned the

document 𝑑𝑖 and because the document does not reflect his

interests, he has decided to skip it. Thus the user has preferred

document 𝑑𝑗 more than the document 𝑑𝑖 (i.e.) 𝑑𝑗 < 𝑟 ′𝑑𝑖 in

ranking where 𝑟 ′ is the user’s preference order of the

documents from the set of retrieved search results [18].

By deploying Joachims’ method on a set of sample click

through data, document preference pairs can be obtained.

 Table 1. Click through data

Table 1 shows an example of click through data where out of

5 documents, 3 documents have been clicked by user and

might reflect his preferences.

 Table 2. Obtaining document preference pairs

Table 2 shows how document preference pairs are obtained

using Joachims method. It is inferred that the document 𝑑3 is

preferred than 𝑑2 and document 𝑑5 is preferred than

documents 𝑑2 and 𝑑4.

Joachim’s user profile consists of a set of weighted features.

After the document preference pairs are obtained, a Ranking

Support Vector Machine (RSVM) is employed to learn the

user behavior model as a set of weighted features

2.1.2 Spying With Novel Voting Procedure

Ng et al.[13] proposed an algorithm which combines a spying

technique together with a novel voting procedure to determine

users’ document preferences from the Click through data. It

also employed the RSVM algorithm to learn the user behavior

model as a set of weighted features.

2.1.3 Cleaned Up Click through Data

Agichtein et al.[1] suggested that explicit feedback (i.e.,

individual user behavior, click through data, etc.) from search

engine users is noisy. It may be due to the bias of user click

distribution towards top ranked results.(i.e) those search

results that are higher in the ranking may have been assumed

to be more relevant and user would have clicked that

document without knowing if it is really relevant to his

search. To resolve the bias, Agichtein suggested that the click

through data be cleaned up with the aggregated “background”

distribution .A scalable implementation of neural networks is

then employed to learn the user behavior model from the

cleaned click through data.

2.2 Concept Based Methods
Concept-based methods automatically derive users’ topical

interests by exploring the contents of the users’ browsed

documents and search histories.

Document

preference

pairs for 𝑑1

Document

preference

pairs for 𝑑3

Document

preference

pairs for 𝑑5

Empty set 𝑑3 < 𝑟 ′𝑑2 𝑑5 < 𝑟 ′𝑑2

 𝑑5 < 𝑟 ′𝑑4

Document Clicked Search Result

𝑑1 Yes Apple ipod

𝑑2 No Apple founder

𝑑3 Yes Apple iphone

𝑑4 No Apple farms

𝑑5 Yes Apple macintosh

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

28

2.2.1 ODP Based Profiling

Liu et al [12] proposed a user profiling method based on

users’ search history and the Open Directory Project (ODP).

The user profile is represented as a set of categories and for

each category, there are a set of keywords with weights. The

categories stored in the user profiles serve as a context to

disambiguate user queries. If a profile shows that a user is

interested in certain categories, the search can be narrowed

down by providing suggested results according to the user’s

preferred categories.

2.2.2 Profiling Based On Magellan’s Concept

Hierarchy

Gauch and Speretta [8] proposed a method to create user

profiles from user-browsed documents. User profiles are

created using concepts from the top four levels of the concept

hierarchy created by Magellan. A classifier is employed to

classify user browsed documents into concepts in the

reference ontology.

2.2.3 Hierarchical User Profiles

Xu et al.[17] proposed a scalable method which automatically

builds user profiles based on users’ personal documents (e.g.,

browsing histories and e-mails). The user profiles summarize

the users’ interests into hierarchical structures. The method

assumes that the terms that exist frequently in user’s browsed

documents represent topics that the user is interested in.

Frequent terms are extracted from users’ browsed documents

to build hierarchical user profiles representing users’ topical

interests. It automatically extracts possible topics from users’

browsed documents and organizes the topics into hierarchical

structures.

Liu et al.[12] and Gauch and Speretta [8] both use reference

ontology (e.g., ODP) to develop the hierarchical user profiles.

The major advantage of dynamically building a topic

hierarchy is that new topics can be easily recognized and

extracted from documents and added to the topic hierarchy

whereas reference ontology such as ODP is not always up-to-

date.

3. OVERVIEW OF THE PAPER
This paper deals with combining concept-based user profiling

strategies with collaborative filtering. The first step is Concept

Extraction in the user profiling process. The web snippets are

retrieved from the search results returned by the search engine

and concepts are extracted. The related concepts are identified

and the concept relationship graph is drawn. After the concept

preference pairs are identified, a ranking SVM algorithm is

employed to learn the user’s preferences, which is represented

as a weighted concept vector. Frequent terms are extracted

from users’ browsed documents to build user profiles

representing users’ topical interests.

A personalized concept-based clustering algorithm employs a

query-concept bipartite graph G and is used to classify

ambiguous queries into different query clusters. Concept-

based user profiles are employed in the clustering process to

achieve personalization effect. Concepts with interestingness

weights greater than zero in the user profile are linked to the

query with the corresponding interestingness weight in G.

Now accurate user profiles are created with each user’s

queries and their preferred concepts. Figure 2 shows the

overall system architecture for creating concept-based user

profiles.

 Collaborative filtering (CF) is then applied that filters

information for a user based on a collection of user profiles. It

computes similarity between user profiles and predicts

preferences for the current user based on other similar users’

profiles.

4. CONCEPT EXTRACTION
 Concept Extraction is the first step in the user profiling

process. The web snippets are retrieved from the search

results returned by the search engine and concepts are

extracted. The related concepts are identified and the concept

relationship graph is drawn.

4.1 Basic Working Of Search Engines
 The user opens the home page of a search engine and enters

a query. The web search engine searches for the user’s query

and display the results page.

 QUERY SEARCH

 RESULTS

Figure 1 Basic working of search engines

 Figure 1 shows the basic working of search engines. The title,

summary and URL of a web page form the snippets. These

snippets have to be retrieved from the search results which are

got by giving a query to the search engine.

4.2 Concept Extraction From Web

Snippets

4.2.1 General Methodology
 The most frequently occurring words in snippets are

considered to be the important keywords of the retrieved

snippets. To compute the interestingness of a particular

keyword extracted, Support formula is used.

 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑐𝑖 = 𝑠𝑓 𝑐𝑖 /𝑛 ∙ ic (1)

where n is the total number of web-snippets returned,

𝑠𝑓 𝑐𝑖 is the snippet frequency of the keyword or phrase 𝑐𝑖

(i.e., the number of web-snippets containing 𝑐𝑖) and 𝑐𝑖 is

the number of terms in the keyword or phrase 𝑐𝑖. It resembles

the problem of finding frequent item sets in data mining.

 When a user submits a query to the search engine, a set of

web snippets are returned to the user for identifying the

relevant items. The assumption is that if a keyword or a

phrase appears frequently in the web snippets of a particular

query, it represents an important concept related to the query

because it occurs together with the query in the top

documents. Support formula given by equation (1) measures

the interestingness of a particular keyword or phrase with

respect to the returned web snippets arising from a query q.

4.2.2 Preprocessing
The data to be preprocessed is from a large set of user logs

and also from topmost web search results. From the user logs,

a query session is defined as follows:

 Session : D<query text> [clicked document]

SEARCH

ENGINE

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

29

 Figure 2 Concept based profiling

Each session corresponds to one query and the documents the

user clicked on. Once a user query is input, a set of documents
are presented to the user. Therefore if a user clicks on a

document, it is likely that the document is relevant to the

query or at least related to it.

4.2.3 Extraction of Concepts
To extract concepts for a query q, all the keywords and

phrases are extracted from the web snippets returned by the

query along with the concepts from clicked documents. After

obtaining a set of keywords or phrases, compute the support

for all. If the support of a keyword or a phrase 𝑡𝑖 is bigger

than a threshold(say 0.003), 𝑡𝑖 may be treated as a concept for

the query q.

4.3 Identification Of Related Concepts
To find relationship between retrieved concepts, signal-to-

noise ratio formula from data mining is applied .This

establishes similarity between terms t1 and t2. The similarity

value always lies between [0, 1] and it can be used directly.

 1 2
1 2

1 2

n.df(t t)
sim(t ,t)=log log n

df(t).df(t)

 (2)

Equation (2) gives similarity between two terms where n is

the number of documents in the corpus, df(t1U t2) is the joint

document frequency of t1 and t2 and df(𝒕𝟏) is the document

frequency of the term 𝒕𝟏.

Two concepts 𝑪𝒊, 𝑪𝒋 could occur together in a web-snippet in

the following situations: 1) 𝑪𝒊 and 𝑪𝒋 occur together in the

title, 2) 𝑪𝒊 and 𝑪𝒋 occur together in the summary, or 3) 𝑪𝒊

occurs in the title, while 𝑪𝒋 occurs in the summary (or vice

versa).Similarities for the three different cases are computed

using the following Equations (3) , (4) and (5).

title i j

i j,

title i title j

n.sf (c c)
sim (c ,c)=log log n

sf (c).sf (c)
R title

 (3)

sum i j

, i j

sum i sum j

n.sf (c c)
sim (c ,c)=log log n

sf (c).sf (c)
R sum

 (4)

other i j

, i j

other i other j

n.sf (c c)
sim (c ,c)=log log n

sf (c).sf (c)
R other

 (5)

where 𝑠𝑓𝑡𝑖𝑡𝑙𝑒 (𝑐𝑖 ∪ 𝑐𝑗) and 𝑠𝑓𝑠𝑢𝑚 (𝑐𝑖 ∪ 𝑐𝑗) are the joint snippet

frequencies of the concepts 𝑐𝑖 and 𝑐𝑗 in Web-snippets’ titles

and summaries, 𝑠𝑓𝑡𝑖𝑡𝑙𝑒 (c) and 𝑠𝑓𝑠𝑢𝑚 (c) are the snippet

frequencies of the concept c in Web-snippets’ titles and

summaries, 𝑠𝑓𝑜𝑡ℎ𝑒𝑟 (𝑐𝑖 ∪ 𝑐𝑗) is the joint snippet frequency of

the concepts 𝑐𝑖 in a web-snippet’s title and 𝑐𝑗 in a Web-

snippet’s summary (or vice versa), and 𝑠𝑓𝑜𝑡ℎ𝑒𝑟 (c) is the

snippet frequency of concept c in either Web-snippets’ titles

or summaries.[18]

The following formula is used to obtain the combined

similarity 𝑆𝑖𝑚𝑅(𝑐𝑖, 𝑐𝑗) from the three cases, where α+β+γ=1

to ensure that 𝑆𝑖𝑚𝑅(𝑐𝑖, 𝑐𝑗) lies between [0, 1].

.A concept graph is then built for the query. The nodes are the

concepts extracted from the query and the links are created

between concepts having 𝑠𝑖𝑚𝑅(𝐶𝑖 ,𝐶𝑗) > 0.

Equation (6) gives the combined similarity scores.

j , i j , i j

, i j

i,sim C C =α.sim C ,C +β.sim C ,C

+ γ.sim C ,C

R R title R sum

R other

 (6)

Search

engine
Query

suggestions

Query

QUER

Y
 Top 100

snippets

Concept

Extractor

Click

through

collector

Concept

relationship
graph

Concept based

clustering
User

profiles

User

Conceptual

Profile Builder

Query

QUE

RY

Search
results

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

30

5. CREATION OF USER CONCEPT

PREFERENCE PROFILES
To increase the relevance of search results, personalized

search engines create user profiles to capture the users’

personal preferences and as such identify the actual goal of

the input query.

5.1 Constructing a Hierarchical User

Profile
The user profiles are automatically built based on users’

personal documents (e.g., browsing histories and e-mails).

The users’ interests are summarized into hierarchical

structures by the user profiles. The method assumes that terms

that exist frequently in user’s browsed documents represent

topics that the user is interested in. Frequent terms are

extracted from users’ browsed documents to build hierarchical

user profiles representing users’ topical interests. From user’s

browsed documents, it automatically extracts possible topics

and the topics are organized into hierarchical structures. This

focus on frequent terms limits the dimensionality of the

document set and thus provides a clear description of users’

interest. In the hierarchy, general terms with higher frequency

are placed at higher levels, and specific terms with lower

frequency are placed at lower levels.

D represents the set of all personal documents and each

document has a list of terms. D(t) denotes all documents

covered by term t, (i.e.), all documents in which t appears,

and |D(t)| represents the number of documents covered by t. A

term t is frequent if |D(t)| ≥ minsup, where minsup

represents the minimum number of documents in which a

frequent term is required to occur. Each frequent term

indicates a possible user interest.

For a term 𝑡𝐴 , any document covered by 𝑡𝐴 is assumed to be a

natural evidence of users’ interests on 𝑡𝐴. Also, documents

covered by term 𝑡𝐵 that either represents the same interest

as 𝑡𝐴 or a child interest of 𝑡𝐴 can also be regarded as

supporting documents of 𝑡𝐴 .Hence supporting documents on

term 𝑡𝐴,denoted as S(𝑡𝐴), are defined as the union of D(𝑡𝐴)

and all D(𝑡𝐴), where either 𝑆𝑖𝑚(𝑡𝐴 , 𝑡𝐵) > 𝛿 or P 𝑡𝐴|𝑡𝐵 > δ

is satisfied.

The algorithm automatically builds a hierarchical profile in a

top-down fashion. The profile is represented by a tree

structure, where each node is labeled a term t, and associated

with a set of supporting documents S(t). Starting from the

root, nodes are recursively split until no frequent terms exist

on any leave nodes. First documents are scanned once and all

frequent terms are sorted in a descending order of (document)

frequency. For each frequent term t, the initial supporting

documents S(t) are set as D(t). All frequent terms are checked

separately in a descending order of frequency. A node labeled

term t is created. Supporting documents S(t) is attached with

each node labeled t.

5.2 Click- Based Method
When a Web-snippet 𝑆𝑗 has been clicked by a user, the weight

𝑊𝐶𝑖 of concepts 𝐶𝑖 appearing in 𝑆𝑗 is incremented by 1. For

other concepts 𝐶𝑗 that are related to 𝐶𝑖 on the concept

relationship graph, they are incremented according to the

similarity score .The related concepts have their weights

increased based on the similarity score.

The following formulas capture a user’s degree of interest on

the extracted concepts 𝐶𝑖 , when a Web-snippet 𝑆𝑗 is clicked by

the user .

 i i j i j , C CClick() => C S W = W + 1s (7)

j j
R

j => , C C sim i j Click(S) W = W + (C ,C) Ci Sj

R

 if sim i j > 0(C ,C) (8)

Equations (7) and (8) computes interestingness of the user

on the extracted concepts where 𝑆𝑗 is a Web-snippet,

𝑊𝐶𝑖 represents the user’s degree of interest on the concept 𝐶𝑖

and 𝐶𝑗 is the neighborhood concept of 𝐶𝑖 .

For example , when the user searches for a query “apple”, the

concepts derived from the concept extraction method contains

“macintosh,” “ipod,” and “fruit.” If the user is indeed

interested in “apple” as a fruit and clicks on pages containing

the concept “fruit,” the user profile represented as a weighted

concept vector should record the user interest on the concept

“apple” and its neighborhood (i.e., concepts which having

similar meaning as “fruit”), while unrelated concepts such as

“macintosh,” “ipod,” and their neighborhood must be termed

to be of low preference.

5.3 Spy NB-C Method
Spy NB assumes that unclicked pages could be either relevant

or irrelevant to the user. Therefore, SpyNB treats clicked

pages as positive samples and unclicked pages as unlabeled

samples in the training process. The problem of finding user

preferences also includes identifying from the unlabeled set

reliable negative documents that are considered irrelevant to

the user.

The “Spy” technique includes a novel voting procedure into a

Naive Bayes classifier to derive reliable negative examples

from the unlabeled set. Let “+” and “-” denote the positive

and negative classes, and D = d1, d2... dn , a set of N

documents in the search result list.[16]

For each search result, Spy NB first extracts the words that

appear in the title, abstract, and URL, creating a word vector

(w1, w2... wM). Then, a Naive Bayes classifier is built by

estimating the prior probabilities (Pr(+)and Pr(-)) and

likelihoods (Pr(wj|+)and Pr(wj|-).

The training data only contain positive and unlabeled

examples (without negative examples). Thus, the “Spy”

technique is employed to learn a Naive Bayes classifier. A set

of positive examples S is selected from P and moved into U as

“spies” to train a classifier using the Naive Bayes algorithm .

The resulting classifier is then used to assign probabilities

Pr(+|d) to each example in U ᴜ S, and an unlabeled example

in U is selected as a predicted negative example (PN) if its

probability is less than Ts. In the search engine context, most

users would only click on a few documents (positive

examples) that are relevant to them. Thus, only a limited

number of positive examples can be used in the classification

process, lowering the reliability of the predicted negative

examples (PN).[16]

To resolve the problem, every positive example pi in P is used

as a spy to train a Naive Bayes classifier. Consequently, n

predicted negative sets (PN1, PN2... PNn) are created with the

n Naive Bayes classifiers. Finally, a voting procedure is used

to combine the PNi into the final PN. After obtaining the

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

31

positive and predicted negative samples from the Spy NB,

page preferences can be obtained.

Spy NB-C [18] generalizes page preferences into concept

preferences. Specifically, concept preference pairs are

obtained by assuming that concepts C(dj) in the positive

sample dj are more relevant than concept C(di) in the

predicted negative sample dj (i.e., C(dj)<r’ C(di)). Finally,

RSVM training is applied on the extracted concept

preferences to learn a user profile PSpyNB-C which is

represented as a set of weight features.

The following steps show how spying is done to identify

negative samples from unlabeled samples.

1)Set of positive samples are considered.

2)Set of unlabeled samples are considered.

3)Train the Naïve Bayes Classifier .

4)Identify the positive samples from unlabeled samples

using the classifier and the rest of the unlabeled samples are

considered to be negative.

The voting procedure retrieves reliable negative sets. It

combines n predicted negative sets into a final negative

sample.

5.4 Ranking SVM
After the concept preference pairs are identified, a ranking

SVM algorithm [18] is employed to learn the user’s

preferences, which is represented as a weighted concept

vector.

 Given a set of concept preference pairs T, ranking SVM aims

at finding a linear ranking function f(q,c) to rank the extracted

concepts so that as many concept preference pairs in T as

possible are satisfied.

f(q,c) is defined as the inner product of a weight vector w and

a feature vector of query concept mapping ф(q,c), which

describes how well a concept c matches the user’s interest for

a query q.

The feature vector

 ф(q,c) = [Feature_ c1, Feature_ c2 ,... ,Feature_ cn]

for the ranking SVM training is composed of all the extracted

concepts for a query q.

For each concept ci, a feature vector is created

ф(q,ci)=[Feature_c1,Feature_c2,...,Feature_cn] (9)

The concept preference pairs together with the feature vectors

serve as the input to the ranking SVM algorithm. The ranking

SVM algorithm outputs a weight vector W. The weight vector

 W=(WFeature-C1,WFeature-C2,...,WFeature-Cn) (10)

determines the user preferences on the extracted concepts. For

all the concepts c1 , c2,... ,ci extracted for the query q, the user

preferences are stored in the corresponding weight values

WFeature-C1,WFeature-C2,... ,WFeature-Cn creating a concept

preference profile .

6. QUERY CLUSTERING
Query Clustering is the process to classify ambiguous queries

in to different Query clusters.

6.1 General Query clustering algorithm
A query clustering algorithm mines a collection of user

transactions with a search engine to discover clusters of

similar queries and similar URLs. The information exploited

is "clickthrough data": each record consists of a user's query

to a search engine along with the URL which the user selected

from among the candidates offered by the search engine. By

viewing this dataset as a bipartite graph, with the vertices on

one side corresponding to queries and on the other side to

URLs, clustering algorithm can be applied to the graph's

vertices to identify related queries and URLs.

6.2 Personalized Concept-based clustering

algorithm
A personalized concept-based clustering algorithm employs a

query-concept bipartite graph and is used to classify

ambiguous queries into different query clusters. Concept-

based user profiles are employed in the clustering process to

achieve personalization effect[18].

 First a query-concept bipartite graph G is constructed by the

clustering algorithm in which one set of nodes corresponds to

the set of users’ queries and the other corresponds to the set of

extracted concepts. Using the extracted concepts and click

through data, construct a query-concept bipartite graph in

which one side of the vertices correspond to unique queries

and the other corresponds to unique concepts. If a user clicks

on a search result, concepts appearing in the web-snippet of

the search result are linked to the corresponding query on the

bipartite graph. Each individual query submitted by each user

is treated as an individual node in the bipartite graph by

labeling each query with a user identifier. Concepts with

interestingness weights greater than zero in the user profile

are linked to the query with the corresponding interestingness

weight in G.

Second a two-step personalized clustering algorithm is

applied to the bipartite graph G to obtain clusters of similar

queries and similar concepts. After the bipartite graph is

constructed, the clustering algorithm is applied to obtain

clusters of similar queries and similar concepts. The noise-

tolerant similarity function is used for finding similar vertices

on the bipartite graph G.

 The personalized clustering algorithm iteratively merges the

most similar pair of query nodes and then the most similar

pair of concept nodes and then merges the most similar pair of

query nodes and so on. The following cosine similarity

function in Equation (10) is employed to compute the

similarity score of a pair of query nodes or a pair of concept

nodes. The advantages of the cosine similarity are that it can

accommodate negative concept weights and produce

normalized similarity values in the clustering process.

Nx Ny

Nx Ny

sim(x,y)
.

= (11)

where NX is a weight vector for the set of neighbor nodes

of node x in the bipartite graph G, the weight of a neighbor

node nX in the weight vector NX is the weight of the link

connecting x and nX in G, NY is a weight vector for the set of

neighbor nodes of node 𝑌 in G, and the weight of a neighbor

node nY in NY is the weight of the link connecting 𝑌 and nY in

graph G.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

32

Algorithm 1. Personalized Agglomerative Clustering [4]

Input: A Query-Concept Bipartite Graph G

Output: A Personalized Clustered Query-Concept Bipartite

Graph Gp

// Initial Clustering

1. Obtain the similarity scores in G for all possible pairs of

query nodes using Equation (5.1)

2. Merge the pair of most similar query nodes (𝑞𝑖 , 𝑞𝑗) that

does not contain the same query from different users.

Assume that a concept node c is connected to both query

nodes 𝑞𝑖 𝑎𝑛𝑑 𝑞𝑗 with weight 𝑤𝑖 and 𝑤𝑗 a new link is created

between c and (𝑞𝑖 , 𝑞𝑗) with weight w =𝑤𝑖 + 𝑤𝑗

3. Obtain the similarity scores in G for all possible pairs of

concept nodes using Equation (11)

4. Merge the pair of concept nodes (𝑐𝑖, 𝑐𝑗) having highest

similarity score.

Assume that a query node q is connected to both concept

nodes 𝐶𝑖 𝑎𝑛𝑑 𝐶𝑗 with weight 𝑤𝑖 𝑎𝑛𝑑 𝑤𝑗 , a new link is

created between q and (𝑐𝑖, 𝑐𝑗) with weight w =𝑤𝑖 + 𝑤𝑗

5. Unless termination is reached, repeat Steps 1-4.

// Community Merging

6. Obtain the similarity scores in G for all possible pairs of

query nodes using Equation (11)

7. Merge the pair of most similar query nodes (𝑞𝑖 , 𝑞𝑗) that

contains the same query from different users.

 Assume that a concept node c is connected to both query

nodes 𝑞𝑖 𝑎𝑛𝑑 𝑞𝑗 with weight 𝑤𝑖 𝑎𝑛𝑑 𝑤𝑗 , a new link is

created between c and (𝑞𝑖 , 𝑞𝑗) with weight w =𝑤𝑖 + 𝑤𝑗
8. Unless termination is reached, repeat Steps 6-7.

The algorithm is divided into two steps: initial clustering and

community merging. In initial clustering, queries are grouped

within the scope of each user. Community merging is then

involved to group queries for the community of users.

A common requirement of iterative clustering algorithms is to

determine when the clustering process should stop to avoid

overmerging of the clusters. A critical issue is to decide the

termination points for initial clustering and community

merging. When the termination point for initial clustering is

reached, community merging starts; when the termination

point for community merging is reached, the whole algorithm

terminates.

Good timing to stop the two phases is important to the

algorithm, since if initial clustering is stopped too early

(i.e.,not all clusters are well formed), community merging

merges all the identical queries from different users, and thus,

generates a single big cluster without much personalization

effect. However, if initial clustering is stopped too late, the

clusters are already overly merged before community merging

begins. The low precision rate thus resulted would undermine

the quality of the whole clustering process. The optimal

terminal points are also obtained by exhaustively searching

for the point at which the resulting precision and recall values

are maximized. It is shown that methods that exploit negative

preferences produce termination points that are very close to

the optimal termination points obtained by exhaustive search.

The termination point for initial clustering can be determined

by finding the point at which the cluster quality is high . The

same can be done for determining the termination point for

community merging. The change in cluster quality can be

measured by ∆similarity, which is the change in the similarity

value of the two most similar clusters in two consecutive

steps. As such, the similarity of two clusters is the same as the

similarity between the two most similar queries across the two

clusters. Formally, Similarity is defined as

 m n 0 pi q q i+1 q , qΔsimilarity(i)=sim(P ,P)-sim (P P) (12)

where qm and qn are the two most similar queries in the ith

step of the clustering process, mqP , nqP are the concept-based

profiles for qm and qn , q0 and qp are the two most similar

queries in the i+1th step of the clustering process, 0 pq , qP P are

the concept-based profiles for qm and qn, sim is the cosine

similarity. Note that a positive similarity means that step i+1

is producing worse clusters than that of step i.

In the experiments, similar queries are grouped together

according to the predefined clusters, and then the average

similarity values for pairs of queries within the same cluster

(i.e., similar queries) and pairs of queries not in the same

cluster (i.e.,dissimilar queries) are computed using PClick+SpyNB-

C. They are good in predicting negative preferences to

distinguish dissimilar queries. They benefit from both the

accurate positive preferences of PClick and the correctly

predicted negative preferences from PClick+SpyNB-C.

7. COLLABORATIVE FILTERING
Collaborative Filtering is a method of making automatic

predictions (filtering) about the interests of a user by

collecting preferences from many users. The underlying

assumption of the CF approach is that those who agreed in the

past tend to agree again in the future. For example, a

collaborative filtering or recommendation system for

television tastes could make predictions about which

television show a user should like given a partial list of that

user's tastes.

Collaborative filtering (CF) is any algorithm that filters

information for a user based on a collection of user profiles.

Users having similar profiles may share similar interests. For

a user, information can be filtered in/out regarding to the

behaviors of his or her similar users.

 Basic mechanism behind collaborative filtering systems:

 a large group of people's preferences are registered;

 using a similarity metric, a subgroup of people is

selected whose preferences are alike

 a (possibly weighted) average of the preferences for

that subgroup is calculated

 the resulting preference function is used to suggest

for the person who has expressed no personal

opinion as yet.

Typical similarity metrics are Pearson correlation coefficients

between the users' preference functions and (less frequently)

vector distances or dot products.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

33

Figure 3 Prediction of Preferences for active user

Figure 3 shows how automatic predictions (filtering) about the

interests of a user are done by collecting preferences from

many users. It compares the user profiles of many users and

finds similarity in them and predicts that future preferences

will also be similar by the prediction probabilistic results.

7.1 Types Of Collaborative Filtering

7.1.1 Memory-based CF

This mechanism uses user preferences to compute similarity

between users or items. This is used for making

recommendations. It is easy to implement and is effective.

Typical examples of this mechanism are neighborhood based

CF and item-based or user-based top-N recommendations.

The neighborhood-based CF algorithm calculates the

similarity between two users or items and produces a

prediction for the user taking the weighted average of all the

preferences. Similarity computation between items or users is

an important part of this approach. Multiple mechanisms such

as Pearson correlation and vector cosine based similarity are

used for similarity computation. The user based top-N

recommendation algorithm identifies the k most similar users

to an active user using similarity based vector model. After

the k most similar users are found, their corresponding user-

item matrices are aggregated to identify the set of items to be

recommended. A popular method to find the similar users is

the Locality sensitive hashing, which implements the nearest

neighbor mechanism in linear time.

The advantages with this approach include: the explainability

of the results; it is easy to create and use; new data can be

added easily and incrementally; it need not consider the

content of the items being recommended; and the mechanism

scales well with co-rated items. Several disadvantages with

this approach: First, it depends on human preferences.

Second, its performance decreases when data gets sparse,

which is frequent with web related items. This prevents the

scalability of this approach and has problems with large

datasets. Third, it cannot handle new users or new items.

Techniques for Memory-based Collaborative Filtering

• Mean

• K-nearest neighbor

• Pearson correlation coefficient

• Cosine distance (from IR)

7.1.2 Model-Based CF
It uses the existing users as models for the active user, but in

doing so iterates through all the known users, resulting in the

complexity found in memory-based algorithms. To improve

the advantages of model-based algorithms, we can choose to

iterate over only a select portion of the existing users.

Models are Bayesian Networks, clustering models, latent

semantic models such as singular value decomposition,

probabilistic latent semantic analysis, Multiple Multiplicative

Factor, Latent Dirichlet allocation and Markov decision

process based models. There are several advantages. It

handles the sparsity better than memory based ones. This

helps with scalability with large data sets. It improves the

prediction performance. It gives an intuitive rationale for the

machine learning algorithms to find patterns based on training

data. These are used to make predictions for real data .The

disadvantages with this approach are in the expensive model

building.

7.1.3 Hybrid CF
A number of applications combine the memory-based and the

model-based CF algorithms. These overcome the limitations

of native CF approaches. It improves the prediction

performance. Importantly, it overcomes the CF problems such

as sparsity and loss of information.

7.1.3.1 Probabilistic Memory-Based CF
Personality diagnosis (PD) is a probability-based, model and

memory hybrid algorithm. Personality diagnosis works on the

assumption that the active user has a hidden variable, known

as a "true personality," that can accurately predict the

preferences for the user on all concepts[19].

For each user in the dataset, calculate the probability that the

active user is this user, given their respective Preference

vectors. Multiply that probability by the probability that the

active user will prefer the concept under consideration as one

of the available preferences given that the comparison user

preferred the concept. Summing that together over all users

and taking the preference with the highest probability as the

predicted preference for the active user on the concept, the

accurate prediction results are obtained.

Assume Gaussian noise applied to all preferences [19] , treat

each user as a separate cluster m and calculate posteriori

probability of user a having ith profile using the following

formula.

Present concepts to
the user

Active User

End of Session

Update profile space

Search Profile space

for similar profile

patterns

Present prediction

probabilistic results

to users

Satisfied

User

Preferences

Database

Profile
Space

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
Volume 1– No.6, February 2012 – www.ijais.org

34

N

i=1

r

r

r

p(a i)
pr(i a ,p)=

p(a)i
 (13)

Where a is the active user, i denotes other users, ar denotes the

already known preferences of user .

8. EXPERIMENTAL EVALUATION

 AND METHODOLOGY
Our evaluation focuses on comparing preferences predicted

with and without collaborative filtering. For our experiments,

probabilistic memory-based CF is used. In order to compare

the accuracy of our profile predictions with respect to the

correct preferences, standard precision and recall measures are

adapted.

200 test queries are randomly selected from 10 different

categories. When a query is submitted, top 100 search results

along with extracted concepts is returned to users and users

click results relevant to their need. The clickthrough data

along with extracted concepts are used to create concept-

based profiles. The user profiles are employed by

personalized clustering to group similar queries. The trials

were performed by dividing the profileset into two groups: a

training subset and an evaluation subset. The training subset

is used by the algorithm to predict the value of the data from

the evaluation subset. To evaluate the quality of the

predictions, the evaluation obtained from the algorithm is

compared with the original evaluation present in the

evaluation subset. In both the methods, the quality of their

predictions are measured. The precision and recall measures

from all queries are averaged to plot the precision-recall

figures comparing effectiveness of user profiles. Profiles

predicted by collaborative filtering are found to be more

accurate than preference profiles without collaborative

filtering.

9. CONCLUSION
This paper presented an approach to mining concept- based

profiles from user’s search histories and comparing similar

profiles for future queries. Experimental results proved that

the use of collaborative filtering in the profiling process

improved the relevancy of search results.

Further, concept-based user profiles can be integrated into

ranking algorithms of a search engine so that search results

can be ranked according to individual user’s interests.

Prediction of unseen queries can be made possible effectively

through the comparison of user profiles .

10. ACKNOWLEDGMENTS
Our thanks to the encouragement ,valuable suggestions and

guidance given by our institution .

11. REFERENCES

[1] E. Agichtein, E. Brill, and S. Dumais, “Improving Web

Search Ranking by Incorporating User Behavior

Information,” Proc. ACM SIGIR, 2006.

[2] E. Agichtein, E. Brill, S. Dumais, and R. Ragno,

“Learning User Interaction Models for Predicting Web

Search Result Preferences,”Proc. ACM SIGIR, 2006.

[3] R. Baeza-yates, C. Hurtado, and M. Mendoza, “Query

Recom-mendation Using Query Logs in Search

Engines,” Proc. Int’l Workshop Current Trends in

Database Technology, pp. 588-596, 2004.

[4] D. Beeferman and A. Berger, “Agglomerative

Clustering of a Search Engine Query Log,” Proc. ACM

SIGKDD, 2000.

[5] K.W. Church, W. Gale, P. Hanks, and D. Hindle, “Using

Statistics in Lexical Analysis,” Lexical Acquisition: E

xploiting On-Line Resources to Build a Lexicon,

Lawrence Erlbaum, 1991.

[6] Z. Dou, R. Song, and J.R. Wen, “A Largescale

Evaluation and Analysis of Personalized Search

Strategies,” Proc. World Wide Web (WWW) Conf.,

2007.

[7] S. Gauch, J. Chaffee, and A. Pretschner, “Ontology-

Based Personalized Search and Browsing,” ACM Web

Intelligence and Agent System, vol. 1, nos. 3/4, pp. 219-

234, 2003.

[8] T. Joachims, “Optimizing Search Engines Using

Clickthrough Data,” Proc. ACM SIGKDD, 2002.

[9] K.W.T. Leung, W. Ng, and D.L. Lee, “Personalized

Concept-Based Clustering of Search Engine Queries,”

IEEE Trans. Knowl-edge and Data Eng., vol. 20, no. 11,

pp. 1505-1518, Nov. 2008.

[10] B. Liu, W.S. Lee, P.S. Yu, and X. Li, “Partially

Supervised Classification of Text Documents,” Pr o c. I

nt ’ l C on f . M a ch in e Learning (ICML), 2002.

[11] F. Liu, C. Yu, and W. Meng, “Personalized Web Search

by Mapping User Queries to Categories,” Proc. Int’l

Conf. Information and Knowledge Management

(CIKM), 2002.

[12] W. Ng, L. Deng, and D.L. Lee, “Mining User Preference

Using Spy Voting for Search Engine Personalization,”

ACM Trans. Internet Technology, vol. 7, no. 4, article

19, 2007.

[13] M. Speretta and S. Gauch, “Personalized Search Based

on User Search Histories,” Proc. IEEE/WIC/ACM Int’l

Conf. Web Intelligence,2005.

[14] Q. Tan, X. Chai, W. Ng, and D. Lee, “Applying Co-

training to Clickthrough Data for Search Engine

Adaptation,” Proc. Database Systems for Advanced

Applications (DASFAA) Conf., 2004.

[15] J.R. Wen, J.Y. Nie, and H.J. Zhang, “Query Clustering

Using User Logs,” ACM Trans. Information Systems,

vol. 20, no. 1, pp. 59-81, 2002.

[16] Y. Xu, K. Wang, B. Zhang, and Z. Chen, “Privacy-

Enhancing Personalized Web Search,” Proc. World Wide

Web (WWW) Conf., 2007.

[18] K.Wai, T.Leung, D.L.Lee,”Deriving Concept-based

user profiles from search engine logs” ,IEEE

transactions on Knowledge and data engineering”,

Vol.22, No.2,July 2010

[19] Kai Yu, Xiaowei Xu,Hans-Peter Kriegel,”Probabilistic

memory-based Collaborative Filtering”, IEEE

transactions on Knowledge and Data Engineering.

