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ABSTRACT 

In the field of data mining, clustering of educational data has 

not given much of the importance. Considering the growth of 

educational field as a business, clustering of educational data 

must be focused as it can give effective results as in the case 

of mining enrolled students on the basis of education they 

undertake. A new algorithm is proposed and implemented by 

us for clustering educational data. This algorithm is based on 

a continuous looping procedure. Raw dataset is assigned to 

clustering algorithm initially and a novel cluster is identified 

for partition whose cluster high degree is less. Then 

improvement of degree of cluster is carried out. In this 

algorithm on the basis of homogeneity, cluster high degree is 

defined. Experiment is carried out on educational data; which 

provides good high degree clusters. 

General Terms 

Data Mining 
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1. INTRODUCTION 
Data clustering is a common technique for data analysis, 

which is used in many fields, including machine learning, data 

mining, pattern recognition, image analysis and 

bioinformatics. Clustering is a division of data into groups of 

similar objects. Each group, called cluster, consists of objects 

that are similar between themselves and dissimilar to objects 

of other groups. Representing data by fewer clusters 

necessarily loses certain fine details (akin to lossy data 

compression), but achieves simplification. It represents many 

data objects by few clusters, and hence, it models data by its 

clusters. 

Data modeling puts clustering in a historical perspective 

rooted in mathematics, statistics, and numerical analysis. 

From a machine learning perspective clusters correspond to 

hidden patterns, the search for clusters is unsupervised 

learning, and the resulting system represents a data concept. 

Therefore, clustering is unsupervised learning of a hidden data 

concept. Data mining deals with large databases that impose 

on clustering analysis additional severe computational 

requirements. 

Clustering techniques fall into a group of undirected data 

mining tools. The goal of undirected data mining is to 

discover structure in the data as a whole. There is no target 

variable to be variable to be predicted, thus no distinction is 

being made between independent and dependent variables. 

Clustering techniques are used for combining observed 

examples into clusters (groups) which satisfy two main 

criteria: 

1. Each group or cluster is homogenous; examples that 

belong to the same group are similar to each other. 

2. Each group or cluster should be different from other 

clusters that are examples that belong to one cluster should be 

different from the examples of other clusters. 

Clustering is a descriptive task that seeks to identify 

homogeneous groups of objects based on the values of their 

attributes (dimensions) [1], [2]. Clustering techniques have 

been studied extensively in statistics, pattern recognition, and 

machine learning. Recent work in the database community 

includes CLARANS, BIRCH, and DBSCAN. Clustering is an 

unsupervised classification technique. Challenges for 

clustering categorical data are: 1) Ordering of the domains of 

the individual attributes is not efficient. 2) Scalability to high 

dimensions of data. High-dimensional categorical data such as 

students records containing large number of attributes. 3) 

Reliance on parameters. Tuning of large parameters is 

required which has many critical aspects. 

Use of parameters is huge. It is best suited for efficiency, 

scalability, and flexibility. Adjustment of parameters requires 

a lot of attempts. There is an increase problem when 

parameters taken are large in number. Algorithm should have 

as less or no parameters. Automation of algorithm gives better 

results. An automatic approach algorithm searches huge 

amounts of high-dimensional data such that it is effective and 

time taken is also very small. A parameter free approach is 

based on decision tree learning, which is implemented by top-

down divide-and-conquer strategies. These listed problems 

are handled uniquely, but in literature different algorithms are 

provided to handle each problem uniquely. The main 

objective of this paper is to handle the three issues in a 

incorporated framework.  

We present Two Phase Clustering (TPC), a new approach to 

clustering high-dimensional categorical data that scales to 

processing large volumes of such data in terms of both                  

effectiveness and efficiency. Initially whole data set is feed as 

an input; it searches for a partition, which improves the 

overall purity. The algorithm is not dependent on any data-

specific parameter. Though, notion of purity is still present 

which allows for adopting the high degree criterion for 

clustering. Section-2 reviews some of the related work carried 

out on transactional data, high dimensional data and high 

dimensional categorical data. Section-3 provides background        
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information on the clustering of high dimensional categorical 

data (TPC algorithm). Section-4 describes implementation 

results of TPC algorithm. Section-5 concludes the paper and 

draws direction to future work. 

2. RELATED WORK 
In current literature, many approaches are given for clustering 

categorical data. Most of these techniques suffer from two 

main limitations: 1) they are reliant on parameters and 2) they 

are not scalable to high dimensional data. 

Many distance-based clustering algorithms [3] are proposed 

for transactional data. But traditional clustering techniques 

have the curse of dimensionality and the sparseness issue 

when dealing with very high-dimensional data such as 

market-basket data or Web sessions [4]. Though most of these 

approaches were defined for numerical data, some recent 

work [5] considers subspace clustering for categorical data. 

Categorical data clusters are considered as dense regions 

within the data set. The density is related to the frequency of 

particular groups of attribute values. The higher the frequency 

of such groups the stronger the clustering. Preprocessing the 

data set is carried by extracting relevant features (frequent 

patterns) and discovering clusters on the basis of these 

features. There are several approaches accounting for 

frequencies. As an example, Yang et al. [6] propose an 

approach based on histograms: The goodness of a cluster is 

higher if the average frequency of an item is high, as 

compared to the number of items appearing within a 

transaction. The algorithm is particularly suitable for large 

high-dimensional databases, but it is sensitive to a user 

defined parameter (the repulsion factor), which weights the 

importance of the compactness/sparseness of a cluster. Other 

approaches [7], [8], [9], [10] extend the computation of 

frequencies to frequent    patterns in the underlying data set. 

In particular, each transaction is seen as a relation over some 

sets of items, and a hyper-graph model is used for 

representing these relations. Hyper-graph partitioning 

algorithms can hence be used for obtaining item/transaction 

clusters. 

Categorical clustering is handled by using information-

theoretic principles and the notion of entropy to measure 

closeness between objects. Collections of objects those are 

same have lower entropy than those of dissimilar ones. The 

COOLCAT algorithm [11] proposes an algorithm where 

records are processed in incremental manner, and a suitable 

cluster is chosen for each tuple such that at each step, the 

entropy of the resulting clustering is minimized.  

Li and Ma [12] propose an iterative procedure that finds the 

optimal data partition which minimizes an entropy-based 

criterion. Initially, all tuples are in single cluster. Then, a 

Monte Carlo process randomly chooses a tuple and assigns it 

to another cluster as a trial step for decreasing the entropy 

criterion. Whenever entropy decreases it is recorded. The 

overall process is kept in loop until there are no more changes 

in cluster assignments. The entropy-based criterion      

proposed here can be derived in the formal framework of 

probabilistic clustering models. Indeed, appropriate 

probabilistic models, like multinomial [13] and multivariate 

Bernoulli [14], have been proposed and are effective. The 

problem of finding the proper number of clusters in the data 

has been studied extensively in the literature. Many of the 

methods computes costly statistics based on the within-cluster 

dispersion [15] or on cross-validation procedures for selecting 

the best model [16], [17]. The latter requires an extra 

computational cost due to a repeated estimation and 

evaluation of a predefined number of   models. More efficient 

schemes have been devised in [18], [19]. The Bayesian 

Information Criterion [18] mediates between the likelihood of 

the data and the model complexity, or the improvement in the 

rate of distortion of the sub-clusters with respect to the 

original cluster [19]. The exploitation of the K-Means scheme 

makes the algorithm specific to low-dimensional numerical 

data, and proper tuning to high-dimensional categorical data is 

problematic. 

Automatic approaches that adopt the top-down orientation of 

decision trees are proposed in [20]. They all differ in the 

criteria that they adopt, for example reduction in entropy [21]. 

These all approaches have some pitfalls. The scalability on 

high-dimensional data is pitiable. Some of the literature that 

focused on high dimensional categorical data is available in 

[21], [22]. 

3. The TPC Algorithm 
The key idea of Two Phase Clustering (TPC) algorithm is to 

develop a clustering procedure, which has the general sketch 

of a top-down decision tree learning algorithm. First, start 

from an initial partition which contains single cluster (the 

whole data set) and then continuously try to split a cluster 

within the partition into two sub-clusters. If the sub-clusters 

have a higher homogeneity in the partition than the original 

cluster, the original is removed. The sub-clusters obtained by 

splitting are added to the partition. Split the clusters on the 

basis of their homogeneity. A function High degree(C) 

measures the degree of homogeneity of a cluster C. Clusters 

with high intra-homogeneity has high values of high degree. 

Our approach to clustering starts from the analysis of the 

analogies between a clustering problem and a classification 

problem. 

The general schema of the TPC algorithm is specified in Fig. 

1. The algorithm starts with a partition having a single cluster 

i.e whole data set (line 1). The central part of the algorithm is 

the body of the loop between lines 2 and 15. Within the loop, 

an effort is made to generate a new cluster by 1) choosing a 

candidate node to split (line 4), 2) splitting the candidate 

cluster into two sub-clusters (line 5), and (line 3) calculating 

whether the splitting allows a new partition with better high 

degree than the original partition (lines 6–13). If this is true, 

the loop can be stopped (line 10), and the         partition is 

updated by replacing the original cluster with the new sub-

clusters (line 8). Otherwise, the sub-clusters are discarded, 

and a new cluster is taken for splitting. 

The generation of a new cluster calls STABILIZE-

CLUSTERS in line 9, improves the overall high degree by 

trying relocations among the clusters. Clusters at line 4 are 

taken in increasing order of high degree. 

3.1 SPLITTING A CLUSTER 
A splitting procedure gives a major   improvement in the high 

degree of the partition. Choose the attribute that gives the 

highest     improvement in the high degree of the partition. 

3.2. PARTITION-CLUSTER 
The PARTITION-CLUSTER algorithm is given in Fig.2. The 

algorithm continuously evaluates, for each element x   C1U 

C2, to check whether a reassignment increases the 

homogeneity of the two clusters. 
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Lines P8 and P9 compute the involvement of x to the local 

high degree in two cases: either x remains in its original 

cluster (Cu) or x is moved to the other cluster (Cv). If moving 

x gives an improvement in the local high degree, then the 

swapping is done (lines P10–P13). Lines P2–P14 in the 

algorithm is nested into a main loop: elements are 

continuously checked for swapping until a convergence is 

met. The splitting process can be sensitive to the order upon 

which elements are considered: In the first stage, it could be 

not convenient to reassign the generic xi from C1 to C2, 

whereas a convenience in performing the swap can be found 

after the   relocation of some other element xj. The main loop 

partly smoothes this effect by repeatedly relocating objects 

until convergence is met. Better PARTITION-CLUSTER can 

be made strongly insensitive to the order with which cluster 

elements are considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Generate Clusters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Partition Cluster 

 

 

The idea is to rank and sort the cluster elements before line 

P1, which is on the basis of their splitting effectiveness. To 

this   purpose, each transaction x belonging to cluster C can be 

associated with a weight w(x), which indicates its splitting 

effectiveness. x is eligible for splitting C if its items allow us 

to divide C into two homogeneous sub-clusters. In this 

respect, the Gini index is a natural way to quantify the 

splitting effectiveness G(a) of the individual attribute value    

a  x. Precisely, G(a) = 1 – Pr(a|C)2 – (1 - Pr(a|C))2,  where 

Pr(a|C) denotes the probability of a within C. G(a) is close to 

its maximum whenever a is present in about half of the 

transactions of C and reaches its minimum whenever a is 

unfrequent or common within C. The overall splitting     

effectiveness of x can be defined by averaging the splitting 

effectiveness of its constituting items w(x) = avg a  x (G(a)). 

Once ranked, the elements x  C can be considered in 

descending order of their splitting effectiveness at line P2. 

This guarantees that C2 is initialized with      elements, which 

do not represent outliers and still are likely to be removed 

from C1. This removes the dependency on the initial input 

order of the data. With decision tree learning, TPC exhibits a 

preference bias, which is encoded within the notion of 

homogeneity and can be viewed as the preference for compact 

clustering trees. Indeed, due to the splitting effectiveness 

heuristic, homogeneity is enforced by the effects of the Gini 

index. At each split, this tends to isolate clusters of 

transactions with mostly frequent attribute values, from which 

the compactness of the overall clustering tree follows. 

3.3 STABILIZE-CLUSTERS 
PARTITION-CLUSTER improves the local high degree of a 

cluster. And STABILIZE-CLUSTERS try to increase 

partition high degree. It is carried out by finding the most 

suitable clusters for each element among the ones which are 

there in the partition. 

Fig. 3 shows the pseudo code of the procedure. The central 

part of the algorithm is a main loop which (lines S2–S17) 

examines all the available elements. For each element x, a 

pivot cluster is identified, which is the cluster containing x. 

Then, the available clusters are continuously evaluated. The 

insertion of x in the current cluster is done (lines S5–S6), and 

the updated high degree is compared with the original high 

degree. 

If an improvement is obtained, then the swap is accepted (line 

S11). The new pivot cluster is the one now containing x, and 

if the removal of x makes the old pivot cluster empty, then the 

old pivot cluster is removed from the partition P. If there is no 

improvement in high degree, x is restored into its pivot 

cluster, and a new cluster is examined. The main loop is 

iterated until a    stability condition for clusters is achieved. 

3.4 Cluster and Partition Qualities 
AT-DC gives two different high degree measures,         1) 

local homogeneity within a cluster and 2) global homogeneity 

of the partition. As shown in Fig. 1, it is noticed that partition    

high degree is used for checking whether the insertion of a 

new cluster is really suitable: it is for maintaining 

compactness. Cluster high degree in procedure 

PARTITIONCLUSTER is done for good separation. 

Cluster high degree is known when there is a high degree of 

intracluster homogeneity and intercluster homogeneity. There 

is strong relation between intracluster homogeneity and the 

probability Pr(ai|Ck) that item ai appears in a transaction 

GENERATE-CLUSTERS(D) 
Input: A set D ={x1,…,xN} of transactions; 

Output: A partition P = {C1,…,Ck} of clusters; 

1. Let initially P = {D}; 
2. repeat 
3.       Generate a new cluster C initially 

empty; 
4.       for each  cluster Ci P do 

5.           PARTITION-CLUSTERS(Ci,C); 
6.           P’      P U {C}; 
7.           if Quality(P) < Quality(P’) then 
8.               P    P’; 
9.               STABILIZE-CLUSTERS(P); 
10.                   break 
11.               else 
12.                   Restore all xj   C into Ci; 

13.           end if 
14.        end for 
15. until no further cluster C can be 

generated 

 

PARTITION-CLUSTER(C1,C2) 

P1. repeat 
P2. for all x  C1 U C2 do 

P3. if cluster(x) = C1 then 
P4. Cu   C1; Cv   C2; 
P5. else 
P6. Cu   C2; Cv   C1; 
P7. end if 
P8. Qi    Quality(Cu) + Quality(Cv); 
P9. Qs    Quality(Cu – {x}) + 

Quality(Cv U {x}); 
P10. if Qs > Qi  then 
P11. Cu.Remove(x); 
P12. Cv.Insert(x); 
P13. end if 
P14. end for 
P15. until C1 and C2 are stable 
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containing in Ck. There is a strong relationship between 

intercluster separation and Pr(x ∈ Ck, ai ∈ x). Cluster 

homogeneity and separation is computed by relating it to the 

unity of items within the transactions that it contains. Cluster 

high degree is equal to the combination of the above 

probability,  

 Pr a|C Pr C|a Pr a 
𝑎  ∈ 𝑀𝑐

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Stabilize Clusters 

 

The last term is used for weighting the importance of item a in 

the summation: Essentially, high values from low-frequency 

items are less relevant than those from high-frequency values. 

By the Bayes theorem, the above formula is expressed as  

 

Pr(C)  Pr a|C 2

𝑎∈𝑀𝑐

 

Terms Pr (a|C)2 (relative strength of a within C) and Pr(C) 

(relative strength of C) work in contraposition. It is easy to 

compute the gain in strength for each item with respect to the 

whole data set, that is  

 

High deg. (Ck) = Pr(Ck)  Pr(a|Ck)2 − Pr a|D 2 
𝑎  ∈𝑀𝑐𝑘

 

…………………. (1) 

Where, 

 Ck – cluster 

 Pr(Ck) – relative strength of Ck 

 a Є MCk – an item 

 M = {a1,……., am} is set of Boolean attributes 

 Pr(a| Ck) - relative strength of a within Ck 

 Pr(a|D) - relative strength of a within D 

 D = {x1,…., xn} is data set of tuples defined on M   

 

High degree (Ck)  =
𝑛

𝑁
   

𝑛𝑎

𝑁
 

2
−   

𝑁𝑎

𝑁
 

2
 𝑎  ∈ 𝑥 ,𝑥  ∈𝐶 …..…… (2) 

 

Where na and Na represent the frequencies of a in C and D, 

respectively. The value of High degree (Ck) is updated as 

soon as a new transaction is added to C. 

4. RESULTS AND ANALYSIS 
Two real-life data sets were evaluated. A description of each 

data set employed for testing is provided next, together with 

an evaluation of the TPC performances. 

Educational Dataset: It contains 50 instances, each having 

12 attributes (student name, 9 Boolean attributes and 2 

numeric’s). The "type" attribute appears to be the class 

attribute. In total there are 7 classes of students, that is, class 1 

(BE) has 14 set of students, class 2 (BA) has 5 set of students, 

class 3 (BSc) has 5 set of students, class 4 (BCom) has 6 set 

of students, class 5 (BCA) has 4 set of animals, class 6 

(Polytechnic) has 7 set of animals and class 7 (MBBS) has 9 

set of animals. In this dataset, missing Attribute Values is 

denoted by "?". Table 1 shows that in cluster 1, a class 1, 2 

and 5 are having high homogeneity and in cluster 2, classes 4, 

6 and 7 are having high homogeneity but it consists of 2 

misclassified records in class 3. From figure 4 it can be seen 

that inter homogenous quality and intra homogeneous quality 

of clusters 1, 2, 4, 5, 6 and 7 is 100% whereas inter 

homogenous quality and intra homogeneous quality of cluster 

3 is only 30%. 

Table 1: Confusion matrix for Educational data 

Cluster No. 
Classes 

1 2 3 4 5 6 7 

1 12 5 2 0 4 0 0 

2 0 0 5 6 0 7 9 

 

 

Figure 4: Qualities of Clusters 

 

5. CONCLUDING REMARK 
This innovative TPC algorithm is parameter-free, fully-

automatic approach to cluster high-dimensional categorical 

data. The main advantage of our approach is its capability of 

avoiding explicit prejudices, expectations, and presumptions 

on the problem at hand, thus allowing the data itself to speak. 

This is useful with the problem at hand, where the data is 

described by several relevant attributes. 

A limitation of our proposed approach it cannot deal with 

outliers. Outliers are one that appears to deviate markedly 

from other members of the sample in which it occurs. Hence, 

a significant improvement of TPC can be obtained by defining 

an outlier detection procedure that is capable of detecting and 

removing outlier transactions before partitioning the clusters. 
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STABILIZE-CLUSTERS(P) 

S1.   repeat  
S2.        for all x  D do 

S3.           Cpivot   cluster(x); Q   Quality(P); 
S4.  for all C  P do 

S5.                 Cpivot.REMOVE(x); 
S6.                 C.INSERT(x); 
S7.              if Quality(P) > Q then 
S8.                if Cpivot = Ø then 
S9.                    P.REMOVE(Cpivot); 
S10.               end if 
S11.                   Cpivot   C; Q  Quality(P); 
S12.  else 
S13.  Cpivot.INSERT(x); 
S14.  C.REMOVE(x); 
S15.    end if 
S16.    end for 
S17.  end for 
S18.  until P is stable             
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The research work can be extended further to improve the 

high degree of clusters by removing outliers. 
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