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ABSTRACT 

User profiling forms the basis for search engine 

personalization applications. Search engines are personalized 

so that they optimize the retrieval quality of user queries. User 

profiling done through concept-based mining identifies terms 

that render conceptual meaning as well as unimportant terms. 

Both positive and negative preferences from such conceptual 

terms are used in creating the user profiles and such profiles 

built based on both the preferences of a user reflect his/her 

interests at finer details.  

Based on these accurate and up-to-date user profiles, 

relationships between users can be mined to perform 

Collaborative Filtering (CF) thereby allowing users with the 

same interests to share their profiles. Collaborative filtering 

filters information about a user based on a collection of user 

profiles that are already built from the extracted preferences. 

Users having similar profiles may share similar interests. The 

concept-based search enhanced by Collaborative Filtering 

improves the relevancy of search results by making automatic 

predictions about the interests of a user by collecting similar 

user profiles. 
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1. INTRODUCTION 
Today’s   web   search   engines   are    still  following      the 

paradigm of keyword-based search. This is the best choice for 

large scale search engines in terms of throughput and 

scalability but it inherently limits the   ability to accomplish    

more   meaningful   query   tasks. It captures only user’s 

document preferences but the most relevant documents to a 

query may not have the query keyword at all and hence the 

user may not be able to retrieve these documents even when 

they were much more relevant to the searched query. 

Also most commercial search engines return roughly the same 

results repeatedly for the same query without considering the 

user’s real interest. Most of the queries submitted to search 

engines tend to be short and ambiguous and hence they are 

not likely to be able to express the user’s precise needs. For 

example, a person may use the query “apple” to find 

information about the fruit apple, while it also refers to apple 

computer. So depending on the user’s search interest, the most 

relevant document pertaining to his search must be retrieved. 

This is the key feature of search engine personalization.   

Search Engine Personalization aims to improve the retrieval 

quality of search engines. The key success factors of a search   

are Reliability, Ease/Speed of use. 

A good user profiling strategy is an essential and fundamental 

component in search engine personalization and thus helps in 

improving the relevancy of search results. 

Most personalization methods focused on the creation of a 

single profile for a user and applied the same profile to all of 

the user’s queries. Different queries from a user should be 

handled differently because a user’s preferences may vary 

across queries. Personalization strategies such as [1], [2], [7], 

[9], [12], [13], [14] employed a single user profile for each 

user in the personalization process. 

Existing click through based user profiling strategies can be 

categorized into document-based and concept-based 

approaches. They both assume that user clicks can be used to 

learn about users’ interests. Document-based profiling 

methods try to estimate users’ document preferences (i.e., 

users are interested in some documents more than others)[1], 

[2], [7], [9], [13]. 

On the other hand, concept-based profiling methods aim to 

derive topics or concepts that users are highly interested in 

[12], [14]. Concept-based search captures user’s conceptual 

needs and provides the user with more relevant documents to 

the searched query.  

Most existing user profiling strategies only consider 

documents that users are interested in (i.e., users’ positive 

preferences) but ignore documents that users dislike (i.e., 

users’ negative preferences). In reality, positive preferences 

are not enough to capture the fine grain interests of a user. 

There are document-based methods that consider both users’ 

positive and negative preferences but there are very few 

concept-based methods that considered both positive and 

negative preferences in deriving user’s topical interests[18]. 

Personalization strategies such as [9], [13], [15] include 

negative preferences in the personalization process, but they 

all are document-based, and thus, cannot reflect users’ general 

topical interests. Profiles built on both positive and negative 

user preferences can represent user interests at finer details. 

Profiles with negative preferences can increase the separation 

between similar and dissimilar queries. 

This paper improves the relevancy of search results by 

combining concept-based user profiling strategies with 

collaborative filtering. 

Collaborative filtering (CF) makes automatic predictions 

(filtering) about the interests of a user by collecting 

preferences from several users. The underlying assumption of 

the CF approach is that those who agreed in the past tend to 

agree again in the future. For example, a collaborative 

filtering for buying movie DVDs could make predictions 
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about which DVD a user should like given a partial list of that 

user's tastes. 

Memory-based collaborative filtering mechanism uses user 

preferences to compute similarity between several users.   

Typical examples of this mechanism are neighborhood based  

CF and item-based   or user-based top-N recommendations. 

The advantages with this approach include: It is easy to create 

and use, new data can be added easily and incrementally. 

Several disadvantages with this approach: It depends on 

human preferences and its performance decreases when data 

gets sparse. This prevents the scalability of this approach and 

has problems with large datasets. It iterates through all the 

known users making the whole process complex. 

Model–based collaborative filtering uses the existing users as 

models for the active user but thus iterates through all the 

known users. Hence to reduce complexity, iterations are done 

over only a selected portion of the existing users. Models are  

Bayesian Networks, clustering models, latent semantic models 

such as singular value decomposition, probabilistic latent 

semantic analysis, Multiple Multiplicative Factor, Latent 

Dirichlet allocation  and markov decision process based 

models.  

Several advantages of this approach are: 

 1) It works for sparse data. This improves scalability with 

large data sets. 

2) It improves the prediction performance and are used to 

make predictions for real data. 

The disadvantage with this approach is the cost involved in 

building the model.  

Hybrid collaborative filtering combines the memory-based 

and the model-based CF algorithms. The limitations of native 

CF approaches are counteracted in hybrid CF. It improves the 

prediction performance and overcomes the CF problems such 

as sparsity and loss of information.  

2. USER PROFILING 
Evaluating user preferences from web search results obtained 

by issuing a query to the search engine is crucial for search 

engine development, deployment and maintenance. The 

browsing behaviors of web search users are analysed to 

predict user preferences. Accurate modeling and interpretation 

of user behavior helps in ranking, web search personalization 

and other tasks. 

User profiling strategies can be broadly classified into two 

approaches: document-based profiles and concept-based 

profiles. 

2.1 Document Based Methods 
Document based profiling methods try to identify users’ 

document preferences i.e., those documents that the users are 

more interested in than others. They do not reflect user’s 

topical interests. 

2.1.1 Joachims Method 

Joachims’ method assumes that when a user is provided with 

a set of search results for his current query, the user would 

scan the search results from top to bottom. If a user has 

skipped a document 𝑑𝑖  at rank i before clicking on document 

𝑑𝑗  at rank j, it implies that the user must have scanned the 

document 𝑑𝑖  and because the document does not reflect his 

interests, he has decided to skip it. Thus the user has preferred 

document 𝑑𝑗  more than the document 𝑑𝑖  (i.e.) 𝑑𝑗  < 𝑟 ′𝑑𝑖  in 

ranking where 𝑟 ′  is the user’s preference order of the 

documents from the set of  retrieved search results [18]. 

By deploying Joachims’ method on a set of sample click 

through data, document preference pairs can be obtained.  

                   Table 1. Click through data 

 

 

 

 

 

 

 

 

 

 

 

Table 1 shows an example of click through data where out of 

5 documents, 3 documents have been clicked by user and 

might reflect his preferences. 

             Table 2. Obtaining document preference pairs 

 

Table 2 shows how document preference pairs are obtained 

using Joachims method. It is inferred that the document  𝑑3 is 

preferred than 𝑑2 and document  𝑑5  is preferred than 

documents 𝑑2 and  𝑑4.  

Joachim’s user profile consists of a set of weighted features. 

After the document preference pairs are obtained, a  Ranking 

Support Vector Machine (RSVM ) is employed to learn the 

user behavior model as a set of weighted features 

2.1.2 Spying With Novel Voting Procedure 

Ng et al.[13] proposed an algorithm which combines a spying 

technique together with a novel voting procedure to determine 

users’ document preferences from the Click through data. It 

also employed the RSVM algorithm to learn the user behavior 

model as a set of weighted features. 

2.1.3  Cleaned Up Click through Data 

Agichtein et al.[1] suggested that explicit feedback (i.e., 

individual user behavior, click through data, etc.) from search 

engine users is noisy. It may be due  to  the bias of user click 

distribution towards top ranked results.(i.e) those search 

results that are higher in the ranking may have been assumed 

to be more relevant and user would have clicked that 

document without knowing if it is really relevant  to his 

search. To resolve the bias, Agichtein suggested that the click 

through data be cleaned up with the aggregated “background” 

distribution .A scalable implementation of neural networks is 

then employed to learn the user behavior model from the 

cleaned click through data. 

2.2 Concept Based Methods 
Concept-based methods automatically derive users’ topical 

interests by exploring the contents of the users’ browsed 

documents and search histories. 

Document 

preference 

pairs for   𝑑1 

Document 

preference 

pairs for   𝑑3 

Document 

preference 

pairs for   𝑑5 

Empty set 𝑑3  < 𝑟 ′𝑑2 𝑑5  < 𝑟 ′𝑑2 

 𝑑5  < 𝑟 ′𝑑4 

Document Clicked Search Result 

𝑑1 Yes Apple ipod 

𝑑2 No Apple founder 

𝑑3 Yes Apple iphone 

𝑑4 No Apple farms 

𝑑5 Yes Apple macintosh 
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2.2.1  ODP Based Profiling 

Liu et al [12] proposed a user profiling method based on 

users’ search history and the Open Directory Project (ODP). 

The user profile is represented as a set of categories and for 

each category, there are a set of keywords with weights. The 

categories stored in the user profiles serve as a context to 

disambiguate user queries. If a profile shows that a user is 

interested in certain categories, the search can be narrowed 

down by providing suggested results according to the user’s 

preferred categories. 

2.2.2 Profiling Based On Magellan’s Concept 

Hierarchy 

Gauch and Speretta [8] proposed a method to create user 

profiles from user-browsed documents. User profiles are 

created using concepts from the top four levels of the concept 

hierarchy created by Magellan. A classifier is employed to 

classify user browsed documents into concepts in the 

reference ontology.  

2.2.3 Hierarchical User Profiles 

Xu et al.[17] proposed a scalable method which automatically 

builds user profiles based on users’ personal documents (e.g., 

browsing histories and e-mails). The user profiles summarize 

the users’ interests into hierarchical structures. The method 

assumes that the terms that exist frequently in user’s browsed 

documents represent topics that the user is interested in. 

Frequent terms are extracted from users’ browsed documents 

to build hierarchical user profiles representing users’ topical 

interests. It automatically extracts possible topics from users’ 

browsed documents and organizes the topics into hierarchical 

structures. 

Liu et al.[12] and  Gauch and Speretta [8] both use reference 

ontology (e.g., ODP) to develop the hierarchical user profiles. 

The major advantage of dynamically building a topic 

hierarchy is that new topics can be easily recognized and 

extracted from documents and added to the topic hierarchy 

whereas reference ontology such as ODP is not always up-to-

date.  

3. OVERVIEW OF THE PAPER 
This paper deals with combining concept-based user profiling 

strategies with collaborative filtering. The first step is Concept 

Extraction in the user profiling process. The web snippets are 

retrieved from the search results returned by the search engine 

and concepts are extracted. The related concepts are identified 

and the concept relationship graph is drawn. After the concept 

preference pairs are identified, a ranking SVM algorithm is 

employed to learn the user’s preferences, which is represented 

as a weighted concept vector.  Frequent terms are extracted 

from users’ browsed documents to build user profiles 

representing users’ topical interests.  

A personalized concept-based clustering algorithm employs a 

query-concept bipartite graph G and is used to classify 

ambiguous queries into different query clusters. Concept-

based user profiles are employed in the clustering process to 

achieve personalization effect. Concepts with interestingness 

weights greater than zero in the user profile are linked to the 

query with the corresponding interestingness weight in G. 

Now accurate user profiles are created with each user’s 

queries and their preferred concepts. Figure 2 shows the 

overall system architecture for creating concept-based user 

profiles. 

 Collaborative filtering (CF) is then applied that filters 

information for a user based on a collection of user profiles. It 

computes similarity between user profiles and predicts 

preferences for the current user based on other similar users’ 

profiles. 

4. CONCEPT EXTRACTION  
 Concept Extraction is the first step in the user profiling 

process. The web snippets are retrieved from the search 

results returned by the search engine and concepts are 

extracted. The related concepts are identified and the concept 

relationship graph is drawn. 

4.1 Basic Working Of Search Engines   
 The user opens the home page of a search engine and enters 

a query.  The web search engine searches for the user’s query 

and display the results page.     

 
      
 
    QUERY                                       SEARCH         

      

       RESULTS 

 

           
Figure 1   Basic working of search engines 

 

 Figure 1 shows the basic working of search engines. The title, 

summary and URL of a web page form the snippets. These 

snippets have to be retrieved from the search results which are 

got by giving a query to the search engine. 

4.2 Concept Extraction From Web 

Snippets 

4.2.1  General Methodology 
 The most frequently occurring words in snippets are 

considered to be the important keywords of the retrieved 

snippets. To compute the interestingness of a particular 

keyword   extracted, Support formula is used. 

         

 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑐𝑖 =  𝑠𝑓 𝑐𝑖 /𝑛 ∙ ic             (1) 

 

where n is the total number of web-snippets returned, 

𝑠𝑓 𝑐𝑖   is the snippet frequency of the keyword or phrase  𝑐𝑖  

(i.e., the number of web-snippets containing  𝑐𝑖  )  and  𝑐𝑖   is 

the number of terms in the keyword or phrase  𝑐𝑖. It resembles 

the problem of finding frequent item sets in data mining.  

 When a user submits a query to the search engine, a set of 

web snippets are returned to the user for identifying the 

relevant items. The assumption is that if a keyword or a 

phrase appears frequently in the web snippets of a particular 

query, it represents an important concept related to the query 

because it occurs together with the query in the top 

documents. Support formula given by equation (1) measures 

the interestingness of a particular keyword or phrase with 

respect to the returned web snippets arising from a query q.  

4.2.2  Preprocessing 
The data to be preprocessed is from a large set of user logs 

and also from topmost web search results. From the user logs, 

a query session is defined as follows: 

 

          Session : D<query text> [clicked document] 

SEARCH 

ENGINE  
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  Figure 2  Concept based profiling 

 
Each session corresponds to one query and the documents the 

user clicked on. Once a user query is input, a set of documents  
are presented to the user. Therefore if a user clicks on a 

document, it is likely that the document is relevant to the 

query  or at least related to it. 

4.2.3 Extraction of Concepts 
To extract concepts for a query q, all the keywords and 

phrases are extracted from the web snippets returned by the 

query along with the concepts from clicked documents. After 

obtaining a set of keywords or phrases, compute the support 

for all. If the support of a keyword or a phrase 𝑡𝑖  is bigger 

than a threshold(say 0.003), 𝑡𝑖  may be treated as a concept for 

the query q.  

4.3 Identification Of Related Concepts 
To find relationship between retrieved concepts, signal-to-

noise ratio formula from data mining is applied .This 

establishes similarity between terms t1 and t2. The similarity 

value always lies between [0, 1] and it can be used directly. 

             1 2
1 2

1 2

n.df(t t )
sim(t ,t )=log log n

df(t ).df(t )


      (2) 

Equation (2) gives similarity between two terms where n is 

the number of documents in the corpus,  df(t1U t2) is the joint 

document frequency of t1 and t2  and df(𝒕𝟏)  is the document 

frequency of the term 𝒕𝟏. 

Two concepts 𝑪𝒊, 𝑪𝒋 could occur together in a web-snippet in 

the following situations: 1) 𝑪𝒊 and 𝑪𝒋 occur together in the 

title, 2)  𝑪𝒊 and 𝑪𝒋   occur together in the summary, or  3) 𝑪𝒊  

occurs in the title, while 𝑪𝒋   occurs in the summary (or vice 

versa ).Similarities for the three different cases are computed 

using the following Equations (3) , (4)  and (5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

title i j

i j,  

title i title j

n.sf (c c )
sim (c ,c )=log log n

sf (c ).sf (c )
R title


      (3) 

sum i j

, i j

sum i sum j

n.sf (c c )
sim  (c ,c )=log log n

sf (c ).sf (c )
R sum


      (4) 

other i j
 

, i j

other i other j

n.sf (c c )
sim (c ,c )=log log n

sf (c ).sf (c )
R other


    (5) 

 

where 𝑠𝑓𝑡𝑖𝑡𝑙𝑒  (𝑐𝑖 ∪ 𝑐𝑗 ) and 𝑠𝑓𝑠𝑢𝑚  (𝑐𝑖 ∪ 𝑐𝑗 )  are the joint snippet 

frequencies of the concepts 𝑐𝑖  and 𝑐𝑗   in Web-snippets’ titles 

and summaries, 𝑠𝑓𝑡𝑖𝑡𝑙𝑒  (c) and 𝑠𝑓𝑠𝑢𝑚  (c) are the snippet 

frequencies of the concept c in Web-snippets’ titles and 

summaries, 𝑠𝑓𝑜𝑡ℎ𝑒𝑟  (𝑐𝑖 ∪ 𝑐𝑗 )  is the joint snippet frequency of 

the concepts 𝑐𝑖   in a web-snippet’s title and 𝑐𝑗   in a Web-

snippet’s summary (or vice versa), and 𝑠𝑓𝑜𝑡ℎ𝑒𝑟  (c)  is the 

snippet frequency of concept c in either Web-snippets’ titles 

or summaries.[18]  

The following formula is used to obtain the combined 

similarity 𝑆𝑖𝑚𝑅(𝑐𝑖, 𝑐𝑗) from the three cases, where α+β+γ=1 

to ensure that 𝑆𝑖𝑚𝑅(𝑐𝑖, 𝑐𝑗)  lies between  [0, 1]. 

.A concept graph is then built for the query. The nodes are the 

concepts extracted from the query and the links are created 

between concepts having 𝑠𝑖𝑚𝑅(𝐶𝑖 ,𝐶𝑗 ) >  0.  

Equation (6) gives the combined similarity scores. 

 

     

 

j , i j , i j

, i j

i,sim C C =α.sim C ,C +β.sim C ,C

+ γ.sim C ,C                                        

R R title R sum

R other

        (6) 
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5. CREATION OF USER CONCEPT 

PREFERENCE PROFILES 
To increase the relevance of search results, personalized 

search engines create user profiles to capture the users’ 

personal preferences and as such identify the actual goal of 

the input query.    

5.1 Constructing a Hierarchical User 

Profile  
The user profiles are automatically built based on users’ 

personal documents (e.g., browsing histories and e-mails). 

The users’ interests are summarized into hierarchical 

structures by the user profiles. The method assumes that terms 

that exist frequently in user’s browsed documents represent 

topics that the user is interested in. Frequent terms are 

extracted from users’ browsed documents to build hierarchical 

user profiles representing users’ topical interests. From user’s 

browsed documents, it automatically extracts possible topics  

and the topics are organized into hierarchical structures. This 

focus on frequent terms limits the dimensionality of the 

document set and thus provides a clear description of users’ 

interest.  In the hierarchy, general terms with higher frequency 

are placed at higher levels, and specific terms with lower 

frequency are placed at lower levels.    

D represents the set of all personal documents and each 

document has a list of terms. D(t) denotes all documents 

covered by term  t, (i.e.), all documents in which  t appears, 

and  |D(t)| represents the number of documents covered by t. A 

term t  is  frequent if |D(t)|  ≥  minsup, where  minsup  

represents the minimum number of documents in which a 

frequent term is required  to occur. Each frequent term  

indicates a possible user interest. 

For a term 𝑡𝐴 , any document covered by 𝑡𝐴 is assumed to be a 

natural evidence of users’ interests on  𝑡𝐴. Also, documents 

covered by term  𝑡𝐵   that either  represents the same  interest 

as  𝑡𝐴 or a child interest of  𝑡𝐴 can also be regarded as 

supporting documents of 𝑡𝐴 .Hence supporting documents on 

term  𝑡𝐴,denoted as S(𝑡𝐴), are defined as the union of D(𝑡𝐴) 

and all D(𝑡𝐴), where either 𝑆𝑖𝑚(𝑡𝐴 , 𝑡𝐵)  >  𝛿 or P 𝑡𝐴|𝑡𝐵  > δ 

is satisfied.   

The algorithm automatically builds a hierarchical profile in a 

top-down fashion. The profile is represented by a tree 

structure, where each node is labeled a term t, and associated 

with a set of supporting documents S(t). Starting from the 

root, nodes are recursively split until no frequent terms exist 

on any leave nodes. First documents are scanned once and  all 

frequent terms are sorted in a descending order of (document) 

frequency. For each frequent term t, the initial supporting 

documents S(t) are set as D(t). All frequent terms are checked 

separately in a descending order of frequency. A node labeled 

term t is created. Supporting documents S(t) is attached with 

each node labeled t.   

5.2 Click- Based Method  
When a Web-snippet  𝑆𝑗  has been clicked by a user, the weight 

𝑊𝐶𝑖  of concepts 𝐶𝑖  appearing in 𝑆𝑗  is incremented by 1. For 

other concepts 𝐶𝑗  that are related to 𝐶𝑖  on the concept 

relationship graph, they are incremented according to the 

similarity score .The related concepts have their weights 

increased based on the similarity score. 

The following formulas capture a user’s degree of interest on 

the extracted concepts 𝐶𝑖 , when a Web-snippet 𝑆𝑗  is clicked by 

the user . 

       i i j i j , C CClick( ) =>  C S  W = W + 1s     (7) 

       

j j 
R

j => ,   C C  sim i j    Click(S )  W = W +  (C ,C ) Ci Sj   

   
R

       if sim i j > 0(C ,C )    (8) 

Equations  (7)  and  (8)   computes interestingness of the user 

on the extracted concepts where 𝑆𝑗  is a Web-snippet, 

𝑊𝐶𝑖   represents the user’s degree of interest on the concept 𝐶𝑖   

and 𝐶𝑗   is the neighborhood concept of  𝐶𝑖  . 

For example , when the user searches for a query “apple”,  the 

concepts derived from the concept extraction method contains  

“macintosh,” “ipod,” and “fruit.” If the user is indeed 

interested in “apple” as a fruit  and clicks on pages containing 

the concept “fruit,” the user profile represented as a weighted 

concept vector should record the user interest on the concept 

“apple” and its neighborhood (i.e., concepts which having 

similar meaning as “fruit”), while unrelated concepts such as 

“macintosh,” “ipod,” and their neighborhood must be termed 

to be of low preference.  

5.3 Spy NB-C Method  
Spy NB assumes that unclicked pages could be either relevant 

or irrelevant to the user. Therefore, SpyNB treats clicked 

pages as positive samples and unclicked pages as unlabeled 

samples in the training process. The problem of finding user 

preferences also includes identifying from the unlabeled set 

reliable negative documents that are considered irrelevant to 

the user.  

The “Spy” technique includes a novel voting procedure into a 

Naive Bayes classifier to derive reliable negative examples 

from the unlabeled set. Let “+” and “-” denote the positive 

and negative classes, and D = d1, d2... dn , a set of N 

documents in the search result list.[16] 

For each search result, Spy NB first extracts the words that 

appear in the title, abstract, and URL, creating a word vector 

(w1, w2... wM). Then, a Naive Bayes classifier is built by 

estimating the prior probabilities (Pr(+)and Pr(-)) and 

likelihoods (Pr(wj|+)and Pr(wj|-).   

The training data only contain positive and unlabeled 

examples (without negative examples). Thus, the “Spy” 

technique is employed to learn a Naive Bayes classifier. A set 

of positive examples S is selected from P and moved into U as 

“spies” to train a classifier using the Naive Bayes algorithm . 

The resulting classifier is then used to assign probabilities 

Pr(+|d) to each example in U ᴜ  S, and an unlabeled example 

in U is selected as a predicted negative example (PN) if its 

probability is less than Ts. In the search engine context, most 

users would only click on a few documents (positive 

examples) that are relevant to them. Thus, only a limited 

number of positive examples can be used in the classification 

process, lowering the reliability of the predicted negative 

examples (PN).[16]  

To resolve the problem, every positive example pi in P is used 

as a spy to train a Naive Bayes classifier. Consequently, n 

predicted negative sets (PN1, PN2... PNn) are created with the 

n Naive Bayes classifiers. Finally, a voting procedure is used 

to combine the PNi into the final PN. After obtaining the 
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positive and predicted negative samples from the Spy NB, 

page preferences can be obtained.  

Spy NB-C [18] generalizes page preferences into concept 

preferences. Specifically, concept preference pairs are 

obtained by assuming that concepts C(dj) in the positive 

sample dj are more relevant than concept C(di) in the 

predicted negative sample dj (i.e., C(dj)<r’ C(di)). Finally, 

RSVM training is applied on the extracted concept 

preferences to learn a user profile PSpyNB-C which is 

represented as a set of weight features. 

The following steps show how spying is done to identify 

negative samples from unlabeled samples. 

1)Set of positive samples are considered. 

2)Set of unlabeled samples are considered. 

3)Train the Naïve Bayes Classifier . 

4)Identify the positive samples from unlabeled samples 

using the classifier and the rest of the unlabeled samples are 

considered to be negative. 

The voting procedure retrieves reliable negative sets. It 

combines n predicted negative sets into a final negative 

sample. 

5.4 Ranking SVM 
After the concept preference pairs are identified, a ranking 

SVM algorithm [18] is employed to learn the user’s 

preferences, which is represented as a weighted concept 

vector. 

 Given a set of concept preference pairs T, ranking SVM aims 

at finding a linear ranking function f(q,c) to rank the extracted 

concepts so that as many concept preference pairs in T as 

possible are satisfied.                                                      

f(q,c) is defined as the inner product of a weight vector w and 

a feature vector of query concept mapping ф(q,c), which 

describes how well a concept c matches the user’s interest for 

a query q. 

The feature vector  

     ф(q,c) = [Feature_ c1, Feature_ c2 ,... ,Feature_ cn]  

for the ranking SVM training is composed of all the extracted 

concepts for a query q.  

For each concept ci, a feature vector is created 

ф(q,ci)=[Feature_c1,Feature_c2,...,Feature_cn]                 (9)            

The concept preference pairs together with the feature vectors 

serve as the input to the ranking SVM algorithm. The ranking 

SVM algorithm outputs a weight vector  W. The weight vector  

 W=(WFeature-C1,WFeature-C2,...,WFeature-Cn)              (10) 

determines the user preferences on the extracted concepts. For 

all the concepts c1 , c2,... ,ci extracted for the query q, the user 

preferences are stored in the corresponding weight values 

WFeature-C1,WFeature-C2,... ,WFeature-Cn   creating a concept 

preference profile . 

6. QUERY CLUSTERING 
Query Clustering is the process to classify ambiguous queries 

in to different Query clusters. 

6.1 General Query clustering algorithm 
A query clustering algorithm mines a collection of user 

transactions with a search engine to discover clusters of 

similar queries and similar URLs. The information exploited 

is "clickthrough data": each record consists of a user's query 

to a search engine along with the URL which the user selected 

from among the candidates offered by the search engine. By 

viewing this dataset as a bipartite graph, with the vertices on 

one side corresponding to queries and on the other side to 

URLs, clustering algorithm can be applied to the graph's 

vertices to identify related queries and URLs. 

6.2 Personalized Concept-based clustering 

algorithm 
A personalized concept-based clustering algorithm employs a 

query-concept bipartite graph and is used to classify 

ambiguous queries into different query clusters. Concept-

based user profiles are employed in the clustering process to 

achieve personalization effect[18]. 

 First a query-concept bipartite graph G is constructed by the 

clustering algorithm in which one set of nodes corresponds to 

the set of users’ queries and the other corresponds to the set of 

extracted concepts. Using the extracted concepts and click 

through data,  construct a query-concept bipartite graph  in 

which one side of the vertices correspond to unique queries  

and the other corresponds to unique concepts. If a user clicks 

on a search result, concepts appearing in the web-snippet of 

the search result are linked to the corresponding query on the 

bipartite graph. Each individual query submitted by each user 

is treated as an individual node in the bipartite graph by 

labeling each query with a user identifier. Concepts with 

interestingness weights greater than zero in the user profile 

are linked to the query with the corresponding interestingness 

weight in G.  

Second a two-step personalized clustering algorithm is 

applied to the bipartite graph G to obtain clusters of similar 

queries and similar concepts. After the bipartite graph is 

constructed, the clustering algorithm is applied to obtain 

clusters of similar queries and similar concepts. The noise-

tolerant similarity function is used for finding similar vertices 

on the bipartite graph G. 

 The personalized clustering algorithm iteratively merges the 

most similar pair of query nodes and then the most similar 

pair of concept nodes and then merges the most similar pair of 

query nodes and so on. The following cosine similarity 

function in Equation (10) is employed to compute the 

similarity score of a pair of query nodes or a pair of concept 

nodes. The advantages of the cosine similarity are that it can 

accommodate negative concept weights and produce 

normalized similarity values in the clustering process. 

  
Nx Ny

Nx Ny

sim(x,y)
.

=      (11) 

where NX  is a weight vector for the set of neighbor nodes 

of node x in the bipartite graph G, the weight of a neighbor 

node nX   in the weight vector NX   is the weight of the link 

connecting x and nX   in G, NY  is a weight vector for the set of 

neighbor nodes of node 𝑌 in G, and the weight of a neighbor 

node nY  in NY  is the weight of the link connecting 𝑌 and nY  in 

graph G. 
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Algorithm 1. Personalized Agglomerative Clustering [4] 

Input: A Query-Concept Bipartite Graph G 

Output: A Personalized Clustered Query-Concept Bipartite 

Graph Gp 

// Initial Clustering 

1. Obtain the similarity scores in G for all possible pairs of 

query nodes using Equation  (5.1) 

2. Merge the pair of most similar query nodes (𝑞𝑖  , 𝑞𝑗 ) that 

does not contain the same query from different users. 

Assume that a concept node c is connected to both query 

nodes 𝑞𝑖  𝑎𝑛𝑑 𝑞𝑗   with weight  𝑤𝑖  and  𝑤𝑗   a new link is created 

between c and (𝑞𝑖 , 𝑞𝑗 ) with weight  w =𝑤𝑖 + 𝑤𝑗  

3. Obtain the similarity scores in G for all possible pairs of 

concept nodes using Equation  (11) 

4. Merge the pair of concept nodes (𝑐𝑖, 𝑐𝑗) having highest 

similarity score.  

Assume that a query node q is connected to both concept 

nodes 𝐶𝑖  𝑎𝑛𝑑 𝐶𝑗   with weight 𝑤𝑖   𝑎𝑛𝑑  𝑤𝑗     , a new link is 

created between q and (𝑐𝑖, 𝑐𝑗)  with weight  w =𝑤𝑖 + 𝑤𝑗  

5. Unless termination is reached, repeat Steps 1-4. 

// Community Merging 

6. Obtain the similarity scores in G for all possible pairs of 

query nodes using Equation  (11) 

7. Merge the pair of most similar query nodes (𝑞𝑖  , 𝑞𝑗 ) that 

contains the same query from different users. 

 Assume that a concept node c is connected to both query 

nodes 𝑞𝑖  𝑎𝑛𝑑 𝑞𝑗   with weight 𝑤𝑖  𝑎𝑛𝑑  𝑤𝑗     , a new link is 

created between c and (𝑞𝑖  , 𝑞𝑗 ) with weight  w =𝑤𝑖 + 𝑤𝑗          
8. Unless termination is reached, repeat Steps 6-7. 

The algorithm is divided into two steps: initial clustering and 

community merging. In initial clustering, queries are grouped 

within the scope of each user. Community merging is then 

involved to group queries for the community of users. 

A common requirement of iterative clustering algorithms is to 

determine when the clustering process should stop to avoid 

overmerging of the clusters. A critical issue is to decide the 

termination points for initial clustering and community 

merging. When the termination point for initial clustering is 

reached, community merging starts; when the termination 

point for community merging is reached, the whole algorithm 

terminates. 

Good timing to stop the two phases is important to the 

algorithm, since if initial clustering is stopped too early 

(i.e.,not all clusters are well formed), community merging 

merges all the identical queries from different users, and thus, 

generates a single big cluster without much personalization 

effect. However, if initial clustering is stopped too late, the 

clusters are already overly merged before community merging 

begins. The low precision rate thus resulted would undermine 

the quality of the whole clustering process. The optimal 

terminal points are also obtained by exhaustively searching 

for the point at which the resulting precision and recall values 

are maximized. It is shown that methods that exploit negative 

preferences produce termination points that are very close to 

the optimal termination points obtained by exhaustive search. 

The termination point for initial clustering can be determined 

by finding the point at which the cluster quality is high . The 

same can be done for determining the termination point for 

community merging. The change in cluster quality can be 

measured by ∆similarity, which is the change in the similarity 

value of the two most similar clusters in two consecutive 

steps. As such, the similarity of two clusters is the same as the 

similarity between the two most similar queries across the two 

clusters. Formally, Similarity is defined as 

    m n 0 pi q q i+1 q , qΔsimilarity(i)=sim(P ,P )-sim (P P )            (12)  

where qm and qn are the two most similar queries in the ith 

step of the clustering process, mqP , nqP are the concept-based 

profiles for  qm and qn , q0 and qp are the two most similar 

queries in the i+1th step of the clustering process, 0 pq , qP P are 

the concept-based profiles for qm and qn, sim is the cosine 

similarity. Note that a positive similarity means that step i+1  

is producing worse clusters than that of step i.  

In the experiments, similar queries are grouped together 

according to the predefined clusters, and then the average 

similarity values for pairs of queries within the same cluster 

(i.e., similar queries) and pairs of queries not in the same 

cluster (i.e.,dissimilar queries) are computed using PClick+SpyNB-

C. They are good in predicting negative preferences to 

distinguish dissimilar queries. They benefit from both the 

accurate positive preferences of PClick and the correctly 

predicted negative preferences from PClick+SpyNB-C. 

 

7. COLLABORATIVE FILTERING 
Collaborative Filtering is a method of making automatic 

predictions (filtering) about the interests of a user by 

collecting preferences from many users. The underlying 

assumption of the CF approach is that those who agreed in the 

past tend to agree again in the future. For example, a 

collaborative filtering or recommendation system for 

television tastes could make predictions about which 

television show a user should like given a partial list of that 

user's tastes. 

Collaborative filtering (CF) is any algorithm that filters 

information for a user based on a collection of user profiles. 

Users having similar profiles may share similar interests. For 

a user, information can be filtered in/out regarding to the 

behaviors of his or her similar users.  

  Basic mechanism behind collaborative filtering systems:  

 a large group of people's preferences are registered;  

 using a similarity metric, a subgroup of people is 

selected whose preferences  are  alike  

 a (possibly weighted) average of the preferences for 

that subgroup is calculated 

 the resulting preference function is used to suggest 

for the person who  has expressed no personal 

opinion as yet.  

Typical similarity metrics are Pearson correlation coefficients 

between the users' preference functions and (less frequently) 

vector distances or dot products.  
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Figure 3 Prediction of Preferences for active user 

Figure 3 shows how automatic predictions (filtering) about the 

interests of a user are done by collecting preferences from 

many users. It compares the user profiles of many users and 

finds similarity in them and predicts that future preferences 

will also be similar by the prediction probabilistic results. 

7.1   Types Of Collaborative Filtering 

7.1.1    Memory-based CF 

This mechanism uses user preferences to compute similarity 

between users or items. This is used for making 

recommendations.  It is easy to implement and is effective. 

Typical examples of this mechanism are neighborhood based 

CF and item-based or user-based top-N recommendations. 

The neighborhood-based CF algorithm calculates the 

similarity between two users or items and produces a 

prediction for the user taking the weighted average of all the 

preferences. Similarity computation between items or users is 

an important part of this approach. Multiple mechanisms such 

as Pearson correlation and vector cosine based similarity are 

used for similarity computation. The user based top-N 

recommendation algorithm identifies the k most similar users 

to an active user using similarity based vector model. After 

the k most similar users are found, their corresponding user-

item matrices are aggregated to identify the set of items to be 

recommended. A popular method to find the similar users is 

the Locality sensitive hashing, which implements the nearest 

neighbor mechanism in linear time. 

The advantages with this approach include: the explainability 

of the results; it is easy to create and use; new data can be 

added easily and incrementally; it need not consider the 

content of the items being recommended; and the mechanism 

scales well with co-rated items. Several disadvantages with 

this approach:  First, it depends on human preferences. 

Second, its performance decreases when data gets sparse, 

which is frequent with web related items. This prevents the 

scalability of this approach and has problems with large 

datasets. Third, it cannot handle new users or new items. 

Techniques for Memory-based Collaborative Filtering  

• Mean 

• K-nearest neighbor 

• Pearson correlation coefficient  

• Cosine distance (from IR) 

7.1.2    Model-Based CF 
It uses the existing users as models for the active user, but in 

doing so iterates through all the known users, resulting in the 

complexity found in memory-based algorithms. To improve 

the advantages of model-based algorithms, we can choose to 

iterate over only a select portion of the existing users. 

Models are Bayesian Networks, clustering models, latent 

semantic models such as singular value decomposition, 

probabilistic latent semantic analysis, Multiple Multiplicative 

Factor, Latent Dirichlet allocation and Markov decision 

process based models. There are several advantages. It 

handles the sparsity better than memory based ones. This 

helps with scalability with large data sets. It improves the 

prediction performance. It gives an intuitive rationale for the 

machine learning algorithms to find patterns based on training 

data. These are used to make predictions for real data .The 

disadvantages with this approach are in the expensive model 

building.  

7.1.3    Hybrid CF 
A number of applications combine the memory-based and the 

model-based CF algorithms. These overcome the limitations 

of native CF approaches. It improves the prediction 

performance. Importantly, it overcomes the CF problems such 

as sparsity and loss of information.  

7.1.3.1    Probabilistic Memory-Based CF 
Personality diagnosis (PD) is a probability-based, model and 

memory hybrid algorithm.  Personality diagnosis works on the 

assumption that the active user has a hidden variable, known 

as a "true personality," that can accurately predict the 

preferences for the user on all concepts[19]. 

For each user in the dataset, calculate the probability that the 

active user is this user, given their respective Preference 

vectors. Multiply that probability by the probability that the 

active user will prefer the concept under consideration as one 

of the available preferences given that the comparison user 

preferred the concept. Summing that together over all users 

and taking the preference with the highest probability as the 

predicted preference for the active user on the concept, the 

accurate prediction results are obtained. 

Assume Gaussian noise applied to all preferences [19] , treat 

each user as a separate cluster m and calculate posteriori 

probability of user a having ith profile using the following 

formula. 

Present concepts to 
the user  

Active User 

End of Session 

Update profile space 

Search Profile space 

for similar profile 

patterns 

Present prediction 

probabilistic results 

to users 

Satisfied 

User 

Preferences 

Database 

Profile 
Space 
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N

i=1

r

r

r

p(a i)
pr(i a ,p)=

p(a )i
                 (13) 

Where a is the active user, i denotes other users, ar denotes the 

already known preferences of user . 

8. EXPERIMENTAL EVALUATION    

     AND  METHODOLOGY 
Our evaluation focuses on comparing preferences predicted 

with and without collaborative filtering. For our experiments, 

probabilistic memory-based CF is used. In order to compare 

the accuracy of our profile predictions with respect to the 

correct preferences, standard precision and recall measures are 

adapted. 

200 test queries are randomly selected from 10 different 

categories. When a query is submitted, top 100 search results 

along with extracted concepts is returned to users and users 

click results relevant to their need. The clickthrough data 

along with extracted concepts are used to create concept-

based profiles. The user profiles are employed by 

personalized clustering to group similar queries. The trials 

were performed by dividing the profileset into two groups: a 

training subset and an evaluation subset.  The training subset 

is used by the algorithm to predict the value of the data from 

the evaluation subset. To evaluate the quality of the 

predictions, the evaluation obtained from the algorithm is 

compared with the original evaluation present in the 

evaluation subset.  In both the methods, the quality of their 

predictions are measured. The precision and recall measures 

from all queries are averaged to plot the precision-recall 

figures comparing effectiveness of user profiles. Profiles 

predicted by collaborative filtering are found to be more 

accurate than preference profiles without collaborative 

filtering. 

9. CONCLUSION 
This paper presented an approach to mining concept- based 

profiles from user’s search histories and comparing similar 

profiles for future queries. Experimental results proved that 

the use of collaborative filtering in the profiling process 

improved the relevancy of search results. 

Further, concept-based user profiles can be integrated into 

ranking algorithms of a search engine so that search results 

can be ranked according to individual user’s interests. 

Prediction of unseen queries can be made possible effectively 

through the comparison of user profiles . 
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