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ABSTRACT 

An integral representation of some generalized k-

hypergeometric functions (introduced by Mubeen and 

Habibullah) is used to develop some new results of k-

hypergeometric functions assuming different values of m in 

generalized k-hypergeometric functions. k-beta transform of 

k-hypergeometric functions is also obtained by using k-beta 

functions introduced by Diaz et al.  
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1. INTRODUCTION 
The hypergeometric function plays an important role in 

mathematical analysis and its applications. This function 

allows us to solve many interesting problems.Driver and S. J. 

Johnston [1] introduced an integral representation of some 

hypergeometric functions. Diaz and Pariguan [2] have 

deduced an integral representation of k -gamma function, k-

beta function. Diaz et al. [3, 4] have introduced k-gamma and 

k-beta functions and proved a number of their properties. 

They have also studied k-hypergeometric functions based on 

Pochhammer k-symbols for factorial functions. These studies 

were extended by Mansour [5], Kokologiannaki [6], Krasniqi 

[7, 8] and Merovci [9] elaborating and strengthening the scope 

of k-gamma and k-beta functions. Mubeen and Habibullah 

[10] introduced an integral representation of some generalized 

k-hypergeometric functions. S. Mubeen [11, 12] also 

introduced k-Analogue of Kummer's first formula and 

solution of some integral equations involving confluent k-

hypergeometric functions. There have been some important 

generalizations of these functions that have been thoroughly 

investigated. 

                                                                      

2. DEFINITIONS 

 2.1 k-Gamma Function 

The integral representation of k-gamma function[14] is  
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2.2 k-Beta Function   

The integral representation of k-beta function[14] is  
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2.3 k-Hypergeometric Function 
The k-Hypergeometric function defined by Mubeen and 

Habibullah [10] is 
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2.4 Generalized k-Hypergeometric Function  
The integral representation of generalized k-hypergeometric 

function is given as 
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3. MAIN RESULTS 
In this section we found the new results.    

Theorem 3.1 
If Re( ) 0 , 0 then thefollowingresult holdstrue.k   
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Proof: Putting m = 2 in equation (2.4),  
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Putting x = 1 in Eq. (3.1), 
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                                                 … [Using Binomial Expansion] 
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                                                           … [Using equation (2.2)] 
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Theorem 3.2 
If Re( ) 0 , 0 then thefollowingresult holdstrue.k     
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Proof: Consider 

 2 2,
F ( ) ( );( ) ( );x

k
e a,k , b,k c,k , d,k x

, ,

0 0 , ,

( ) ( )( 1)

! ( ) ( ) !

mn n
m k m k

n m m k m k

a b xx

n c d m

 

 

  
   
   
   

                                       ….Refer [13] 

, ,

0 0 , ,

( ) ( )( 1)

( )! ( ) ( ) !

mn m n mn
m k m k

n m m k m k

a b xx

n m c d m

 

 





  

 0 0

( 1) ( 1) ( 1)( 2)...( 1)

( 1)( 2)...( 1) ( )!

n mn

n m

n n n n m

n n n n m n m



 

     


    
       

                                         , ,

, ,

( ) ( )

( ) ( ) !

n

m k m k

m k m k

a b x

c d m
  

, ,

0 0 , ,

( ) ( )( 1) ( )

! ! ( ) ( )

nnn
m k m km

n m m k m k

a b xn

n m c d



 

 
  

                  [ If , ( ) ( ) , if ]a n a n n mm m    Q   

                                                         ….Refer [15] 

,1 , ,

0 0 , ,k

( ) ( ) ( ) ( )

( ) ( ) ! !

nn
m m k m k

n m m k m

n a b x

c d m n



 

 
  

 3 2
0

( )
F ( 1),( ) ( );( ) ( );1

!

n

,k
n=

x
n, a,k , b,k c,k , d,k

n

 
   

 

Theorem 3.3 (k-Beta Transform) 

 If k > 0 and α, β  £   then thefollowingresult holdstrue.  
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Proof: Using equations (2.2) and (2.3), 
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4. CONCLUSION 
In this paper some useful results and relations are derived 

using integral representation of generalized k-hypergeometric 

function. An attempt is made to derive k-Beta transform of k-

hypergeometric function. Furthermore if we set k=1 then 

theorem 3.1, 3.2, 3.3 yield the integral transform and 

fractional integral formulas for the Gauss hypergeometric 

function. These results can be further be extended by taking 

suitable parameters. The results derived in this section are 

general in nature and will find some applications in the theory 

of special functions. 
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