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ABSTRACT 

Traditionally, musical instrument recognition is mainly based 

on frequency domain analysis (sinusoidal analysis, cepstral 

coefficients) and shape analysis to extract a set of various 

features. Instruments are usually classified using k-NN 

classifiers, HMM, Kohonen SOM and Neural Networks. 

Recognition of musical instruments in multi-instrumental, 

polyphonic music is a difficult challenge which is yet far from 

being solved. Successful instrument recognition techniques in 

solos (monophonic or polyphonic recordings of single 

instruments) can help to deal with this task.  

We introduce an instrument recognition process in solo 

recordings of a set of instruments (flute, guitar and 

harmonium), which yields a high recognition rate. A large 

solo database is used in order to encompass the different 

sound possibilities of each instrument and evaluate the 

generalization abilities of the classification process. The basic 

characteristics are computed in 1sec interval and result shows 

that the estimation of zero crossing rate and short time energy 

reflects more effectively the difference in musical 

instruments.    
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1. INTRODUCTION 
Recognizing objects in the environment from the sounds they 

produce is arguably the primary function of the auditory 

system. An organism that can sense a threat at a distance has a 

competitive advantage (in the evolutionary sense) over one 

that cannot. Recognition is possible, in part, because acoustic 

features of sounds often betray physical properties of their 

sources. As a simple example, large objects tend to produce 

sound energy at frequencies lower than those produced by 

small objects. If an organism’s goal is to recognize sounds as 

arising from particular source classes, recognition should be 

based on those acoustic features that are invariant across the 

sounds within each class yet distinguish between the sounds 

of different classes. For many classes of sound sources, 

acoustic characteristics that correlate with physical or 

behavioral properties are examples of such highly 

discriminatory features. Successful automatic classification of 

musical sounds is useful in many applications –classification 

of audio files scattered on the Internet, automatic scoring of 

recorded music, automatic indexing of recordings, multimedia 

labeling and many others. Computational auditory scene 

analysis (CASA), automatic music transcription frameworks 

and content-based search systems, all find such a capability to 

be extremely helpful. However, musical instrument 

recognition has not received as much research interest as, for 

instance, speech and speaker recognition, even though both 

the amateur music lover and the professional musician would 

benefit from such systems. The challenge of automatic 

classification of musical sounds poses many questions: 

Accuracy - is it possible to distinguish among virtually 

identical sounds coming from different instruments, for 

example certain sounds of Viola and Violin? Taxonomy - 

what should be the classes? Should sounds recorded in 

different environments using different instruments and 

playing techniques, classified in the same class? e.g. when 

classifying into musical instruments, should recordings of a 

string ensemble in a noisy environment and a pizzicato sound 

of a single violin recorded in an anechoic chamber considered 

the same class? Which instruments should be classified in the 

same classes when categorizing samples into instrument 

families? Generality - which are the common qualities of 

sounds of a specific class (e.g. the sounds of a classical guitar) 

which separate them from other classes, regardless of the 

sound database being used and the recording conditions? 

Validity of data - are the sound databases consistent? Do they 

contain "bad" or misclassified samples? One of the broad 

goals of computational auditory scene analysis research is to 

create computer systems that can learn to recognize the sound 

sources in a complex auditory environment.  
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Fig 1: Basic processing flow of audio content analysis. 

Fig 1 shows the basic processing flow which discriminates 

between speech and music signal. After feature extraction, the 

input digital audio stream is classified into speech, non speech 

and music.  
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2. PREVIOUS WORK 
Many attempts in music instrument recognition have taken 

place in the last thirty years. Most of them have focused on 

single, isolated notes (either synthesized or natural) and tones 

taken from professional sound data-bases [1]. Recent works 

have operated on real-world recordings, polyphonic or 

monophonic, multi-instrumental or solo [2]. However, the 

issue is yet far from being solved. The work on recognition 

from separate notes still remains crucial, since it can lead to 

further optimization of the methods used and to insights on 

the recognition of multi instrumental, commercial recordings. 

The majority of the recognition systems used so far 

concentrate on the timbral-spectral characteristics of the notes. 

Discrimination is based on features such as pitch, spectral 

centroid, energy ratios, spectral envelopes and mel frequency 

cepstral coefficients [3, 4]. Temporal features, other than 

attack, duration and tremolo, are seldom taken into account. 

Classification is done using k-NN classifiers, HMM, Kohonen 

SOM and Neural Networks [5, 6]. A limitation of such 

methods is that in real instruments the spectral features of the 

sound are never constant. Even when the same note is being 

played, the spectral components change. One has to take into 

consideration many timbral components and the way they can 

vary, which is often rather random, in order to develop a 

robust recognition system. 

3. METHODOLOGY 
The target sample was manually segmented using 

GOLDWAVE software and stored with .wav extension. 

4. EXPERIMENT AND RESULT 

4.1 Result using Zero Crossing Rate 
The zero-crossing rate (ZCR) indicates the frequency of signal 

amplitude sign change. To some extent, it indicates the 

average signal frequency as: 
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Where sgn[] is a signum function and x(m) is the discrete 

audio signal. 

In mathematical terms, a "zero-crossing" is a point where the 

sign of a function changes (e.g. from positive to negative), 

represented by a crossing of the axis (zero value) in the graph 

of the function. The zero-crossing is important for systems 

which send digital data over AC circuits, such as modems, 

X10 home automation control systems, and Digital Command 

Control type systems for Lionel and other AC model trains. 

Counting zero-crossings is also a method used in speech 

processing to estimate the fundamental frequency of speech. 
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Fig 2: ZCR of harmonium. 
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Fig 3: ZCR of flute. 
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                Fig 4: ZCR of guitar. 

 

Table 1. ZCR of Harmonium, Flute and Guitar. 

            Frames 

 

Instruments 

 

0 

 

5 

 

10 

 

15 

 

20 

Harmonium 38 32 33 28 26 

Flute 24 26 20 22 25 

Guitar 18 14 14 15 15 
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Fig 5: ZCR of Harmonium, Flute and Guitar. 

 

Fig 5 displays the probability distribution curve of zero 

crossing rates of harmonium, flute and guitar. 
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4.2 Result using Short Time Energy 
The short-time energy (STE) measurement of a speech signal 

can be used to determine voiced vs. unvoiced speech.  Short 

time energy can also be used to detect the transition from 

unvoiced to voiced speech and vice versa.  The energy of 

voiced speech is much greater than the energy of unvoiced 

speech. 
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Eq. (1) defines the short time energy for a sampled signal 

where h(n-m) is a windowing function. For simplicity a 

rectangular windowing function is used as defined in eq. (2).  
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N in eq. (2) is the length of the window in samples. 
The selection of the window size is a compromise since a high 

pitched female or child’s voice may have a pitch period as 

small as 16 samples (at an 8 kHz sampling rate) up to 200 

samples for a low pitched  male  voice. A window size of 160 

samples or about 20 msec. is a good compromise. 

We record the input signal at fs=8 KHz. Now using 

Hamming window with the following specifications: 

Window size=256 samples, Window step=100 samples, 

Window overlap=156 samples and number of frames = 

(length of input – window size)/(window step), we 

calculate the STE for each frame using the following 

formula. 
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               Fig 6: STE of harmonium. 
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Fig 7: STE of flute. 
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               Fig 8: ZCR of guitar. 

Table 2. STE of Harmonium, Flute and Guitar. 

            Frames 

 

Instruments 

 

0 

 

5 

 

10 

 

15 

 

20 

Harmonium 2.2 2.4 2.3 2.2 2.3 

Flute 2 1.6 1 1.3 1.8 

Guitar 1.7 1.3 0.8 0.8 0.7 
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Fig 9: STE of Harmonium, Flute and Guitar. 

 

Fig 9 displays the probability distribution curve of short time 

energy of harmonium, flute and guitar. 

5. DISCUSSION AND CONCLUSION 
Please In this paper, we dealt with recognition of sound 

samples and presented several methods to improve 

classification results. Tones are extracted from a large 

database of three musical instruments (harmonium, flute and 

guitar). 

We use two different parameters in the analysis. From the 

experiments, we could observe evident results for zero 

crossing rate and short time energy. Zero crossing rates for the 

entire instrument’s tones are always greater than short time 

energy. Zero crossing rate and short time energy is highest for 

harmonium then for flute and   least for guitar.  

Result shows that the estimation of zero crossing rate and 

short time energy reflects more effectively the difference in 

musical instrument. 
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