

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
2nd National Conference on Innovative Paradigms in Engineering & Technology (NCIPET 2013) – www.ijais.org

22

Fault Tolerance Model in Cloud Computing

Anjali.D.Meshram

Dept.of Computer Sci. & Engg.
P.I.E.T
Nagpur

A.S.Sambare
Dept.of Computer Technology.

P.I.E.T
Nagpur

S.D.Zade
Dept.of Computer Sci. & Engg.

P.I.E.T
Nagpur

ABSTRACT

Cloud computing has emerged as a platform that grants users

with direct yet shared access to remote computing resources

and services. Cloud must provide services to many users at

the same time; the scheduling strategy should be developed

for multiple tasks. In cloud computing processing is done on

remote computer hence there are more chances of errors, due

to the undetermined latency and loose control over computing

node. Hence remote computers should be highly reliable. This

is reason why a cloud computing infrastructure should be fault

tolerant as well scheduling properly to performing tasks. This

paper mainly deals with a fault tolerance model for cloud

computing & Paper describes model for Fault Tolerance in

Cloud computing (FTMC) FTMC model tolerates the faults

on the basis of reliability of each computing node. A

Computing node is selected for computation on the basis of its

reliability and can be removed, if does not perform well for

applications.

General Terms

Cloud Computing, Fault Tolerance

Keywords

Cloud Computing, Fault Tolerance, and Reliability

1. INTRODUCTION
Cloud computing is a model for enabling convenient, on-

demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage,

applications, and services). . Cloud computing emerges as a

new computing paradigm which aims to provide reliable,

customized and QoS (Quality of Service) guaranteed

computing dynamic environments for end-users. Overall,

cloud computing brings new aspects in computing resource

management: infinite computing resources available on

demand for the perspective of the end users; zero up-front

commitment from the cloud users; and short-term usage of

any high-end computing resources [11], [12].The basic

principle of cloud computing is that user data is not stored

locally but is stored in the data center of internet. The

companies which provide cloud computing service could

manage and maintain the operation of these data centers. The

users can access the stored data at any time by using

Application Programming Interface (API) provided by cloud

providers through any terminal equipment connected to the

internet. Not only are storage services provided but also

hardware and software services are available to the general

public and business markets. The services provided by service

providers can be everything, from the infrastructure, platform

or software resources. Each such service is respectively called

Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) or Software as a Service (SaaS).To give services to

end users a cloud computing environment should be reliable

& should mange to give output in minimum amount of time.

Hence fault tolerance & task scheduling are the two important

parameters for a system to be reliable. Cloud Computing

environment should able to work on two basic characteristics

that is Timeliness & Fault tolerance. By timeliness, we mean

that each task in real time system has a time limit in which it

has to finish its execution. And by fault tolerance means that it

should continue to operate under fault presence

2. RELATED WORK
Cloud computing is gaining an increasing popularity over

traditional information processing systems for storing and

processing huge data. This computing model is built on

modern data centers made up of thousands of interconnected

servers with capability of hosting a large number of

applications.[8] Most often, these data centers are virtualized,

and computing resources are provisioned to the user as an on

demand services over the Internet in the form of configurable

Virtual Machines (VMs) [9]. Cloud infrastructure should be

fault tolerance. Lot of work has been done up till date to make

cloud infrastructure fault tolerant. In cloud computing latency

of node or virtual machine is unknown, as it always changes

over a time.[2].User of a cloud do not know at exactly which

node his request is being processed. but one advantage of a

cloud computing is that it has capability to scale up

dynamically. So that any node which is not working properly

can be removed &also new node can be added to get

maximum output from cloud. X. Kong et. al. [1, 2] presented

a model for virtual infrastructure performance and fault

tolerance. But it is not well suited for the fault tolerance of

real time cloud applications. A model for non-cloud

environment is proposed by J. Coenen and J.Hooman [3]

which describes a model for fault tolerance in distributed real

time system. Ravi Jhawar, Vincenzo Piuri, Marco

Santambrogio in their paper [4] “A Comprehensive

Conceptual System-Level Approach to Fault Tolerance in

Cloud Computing”, describes a framework for user in which

user can specify and apply the desired level of fault tolerance

without requiring any knowledge about its implementation

with the help of dedicated user service layer. Another model

is “time stamped fault tolerance of distributed RTS” [5],

which is proposed by S. Malik and M. J. Rehman. This model

proposed time stamping with the outputs. All these models

mainly deal with the fault tolerance without taking reliability

of computer nodes into consideration. Fault Tolerant system

means system should work under the presence of fault. [4].
Techniques to build efficient and fault tolerant applications

for Amazon’s EC2 are provided in [6]. Another approach

using fault tolerance m middleware which follows a

leader/follower replication approach to tolerate crash faults

has been proposed in [7]. However, all these techniques either

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
2nd National Conference on Innovative Paradigms in Engineering & Technology (NCIPET 2013) – www.ijais.org

23

tolerate only a specific kind of fault or provide a single

method to resilience. The reliability of cloud system is a

major concern among users. In “Approach for constructing a

modular Fault tolerant protocol “paper by M.Hiltunen & R.D.

Schlichting proposed a modular protocols & combining them

to a system using hierarchical techniques.[10].

3. PROPOSED SYSTEM
The proposed system deals with the fault tolerance

mechanism In this proposed system , a model name fault

tolerance model for cloud (FTMC) model is based upon

reliability assessment of computing nodes known as a virtual

machines(VM) in cloud environment and fault tolerance of

real time applications running on those VMs. A virtual

machine is selected for computation on the basis of its

reliability and can be removed, if does not perform well for

real time applications. In this scheme, ‘N’ virtual machine,

which run the ‘N’ variant algorithms Algorithm ‘X1’ runs on

‘Virtual machine-1’, ‘X2’ a run on ‘Virtual machine-2’, up till

‘Xm’, which runs on ‘Virtual machine m’. Then there is

Accepter which is responsible for the verification of output

result of each node. The outputs are then passed to Timer

which checks the timing of each result. On the basis of the

timing the Reliability Assessor calculates and reassigns the

reliability of each module. Then all the results are forwarded

to Decision Maker which selects the output on the basis of

best reliability. The output of a node with highest reliability is

selected

3.1 Working of Model
In the fault tolerance mechanism, has M virtual machines.

Each node is taking input data from the input buffer. This

input is concurrently passed to all the virtual machines. Each

node takes the input, executes the application algorithm and

produces result. These results are passed to ACCEPTER

module. ACCEPTER module then passes these results to the

assembly node for result decision and reliability assessment.

The different modules in the system have the given

responsibility. As we stated earlier that all the VMs are

running different real time algorithms. These algorithms are

different from each other by their implementation language,

logics, software, operating systems etc.

Accepter module is provided for each VMs.It performs testing

on VMs for each iteration. Testing is carried out on

algorithms running on each virtual machine. If a given

algorithms gives desired result then it further passes to

assembly nodes. If result is incorrect then it does not passes it

to assembly nodes. Assembly nodes consist of Timer module,

Reliability Assessor (RA) module & Decision Maker (DM)

module.

In Timer module timer is set for each VM.It monitors the

timing results produced by each VM. It receives the output of

ACCEPTER module & passes only those correct results from

a node which produces before time.

Reliability Assessor (RA) module assesses the reliability for

each virtual machine. The reliability of the virtual machine

changes after every computing cycle. At the start, the

reliability of each virtual machine is 100%. If a processing

VM manages to produce a correct result within the time limit,

its reliability increases. And if the processing VM fails to

produce the correct result or result within time, its reliability

decreases. Every virtual machine has its predefined limit

value for maximum & minimum reliability. If reliability of

any processing VM falls below minimum reliability value

then RA will restrict that node from working & removes it by

sending a message to resource manager to remove it &add

new node in place of that particular node. If reliability of all

the nodes fall below minimum reliability level, the system

either perform the backward recovery or stop the system to

work further. The output of RA will then further passes to DM

module.

Decision Maker (DM) module takes the input from RA

module. It selects the output of the node which has highest

reliability among all the competing nodes. Competing nodes

are those nodes which have produced the results within There

is a SRL (system reliability level). It is the minimum

reliability level to be achieved to pass the result. DM

compares the best reliability with the system reliability level.

Best reliability level should be greater than or equal to time.

system reliability level. If the node with best reliability does

not achieve the SRL the DM raises the failure signal for the

computing cycle. In this case, backward recovery is

performed. Backward is performed by the help of check point

established in recovery cache. DM also request to some

responsible module (resource manager or scheduler) to

remove one node with minimum reliability and add a new

node.

Check Point (CP) is the points from where backward error

recovery is done in case of complete failure of a system. This

scheme provides an automatic forward recovery. If a node fail

to produce output or produce output after time overrun the

system will not fail. It will continue to operate with remaining

nodes. This mechanism will produce output until all the nodes

fail.

3.2 Fault Tolerance Mechanism
Reliability assessment algorithm is applied on each node

(virtual machine) one by one. Initially reliability of a node is

set to 1. There is an adaptability factor n, which controls the

of reliability assessment. The value of n is always greater than

0. The algorithm takes input of three factors RF,

minReliability and maxReliability from configuration file. RF

is a reliability factor which increases or decreases the

reliability of the node. minReliability is the minimum

reliability level. If a node reaches to this level, it is stopped to

perform further operations. maxReliability is the maximum

reliability level. Node reliability cannot be more than this

level. If there are two nodes and both of them have 10 passes

and 10 failures in total 20 cycles. But the node who have more

failures in near past has more chances to have lesser reliability

than the other. This factor is really in accordance to latency

issues, where initially node latency was good, but then it

becomes high. So this node tends to more node failures by

failing to produce the results in time. The values of variables

(RF, minReliability, maxReliability, SRL) depend on the real

time applications. User has to decide how much be the value

for each variable.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
2nd National Conference on Innovative Paradigms in Engineering & Technology (NCIPET 2013) – www.ijais.org

24

Fig 1: Proposed Fault Tolerance system

Reliability Assessment Algorithm:

Begin

Initially reliability: =1, n: =1

Input from configuration RF, maxReliability,

MinReliability

Input node status

if node Status =Pass then

Reliability: = reliability + (reliability * RF)

if n > 1 then

n := n-1;

else if node Status = Fail then.

reliability := reliability – (reliability * RF * n)

n := n+1;

if reliability >= maxReliability then

Reliability: = maxReliability

if reliability < minReliability then

Node Status: =dead

call_proc: remove_this_node

call_proc: add_new_node

End.

Decision Mechanism Algorithm

Begin

Initially reliability:=1, n :=1

Input from RA node Reliability, num C and Nodes

Input from configuration SRL

best Reliability: = find reliability of node with highest

reliability

if best Reliability >= SRL

status := success

else

perform_backward_recovery

call_proc: remove_node_minReliability

call_proc: add_new_node

End.

3.3 Different Scenarios
3.3.1) Complete Failure Free Scenario

All the algorithms on each virtual machine produce the result.

Accepter module passes the results. All the results are

produced before time overrun. So Timer also clears the

results. RA computes and assigns the new reliability weights

to each virtual machine. Decision mechanism selects an

output from the VM with maximum reliability. No failure or

exception occurs in any VM in this case.

3.3.2) Partial Failure Scenario – All Accepter

pass, timer passes some Nodes

All the virtual machines produce the correct result. Some

results are produced within time and some after time overrun.

All Accepter pass the results and forward them to the timer

checker. Time receives result of some virtual machines before

time-overrun. It passes them to RA, which assesses their

reliability. RA forwards the produced result to the decision

maker.. Decision maker selects an output from the VM with

maximum reliability. In this scenario, system will continue to

operate with forward recovery.

3.3.3) Partial Failure Scenario – Some Accepter

pass, timer also Pass

Some of the virtual machines produce the correct result. These

results are produced within time limit. Accepter passes only

the correct results to the Timer. For failed virtual machines, it

generates an error signal to Timer. Timer receives result of

passed virtual machines before time overrun. It passes them to

RA, which assesses their reliability. RA forwards the

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
2nd National Conference on Innovative Paradigms in Engineering & Technology (NCIPET 2013) – www.ijais.org

25

produced result to the decision maker. Decision mechanism

selects an output from the VM with maximum reliability. In

this scenario, system will continue to operate with forward

recovery.

3.3.4) Failure Scenario – Accepter s fail, Timer

fail

In this scenario, either all the Accepter rejects the result of the

algorithms or some Accepter passes but Timer fails to find a

single output within time limit. In this case, the cycle fails and

Timer informs the Assembly nodes to perform backward

recovery. Now backward recovery will be done with the help

of checkpoints

3.3.5) Failure Scenario – Accepters pass, Timers

pass, and DM fails

In this scenario, all or some of the Accepter passes the results.

Timer also finds the output within time limit. Reliability

assessor computes and assigns the reliability to the virtual

machines. But the VM with highest reliability could not

achieve the system reliability level (SRL). In this case, DM

raises the failure signal for the whole computing cycle and

backward recovery is performed with the help of checkpoint

stored in recovery cache.

4. DISCUSSION & CONCLUSION
The proposed scheme is a good option to be used as a fault

tolerance mechanism for computing on cloud infrastructure.

This scheme has incorporated the concept of fault tolerance

on the basis of VM algorithm reliability. Probability of failure

is very less in proposed scheme. This scheme works for

forward recovery until all the nodes fail to produce the result.

The system assures the reliability by providing the backward

recovery at two levels. First backward recovery point is TC.

Here if all the nodes fail to produce the result, it performs

backward recovery. Second backward recovery point is DM.

It performs the backward recovery if the node with best

reliability could not achieve the SRL. There is another big

advantage of this scheme. It does not suffer from domino

effect as check pointing is made in the end when all the nodes

have produced the results

5. FUTURE SCOPE
We can further make cloud environment more faults tolerant

by including more parameters in decision maker module.

6. REFERENCES
[1] X. Kong, J. Huang, C. Lin, P. D. Ungsunan,

“Performance, Fault-tolerance and Scalability Analysis

of Virtual Infrastructure Management System”, 2009

IEEE International Symposium on Parallel and

Distributed Processing with Applications, Chengdu,

China, August 9-12, 2009.

[2] X. Kong, J. Huang, C. Lin, “Comprehensive Analysis of

Performance, Fault-tolerance and Scalability in Grid

Resource Management System”, 2009 Eighth

International Conference on Grid and Cooperative

Computing, Lanzhou, China

[3] J .Coenen, J. Hooman, “A Formal Approach to Fault

Tolerance in Distributed Real-Time Systems”,

Department of Mathematics and Computing Science,

Eindhoven University of Technology, Nether land

[4]Ravi Jhawar, Vincenzo Piuri, Marco Santambrogio,” A

Comprehensive Conceptual System-Level Approach to

Fault Tolerance in Cloud Computing”, © 2012 IEEE,

DOI 10.1109/SysCon.2012.6189503

[5] S. Malik, M. J. Rehman, “Time Stamped Fault Tolerance

in Distributed Real Time Systems”; IEEE International

Multitopic Conference, Karachi, Pakistan, 2005

[6] J. Barr, A. Narin, and J. Varia, “Building Fault-Tolerant

Applications on AWS,” October 2011.

<Online>Available:http://media.amazonwebservices.com

/AWS-Building-Fault-tolerant-application.pdf

[7] W. Zhao, P. M. Melliar-Smith, and L. E. Moser, “Fault

Tolerance Middleware for Cloud Computing,” in

Proceedings of the 2010 IEEE 3rd International

Conference on Cloud Computing, ser. CLOUD ’10.

Washington, DC, USA: IEEE Computer Society, 2010,

pp. 67–74.

[8] K. V. Vishwanath and N. Nagappan, “Characterizing

cloud computing hardware reliability,” in Proceedings of

the 1st ACM symposium on Cloud computing, ser. SoCC

’10. New York, NY, USA: ACM, 2010, pp. 193–204.

 [9]Amazon elastic computes cloud.

http://aws.amazon.com/ec2/.

[10] M.Hiltunen & R.D. Schlichting “Approach for

Constructing a Modular Fault -Tolerant Protocols “ in In

Proceedings of the 12th Symposium on Reliable

Distributed systems, IEEE,1993,pp,105-114.

[11] M. Armbrust, A. Fox, and et al., “Above the clouds: A

Berkeley view of cloud computing,” UC Berkeley, Tech.

Rep. UCB/EECS-2009-28, February 2009.

[12] K. Birman, G. Chockler, and R. van Renesse, “Toward a

cloud computing research agenda,” SIGACT News, vol.

40, no. 2, pp. 68–80, 2009.

http://media.amazonwebservices.com/AWS-Building-Fault-tolerant-application.pdf
http://media.amazonwebservices.com/AWS-Building-Fault-tolerant-application.pdf
http://aws.amazon.com/ec2
http://aws.amazon.com/ec2

