

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 1– No.1, November 2012 – www.ijais.org

λ- Continuous Mappings in Intuitionistic Fuzzy Topological Space

P.Rajarajeswari Assistant Professor, Department of Mathematics Chikkanna Government Arts college Tirupur- 641602

ABSTRACT

In this paper we introduce intuitionistic fuzzy λ -continuous mapping and some of its properties are studied. Also we provide intuitionistic fuzzy λ - $T_{1/2}$ space and some of its properties are evolved.

KEYWORDS

Intuitionistic fuzzy topology, intuitionistic fuzzy λ -closed sets, intuitionistic fuzzy λ - open sets, intuitionistic fuzzy λ - continuous mappings and intuitionistic fuzzy λ - $T_{1/2}$ space.

AMS SUBJECT CLASSIFICATION (2000).

54A40, 03F55

1. INTRODUCTION

After the introduction of fuzzy sets by L.A Zadeh [12] in 1965, there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets was introduced by Atanassov [1] in 1986. Using the notion of intuitionistic fuzzy topology in 1997. This approach provides a wide field for investigation in the area of fuzzy topology and its application. The aim of this paper is to introduce the notion of λ -continuous mappings in intuitionistic fuzzy topological space. Moreover we introduced the application of intuitionistic fuzzy λ -closed sets namely, intuitionistic fuzzy

λ- $T_{1/2}$ space and some of its properties are studied.

2. PRELIMINARIES

Definition 2.1: [1] Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{<x, \mu_A(x), \upsilon_B(x) > : x \in X\}$, where the function $\mu_A : X \to [0,1]$ and $\upsilon_A : X \to [0,1]$ denotes the degree of membership $\mu_A(x)$ and the degree of non membership $\gamma_A(x)$ of each element $x \in X$ to the set A respectively and $0 \le \mu_A(x) + \upsilon_A(x) \le 1$ for each $x \in X$.

Definition 2.2[1]: Let A and B be intuitionistic fuzzy sets of the form $\mathbf{A} = \{<x, \mu_A(x), \nu_A(x) >: x \in X\}$, and form

 $\textbf{B}=\{<\!\!x,\,\mu_B(x),\,\upsilon_B(x)>:x\!\in X\}.\text{Then}$

(a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$

(b) A = B if and only if $A \subseteq B$ and $B \subseteq A$

G.Bagyalakshmi Assistant Professor Department of Mathematics AJK college of Arts and Science Coimbatore- 641105

(c) $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle / x \in X \}$

 $(d) \ A \cap B = \{ \langle \ x, \ \mu_A(x) \land \mu_B(x), \ \nu_A(x) \lor \nu_B(x) \ \rangle \ / \ x \in X \}$

 $(e) \ A \cup B = \{ \langle \ x, \ \mu_A(x) \lor \ \mu_B(x), \ \nu_A(x) \land \nu_B(x) \ \rangle \ / \ x \in X \}.$

Definition 2.3 [11] : The intuitionistic fuzzy set $c(\alpha, \beta) = < x$, $c_{\alpha}, c_{1:\beta} >$ where

 $\alpha \in (0,1], \beta \in [0,1)$ and $\alpha + \beta \le 1$ is called an intuitionistic fuzzy point (IFP for short)in X.

Definition 2.4 [11]: Two IFSs are said to be q-coincident (A_q B in short) if and only if there exists an element $x \in X$ such that, $v_A(x) > \mu_B(x)$ or $v_A(x) < \mu_B(x)$.

Definition 2.5[5]: An intuitionistic fuzzy topology(IFT for short) on X is a family τ of IFSs in X satisfying the following axioms

- $(i) \qquad 0 \ , \ 1 \ \in \tau$
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$
- (iii) $\cup G_i \in \tau$ for any family

 $\{G_i/\,i\in I\}\,\subseteq\,\tau$

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space and each intuitionistic fuzzy set in τ is known as an intuitionistic fuzzy open set in X.

Definition 2.4 [5]: The complement A^C of an intuitionistic fuzzy open set A in an intuitionistic fuzzy topological space

 (X, τ) is called intuitionistic fuzzy closed set in X.

Remark 2.5 [5]: For any intuitionistic fuzzy set A in (X, τ) , we have

- (i) $cl(A^{C}) = [int(A)]^{C}$,
- (ii) $int (A^{C}) = [cl (A)]^{C}$,
- (iii) A is an intuitionistic fuzzy closed set in $X \Leftrightarrow Cl$ (A) = A
- (iv) A is an intuitionistic fuzzy open set in $X \Leftrightarrow$ int (A) =A

Definition 2.6[5]: Let (X, τ) be an intuitionistic fuzzy topology and

 $\begin{array}{l} A= \{<\!\!x, \ \mu_A \left(x \right)\!, \upsilon_B \left(x \right) >: x \in X \} \!, \ \text{be an intuitionistic fuzzy} \\ \text{set in } X. \ \text{Then the intuitionistic fuzzy interior and} \\ \text{intuitionistic fuzzy closure are defined by} \end{array}$

Int (A) = {G/ G is an intuitionistic fuzzy open set in X and G $\subseteq A$ }

Definition 2.7 [6]: An intuitionistic fuzzy set $A = A = \{<x, \mu_A (x), \upsilon_B (x) >: x \in X\}$ in an intuitionistic fuzzy topology space (X, τ) is said to be

(i) Intuitionistic fuzzy semi closed if int(cl (A) \subseteq A

(ii) Intuitionistic fuzzy pre closed if $cl(int(A)) \subseteq A$

Definition 2.9 [9]: An intuitionistic fuzzy set A in an intuitionistic topological space (X, τ) is said to be intuitionistic fuzzy generalized semi-pre closed set (IFGSPCS for short if spcl(A) \subseteq A.

Definition 2.10: An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X,τ) called

(i). intuitionistic fuzzy generalized closed set [11] (intuitionistic fuzzy g - closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is intuitionistic fuzzy open

(ii) intuitionistic fuzzy g – open set[11], if the complement of an intuitionistic fuzzy g – closed set is called intuitionistic fuzzy g - open set.

(iii) intuitionistic fuzzy semi open (resp. intuitionistic fuzzy semi closed)[6] if there exists an intuitionistic fuzzy open \subseteq (resp. intuitionistic fuzzy closed) such that $U \subseteq A \subseteq Cl(U)$ (resp. int(U) $\subseteq A \subseteq U$).

Remark 2.11: Every intuitionistic fuzzy closed set [11] (intuitionistic fuzzy open set) is intuitionistic fuzzy g-closed (intuitionistic fuzzy g- open set) but the converse may not be true.

Definition 2.12 [5]: Let X and Y are nonempty sets and f: $X \rightarrow Y$ is a function.

(a) If $B = \{ \langle y,, \mu_B(y), \upsilon_B(y) \rangle : y \in Y \}$ is an intuitionistic fuzzy set in Y, then the pre image of B under f denoted by f¹(B) is defined by f¹(B) == $\{ \langle x,, f^1(\mu_B)x, f^1(\upsilon_B)x : x \in X \}$

(b) If A= { $\{ \{x, \mu_A (x), \upsilon_B (x), \} | x \in X \}$ is an intuitionistic fuzzy set in X, then the image of A under f denoted by f(A) is the intuitionistic fuzzy set in Y denoted by

 $f(A)=\{<\!\!y,\!f(\mu_A)(y),\!f(\upsilon_A)(y)\!\!>\!\!:y\in Y\}$ where $f((\upsilon_A)=1\!\!\cdot\!f(1\!-\!(\upsilon_A)).$

Definition 2.13 [6]: Let $f:(X, \mathcal{T}) \to (Y, \sigma)$

if and if the pre image of each intuitionistic fuzzy open set in Y is an intuitionistic fuzzy topological space Y.

Definition 2.14 [10]: A mapping $f:(X, \mathcal{T}) \to (Y, \sigma)$ is called an intuitionistic fuzzy generalised semi- pre continuous (IFGSP continuous for short) mapping if $f^{-1}(V)$ is

an IFGSPCS in $(X, ^{\mathcal{T}})$.

Through out this paper $f : (X, \mathcal{T}) \to (Y \sigma)$ denotes a mapping

from an intuitionistic fuzzy topological space $(X, , \tau)$ to another topological space (Y, σ) .

Remark 2.15 [11]: Every intuitionistic fuzzy continuous mapping is intuitionistic fuzzy g-continuity but the converse may not be true.

Definition 2.16 [8] An intuitionistic fuzzy set A of an intuitionistic topology space (X, T) is called an

(i) intuitionistic fuzzy λ -closed set (IF λ -CS) if A \supseteq cl(U) whenever A \supseteq U and U is intuitionistic fuzzy open set in X.

(ii) intuitionistic fuzzy λ -open set (IF λ -OS) if the complement A^c of an intuitionistic fuzzy λ -closed set A.

The family of all IF λ -CSs(resp.(IF λ -OSs) of an IFTS (X, ^T) is denoted by IF λ -CS(X) (resp.(IF λ -OS(X))

3. INTUITIONISTIC FUZZY λ-CONTINUOUS MAPPINGS

Definition 3.1: A mapping f: $(X, {}^{\tau}) \rightarrow (Y, {}^{\sigma})$ is said to be intuitionistic fuzzy λ -continuous if the inverse image of every intuitionistic fuzzy closed set of Y is intuitionistic fuzzy λ -closed in X.

Remark 3.2: Every intuitionistic fuzzy continuous is intuitionistic fuzzy λ -continuous but converse may not be true as seen from the following example.

Let $\tau = \{ \begin{array}{c} 0, 1 \\ 0 \\ \end{array}, \begin{array}{c} 1 \\ 0 \\ \end{array}, U \} \text{ and } \sigma = \{ \begin{array}{c} 0, 1 \\ 0 \\ \end{array}, V \} \text{ be intuitionistic}$

fuzzy topologies on X and Y respectively. Then f: (X, τ) \rightarrow (Y, σ) defined by f(a)=x and f(b)=y is intuitionistic fuzzy λ -continuity but not fuzzy continuity.

Remark 3.4: The concept of intuitionistic fuzzy λ - continuous mapping and intuitionistic g-continuous mappings are independent as seen from the following examples.

Example3.5: Let $X = \{a, b\}$, $Y = \{x, y\}$ and intuitionistic fuzzy sets U and V are defined as follows. U= $\{<a, 0.5, 0.5>, <b, 0.3, 0.6>\}$, V= $\{<a, 0.5, 0.5>, <b, 0.2, 0.6>\}$. Let

 τ -= { 0 , 1 , U } and σ ={ 0 1 , V} be intuitionistic fuzzy

topologies on X and Y respectively. Then the mapping

f: (X, τ) \rightarrow (Y, σ) defined by f(a)=x and f(b)=y is intuitionistic fuzzy g-continuity but not intuitionistic fuzzy – λ continuity

Example 3.6: Let X= {a ,b } and Y={x, y} and intuitionistic fuzzy sets U and V are defined as follows U={<a,0.5,0.5> , <b,0.2, 0.5>} and V={<a,0.5,0.5> , <b,0.2, 0.5>} and V={<a,0.5,0.5> , <b,0.4,0.5>}. Let $\tau = \{ \begin{array}{c} 0 & 1 \\ 0 & 1 \end{array} \}$ and $\sigma = \{ \begin{array}{c} 0 & 1 \\ 0 & 1 \end{array} \}$ be intuitionistic fuzzy topologies on X and Y respectively. Then the mapping f:(X, τ) \rightarrow (Y, σ) defined by f(a)=x and f(b)=y is intuitionistic fuzzy λ -continuous but not intuitionistic fuzzy g- continuous.

Remark 3.7: The concept of intuitionistic fuzzy λ -continuous mappings and intuitionistic fuzzy semi continuous

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 1– No.1, November 2012 – www.ijais.org

mappings are independent as seen from the following examples.

Example 3.8: Let $X=\{a, b,\}, Y=\{x, y\}$ and intuitionistic fuzzy sets U and V are defined as follows: U= {<a, 0.5, 0.5>, <b, 0.2, 0.5 >}, V= {a, 0.5, 0.5>, <b, 0.4, 0.5>}.

Let
$$\mathbf{T} = \{ 0 \ 1 \ , U \}$$
 and $\sigma = \{ 0 \ 1 \ , V \}$ be

intuitionistic fuzzy topologies on X and Y respectively. Then the mapping defined by

f: (X, τ) \rightarrow (Y, σ) is intuitionisticuzzy - λ ontinuous but not intuitionistic fuzzy semi continuous.

Example 3.9: Let $X=\{a, b\}$, $Y=\{x, y\}$ and intuitionistic fuzzy sets U and V are defined as follows: U= $\{<a, 0.5, 0.5 >, <b, 0.4, 0.6>\}$ V = $\{<a, 0.2.08 >, <b, 0.1, 0.9>\}$.

Let $\tau = \{ \underbrace{0}_{\sigma}, \underbrace{1}_{\sigma}, U \}$ and $\sigma = \{ \underbrace{0}_{\sigma}, \underbrace{1}_{\sigma}, V \} \}$ be intuitionistic fuzzy topologies on X and Y respectively

then the mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f(a)=x and f (b)=y is intuitionistic fuzzy semi continuous mapping but not intuitionistic fuzzy λ - continuous mappings.

Remark 3.10: The concept of intuitionistic fuzzy λ continuous mappings and intuitionistic fuzzy generalised semi -pre continuous mappings are independent as seen from the following examples.

Example 3.11: Let $X=\{a, b\}$, $Y=\{x, y\}$ and intuitionistic fuzzy sets U and V are defined as follows: U= {<a, 0. 5, 0.5 >, <b, 0. 5, 0.3>} V = {<a, 0.5 .0.5 >, <b, 0. 5, 0.4>}.

Let $\tau = \{ \begin{array}{c} 0 \\ 0 \end{array}, \begin{array}{c} 1 \\ 0 \end{array}, U \}$ and $\sigma = \{ \begin{array}{c} 0 \\ 0 \end{array}, \begin{array}{c} 1 \\ 0 \end{array}, V \}$ be intuitionistic

fuzzy topologies on X and Y respectively then the mapping

f: $(X, \tau,) \rightarrow (Y, \sigma)$ defined by f(a)=x and f(b)=y is intuitionistic fuzzy generalized semi -pre continuous mapping but not intuitionistic fuzzy λ - continuous mapping.

Let $\tau = \{ \begin{array}{c} 0, 1 \\ 0, - \end{array}, U \}$ an $\sigma = \{ \begin{array}{c} 0, - 1 \\ 0, - \end{array}, V \}$ be intuitionistic

fuzzy topologies on X and Y respectively then the mapping

f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f(a)=x and f(b)=y is not intuitionistic fuzzy generalized semi- pre continuous mapping but intuitionistic fuzzy $-\lambda$ continuous mapping.

Remark 3.13: Remark 3.2, 3.4, 3.9 and 3.10 reveals the following diagram of implication

Theorem 3.14: A mapping $f:(X, \mathcal{T}) \to (Y , \mathcal{\sigma})$ is intuitionistic fuzzy λ -continuous mappings if and only if the inverse image of every intuitionistic fuzzy open set of Y is intuitionistic λ -open set in X

Proof: It is obvious because $f^{-1}(U^c) = [f^{-1}(U)]^c$ for every intuitionistic fuzzy set U of Y.

Theorem 3.15: If $f:(X, \tau) \to (Y, \sigma)$ is intuitionistic fuzzy λ - continuous mapping then for each intuitionistic fuzzy point $c(\alpha, \beta)$ of X and each fuzzy open set V, $f(c(\alpha, \beta)) \subseteq V$ there exist a intuitionistic fuzzy λ -open set U such that $c(\alpha, \beta) \subseteq U$ and $f(U) \subseteq V$

Proof: Let $c(\alpha, \beta)$ be a intuitionistic fuzzy point of X and V be a intuitionistic fuzzy open set such that $c(\alpha, \beta) \subseteq V$, put U = $f^{-1}(V)$ then by hypothesis U is intuitionistic

fuzzy $\lambda \ \ \text{-closed set of } X \ \text{such that } c(\alpha, \beta) \ \ \subseteq U \ \text{and } f \ (U) = f \ ($

$$f^{-1}(\mathbf{V})) \subseteq \mathbf{V}.$$

Theorem 3.16: If f:(X, τ) \rightarrow (Y, $\cdot \sigma$) is fuzzy λ -continuous mapping then for each intuitionistic fuzzy point c(α , β) in X and each fuzzy open set V of Y such that

 $C(\alpha, \beta)_q)$ V, there exists $c(\alpha, \beta)$ in intuitionistic fuzzy λ -

open set U of X such that $C(\alpha, \beta)_a$ U and $f(U) \subseteq V$.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868 Foundation of Computer Science FCS, New York, USA Volume 1– No.1, November 2012 – www.ijais.org

Proof : Let $c(\alpha, \beta)$ be a intuitionistic fuzzy point of X and V be an intuitionistic fuzzy open set of Y such that, f($c(\alpha, \beta)_{q}$) V. Put U = f^{-1} (V). Then by hypothesis U is an

intuitionistic fuzzy λ -open set of X such that $c(\alpha, \beta)_a$) U

and
$$f(U) = f(f^{-1}(V)) \subseteq V$$
.

Remark 3.17: It is clear that $A \subseteq cl(A) \subseteq f1(cl(A))$ for any intuitionistic fuzzy set A of X.

Theorem 3.18 : f :(X, τ) \rightarrow (Y, σ) is intuitionistic fuzzy λ - continuous then

 $f(cl(A)) \subseteq cl(f(A))$ for every intuitionistic fuzzy set A of X.

Proof: Let A be an intuitionistic fuzzy set of X. Then clf(A) is an intuitionistic fuzzy closed set of Y. Since f is intuitionistic fuzzy λ - continuous $f^{-1}(cl(A))$ is intuitionistic fuzzy λ - closed set in X. Clearly $A \subseteq f^1$ cl(f(A)) Cl(A) \subseteq cl [f¹ cl(A))=f¹[clf(A)]. Hence f[cl(A)] \subseteq cl[f(A)].

Theorem 3.19: Let $f : (X, \mathcal{T}) \to (Y, \sigma)$ and $g : (Y, \sigma) \to (Z,\gamma)$ be two functions. Then $g \bullet f$ is $-\lambda$ -continuous if g is continuous and f is λ -continuous.

Proof: Let V be closed set in (Z,γ) . Then $g^{-1}(V)$ is closed in (Y, σ) . Since g is continuous and f is λ -continuous, $f^{-1}(g^{-1}(V))$ λ -closed set in (X, τ) . But $f^{-1}(g^{-1}(V)) = (g,f)^{-1}(V)$. Then

 λ -closed set in (X, \vee). But if ($g^-(V)$) = (g.I)⁻ (V). Then $g \bullet f$ is λ -continuous.

4. APPLICATION OF INTUTIONISTIC FUZZY λ - CONTINUOUS MAPPINGS

Definition 4.1 A topological space (X, τ) is called intuitionistic fuzzy λ - $T_{1/2}$ space (IF λ - $T_{1/2}$ space in short) if every intuitionistic fuzzy λ -closed set is intuitionistic closed in X.

Theorem 4.2: If X is intuitionistic fuzzy λ - $T_{1/2}$ space and

 $f:(X, {}^{{\boldsymbol{\tau}}}) \to (Y, \sigma)$ is intuitionistic $\lambda\text{-continuous}$ and then f is continuous.

Proof: Let: $f:(X, \mathcal{T}) \to (Y, \sigma)$ is intuitionistic λ -continuous and let F be any closed set in (Y, σ) Then f(F) is λ -closed set in X. Since f is λ -continuous. But X is IF λ - $T_{1/2}$ space. f (F) is closed in X. Hence f is continuous.

Theorem 4.3: If $f:(X, \tau) \to (Y, \sigma)$ is intuitionistic fuzzy λ continuous and $g:(Y, \sigma) \to (Z,\gamma)$ is an intuitionistic fuzzy continuous mappings and Y is IF λ - $T_{1/2}$ -space then $g \bullet f: (X, \gamma)$

^τ) → (Z,γ) is an intuitionistic fuzzy λ-continuous.

Proof: Let V be an intuitionistic fuzzy closed set in Z. Then f^{-1} (V) is an intuitionistic fuzzy closed in Y, by hypothesis. Since f is intuitionistic fuzzy λ -continuous,

 $f^{-1}(g^{-1}(V))$ is an intuitionistic fuzzy λ closed in X. But $f^{1}(g^{-1}(V)) = (g.f)^{-1}(V)$. Hence $g \bullet f$ is an intuitionistic fuzzy λ -continuous.

Theroem :4.4: An IFTS (X, τ) is an IFλ- $T_{1/2}$ -space iff IF λ-OS(X) = IFOS(X)

Proof : Let A be an IF λ -open set in X then A^c is an IF λ closed set in X.By hypothesis

 A^c is an IF closed set in X.Therefore A is IF open set in X. Hence IF λ -OS(X) = IF OS(X)

Conversely, let A be IF λ -closed set in X, then A^c is IF λ -open in X.

By assumption A^c is IF open set in X.which in trun implies A

is IF closed set in X Hence (X, τ) is an IF λ - $T_{1/2}$ -space.

5. CONCLUSION

In this paper we have introduced intuitionistic fuzzy λ continuous mapping and studied some of its basic properties. Also we have studied the relationship between intuitionistic fuzzy λ -continuos mapping and some of the intuitionistic fuzzy mappings already exist

6. REFERENCES

- K.Atanasov, Intuitionistic fuzzy sets in VII ITKR'S session (V. Sgurew, Ed) Sofita, Bulgaria (1983).
- [2] K. Atanassov and S. Stoeva Intuitionistic fuzzy sets, In polish Symposium on Interval and fuzzy Mathematics, Poznam (1983), 23 – 26.
- [3] K. Atanassov, Intuitionistic fuzzy sets, fuzzy sets and systems 20 (1986), 87-96.
- [4] C. L. Chang, Fuzzy topological spaces, J Mat. Anal. Appl. 24 (1968) 182 – 190.
- [5] D. Coker an introduction to Intuitionistic fuzzy topological space fuzzy sets and systems 88 (1997), 81 -99
- [6] Gurcay H., Coker D and ES. A Haydeer. "On fuzzy continuity in intuitionistic fuzzy sets topological spaces". The journal of mathematical Vol.5 .No 2,365-378 (1997).
- [7] A.Pushpapalatha Ph.D thesis, in Bharathiar University.
- [8] P. Rajarajeswari and G.Bagyalakshmi ' λ -closed sets in intuitionistic fuzzy topological space, International journal of computer Application.(0975-8887) Volume 34,No.1, November 2011
- [9] P.Sundaram and M.Sheik John "On ω-closed a set in topology" Act a clencia India 4, 389392 (2000).
- [10] R.Santhi and D. Jayanthi., Intuitionistic fuzzy generized semi pre continuous mappings Int J.Contemp.Math .sciences, Vol.5, 2010, no. 30, 1455-1469.
- [11] S.S. Thakur and Rekha Chaturvedi, Regular generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacae . Studii Si cercetari Seria : Mathematica, 2006,257-272.
- [12] L.A.Zadeh , Fuzzy Sets Intuitionistic and control.