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ABSTRACT  
The  similarity  solution  of  unsteady, incompressible MHD  

thermal  boundary  layer  flow  in natural  convection has 

been investigated using  group-theoretic transformations. Two 

parameter  group  transformations is applied for simultaneous 

elimination of more than one independent variable.  

Consequently the system of governing highly non-linear 

partial differential equations with auxiliary conditions reduces 

to a non-linear ordinary differential equation with appropriate 

auxiliary conditions. Effects of all emerging physical 

parameters are demonstrated with the help of graphs for both 

velocity and temperature distribution. The numerical solution 

is derived systematically in dimensionless form as an 

application  of  engineering  with  MATLAB. 
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1. INTRODUCTION 
It  was  Prandtl  [1]  who  has  first  introduced  the  concept  

of  boundary  layer in fluid  mechanics, and  as  a  result  great  

deal  of  work,  both  analytical  and  experimental,  has  been 

directed  towards  its  applications. The  first  analytic 

application  of  Prandtl’s  theory was  given by  Blausis [2], in 

his investigation  of  the  flow of  an  infinite uniform  stream  

over  a  thin  flat  plate  at  zero incidences. In  the  last  

decade  Oleinik  and  Samokhin  [3]  have  studied  a  lot of  

exact  results  concerning  the boundary layer  equations  of  

pseudo-plastic  fluids  including  MHD  and  self-similar  

solutions. Following [3], Polyanin and Zaifsev [4-5] have also 

contributed much to development of the application of 

boundary layer equations of Newtonian or non-Newtonian 

fluids with or without MHD.   

The study of  magneto hydrodynamic has been paid due 

attention as it is  used  to deal  with  problems  such as cooling 

of  nuclear  reactors  by  liquid  sodium  and induction  flow  

meter,  which  depends  on  the  potential difference in the 

fluid in the direction perpendicular to the motion and to the 

magnetic field. Many processes in engineering areas occur at 

high temperatures and knowledge of radiation heat transfer 

becomes very important for the design of pertinent equipment. 

In the recent years the Newtonian fluids in the presence of a 

magnetic field find increasing applications in areas such as 

chemical engineering, electromagnetic propulsion, nuclear 

reactors etc. The problem becomes more interesting especially 

when the viscous and thermal boundary layer is subjected to 

the action of an applied magnetic field. Recent years have 

been seen an increased interest in these type of problems with 

heat and mass transfer. In particular, the  problem concerned 

with nonlinear MHD  flow and chemical reaction, heat and 

mass transfer may find application in polymer technology, 

metallurgy and dyeing industries.   

Sanyal  and  Bhattacharyya  [6]  have given similarity solution 

of  unsteady thermal  MHD  boundary  layer  flow  for 

constant and variable magnetic induction. Saponkov [7] has 

investigated similarity solutions of steady boundary layer 

equations in magneto-hydrodynamic power-law conducting 

fluids. Later on Martinson and Pavlov [8], Samokhen [9] have 

studied the motion of magneto hydrodynamic boundary-layer 

flow of power-law fluids under the effect of transverse 

magnetic field.  

Now a day for similarity analysis many techniques are 

available, among  them  the  similarity  methods  which 

invoke  the  invariance  under  the group of transformations 

are known as group theoretic methods. These methods are 

more recent  and  are  mathematically  elegant  and hence they  

are widely used in different fields. It  was    first  reported  by  

Birkhoff  [10]  and  later  a  number  of  authors  like  Morgan 

[11], Hansen [12], Bluman and Cole [13], Seshadri  and Na 

[14]  have  contributed  much  to  the  development  of  the  

theory. The  method  has  been  applied  intensively by 

Hansen  and  Na  [15], Timol and Kalthia [ 16], 

Pakdemirli[17], Patil  and Timol [18] , Patil et al [19], Nita 

Jain et al [20]. 

In  the present  paper we  have  developed   similarity  

solution  for  natural  convection  of   unsteady  

incompressible  boundary  layer  MHD  flow  by  group  

theoretic  approach  using  two  parameter transformations. 

The similarity equations obtained are more general and 

systematic along with auxiliary conditions. The  magnetic  

induction  is considered   to  be  constant, the  magnetic  

Reynold’s  number is assumed  to  be  so  small  that  the  

induced  electric  and  magnetic  fields  can be neglected. Also 

the reduced  highly nonlinear ordinary differential equation  is 

solved numerically  using  classical  4th  order Runge – kutta  

method  with  the  help   of   MATLAB. 
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2. GOVERNING EQUATIONS 
The  governing  equations   for  the  incompressible  thermal  

boundary  layer  flow  and  the  equation of  continuity  using  

Howarth-Dorodnitsyn  transformation  can be  considered  as: 

Momentum   equation  
2 2 2

1 2
:

u u u u B L U U
u v T u U

t x y y t x






     
      

     
 (1)  

Energy   equation 
22 2

2

2 2 2

1
:

Pr

u T T T Gr Ec u g L
T u v B u

t x y y R y

 




     
     

     

                                                                                                 (2)                                                                                             

Continuity   equation  3 : 0
u u

x y


 
 

 
                               (3)                                                                 

 with   the   boundary  conditions  

( ,0) ( ,0) 0, ( ,0)u x v x T x T                                        (4-a) 

( , ) , ( , ) 0u x y U T x y as y                                  (4-b)                    

where u and v are the velocity  components  along x and  y 

axes; U the velocity in the main flow just outside  the  

boundary layer; Pr the Prandtl number; B the magnetic 

induction; Gr  the  Grashoff  number; Ec  the  Eckert number; 

g the acceleration due to gravity and β  is  the  coefficient of 

volume  expansion.  

3. FORMULATION OF THE PROBLEM 

Considering the term containing
2u and dissipation to be zero 

and introducing the stream function   to integrate the 

continuity equation as 

u
y





 and 
v

x


 

 , equations  

1  and 2 become 
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(6)                                                   

subject  to  the  boundary  conditions                                                  

 

( ,0) ( ,0) 0, ( ,0)x x T x T
y x

 


 
  

 
                       (7-a) 

( , ) , ( , ) 0x y U T x y as y
y


  


                          (7-b) 

It  should  be  noted  that  magnetic  induction   may be  

considered  to  be  a  function  of  x and  t .  

These 1  and 2  along with boundary conditions (7) 

represent a system of nonlinear partial differential equations, 

the solution of which is quite difficult. One major 

simplification can be achieved by using the similarity 

transformation where the system of non-linear partial 

differential equations reduced to a system of ordinary 

differential equations. Such transformations are of limited to 

some special forms of the mainstream velocities. 

4.  METHODOLOGY  AND  SOLUTION  

OF THE  PROBLEM       
Our method of solution depends on the application of a two-

parameter linear group of transformations to the partial 

differential equations (5) and (6) along with boundary  

conditions (7). Under this transformation the  three  

independent variables  will  be  reduced  by  one  and  the  

differential  equations will transforms into the ordinary 

differential  equation. 

       4.1.  The   group systematic formulation 

Let us consider 2-parameter linear group transformation 

defined as   

1G
 :   

2t A t
                          

4 4A B  
 

           
2x B x

                      
5 5T A B T

 


   

          
2 2y A B y 

                
6 6B A B B

 


 

           
7 7U A B U

 


                                              (8) 

where α i’ s  and  β i’ s, A, B are constants. We now seek 

relations among α i’ s  and  β i’ s  such that the basic 

equations will be invariant under this group of transformation. 

So substituting equation (8) into equations (5) and (6) we 

derived 

4 24 1 2

2

1 : A B
t y

    


  

 
 

                  4 2 14 2

2
2 22 2

A B
y x y

        


  
 

                  4 2 14 2

2
2 22 2

2
A B

x y

        


 
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3
33

3
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y
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 


 

    6 1 26 4 2

2
222L

A B B
y

     


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


 

  7 27 2 7 7
22

0
U U

A B A B U
t x

       
  

 
        (9)        
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T

A B
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            4 2 5 4 5 1 2
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A B
y x
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            4 2 5 4 5 1 2
T

A B
x y

             


 
     

          5 2 5 2

2
2 2

2

1
0

Pr

T
A B

y

     
 


                   (10) 

Note that the basic equations remain invariant under the group 

G1 of transformation if the powers of A and B in each term 

should be equal. Thus invariance of above equations under  

G1  gives  following  relations  among  α i’ s  and  β i’ s  

 
4 1 2 4 2 4 2 52 2 3                     

                   6 4 2 7 1 72 2                      (11) 

5 1 4 5 3 5 32                                         (12) 

4 2 4 2 1 4 2 52 2 3                

                 6 4 2 7 7 12 2                       (13)                      

5 4 5 3 5 32                                            (14) 

On   solving  the  relations  (11)-(14)  we  obtain    

5 6 72 4

1 1 1 1 1

1 1 1
, , 2, , 1

2 2 2

   

    
       

                                                                                    (15) 

5 6 72 4

1 1 1 1 1

0, 1, 1, 0, 1
   

    
                 (16)                                                                   

The next step in this method is to find the so-called                  

“absolute invariants” under the considered two parameter 

group of transformation. Absolute invariants are functions 

having the same form before and after the transformation. The  

absolute  invariants  [13]  are: 

1 21 2 0 1 2 2
( ) ( )

y T
F F

t x t x t x


  

 
    

3 41 2 0 1
( ) ( )

B U
F F

t x t x
 

 
                               (17) 

Substituting these in (5) and (6) as well as in boundary 

conditions (7) we obtain a set of ordinary differential 

equations as: 

 ' ' ' ' ' ' ' '

1 1 1 1 1 1 2 1: 1 0
2

 
       
 

F F F F F F F


   

                                                                                    (18)                                                                                              

 ' ' ' '

2 2 1 2 1 2

1
: 2 0

Pr 2
F F F F F




 
     
 

             (19) 

Boundary   conditions   are   transformed   as  

'

1 1 2(0) 0 (0) 0 (0) 1F F F                      (20-a) 

  '

1 2F ( ) 1 F ( ) 0 as                          (20-b) 

 Considering

2
2

3
L

F



  and without loss of generality we 

assumed here 4 1F
and   

2 1 1

 T t x
.  

5. NUMERICAL   SOLUTION 
For finding the  numerical solution of  the  coupled similarity  

equations (18) and (19) along with the boundary  conditions  

(20), we  have employed  the 4th  order  Runge-Kutta  

method. The numerical integration is carried out with the help 

of MATLAB. 

The  numerical  results  of  velocity   and  temperature  F2  

distributions  are presented  in  the  form  of  graphs for  the  

magnetic  parameter γ in  the  range  of  0 to 5, the generalized  

Prandtl  number in the  range of  0 to 5. The  figures (1)-(4) 

and (5)-(8)  show the variation  in  the  velocity  profiles and  

temperature  profiles  respectively  with  an  increase  in γ. 

While  figures  (9)-(12)  and (13)-(16)  show  the  variation  in  

the  velocity  profiles and  temperature  profiles  respectively  

with  an  increase  in  the  generalized  prandtl  number  Pr . It  

is  observed  that  velocity  profiles decrease  with  an  

increase in  the  Prandtl  number. This is consistent with the 

fact that the thermal boundary layer thickness decreases with 

increasing the generalized Prandtl number. 

6. CONCLUSION 
By applying two parameter group transformation to the 

analysis of the governing equations and  boundary conditions, 

the three independent variables are reduced by one, 

consequently the governing equations reduce  to  a system  of  

nonlinear  ordinary differential  equations with the appropriate 

auxiliary conditions successfully. All possible conditions 

under which the similarity solution for present flow situation 

exists are automatically derived from the similarity 

requirement and thus the similarity solution is found in most 

general form.  
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8. APPENDIX 
u, v    velocity  components  along  x,  y-axis  

respectively 

x, y    Cartesian coordinates 

       magnetic induction 

T       dimensionless   temperature  

       main  stream  velocity  in  x-direction  

Pr      generalized  Prandtl   number  

Gr     Grashoff’s   number  

    similarity   functions 

β      coefficient  of  thermal  expansion                        

     stream  function 

η      similarity  variable  

∞     free  stream   condition 

 

 

Fig. 1 Velocity profile for γ = 0.0 

 

Fig. 2 Velocity profile for γ = 0.5 

 

Fig. 3 Velocity profile for γ = 1.0 
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Fig. 4 Velocity profile for γ = 3.5 

 

  Fig. 5 Temperature profile for γ = 0.0 

 

Fig. 6 Temperature profile for γ = 0.5 

 

Fig. 7 Temperature profile for γ = 1.0 

 

Fig. 8 Temperature profile for γ = 3.5 

 

Fig. 9 Velocity profile for Pr = 0.7 

 

Fig. 10 Velocity profile for Pr = 1.2 

  

Fig. 11 Velocity profile for Pr = 2.0 
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Fig. 12 Velocity profile for Pr = 5.0  

 

Fig. 13 Temperature profile for Pr = 0.7 

 

Fig. 14 Temperature profile for Pr = 1.2 

 

Fig. 15 Temperature profile for Pr = 2.0 

                                        

   Fig. 16 Temperature profile for Pr = 5.0 


