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ABSTRACT

An integral representation of some generalized k-
hypergeometric functions (introduced by Mubeen and
Habibullah) is used to develop some new results of k-
hypergeometric functions assuming different values of m in
generalized k-hypergeometric functions. k-beta transform of
k-hypergeometric functions is also obtained by using k-beta
functions introduced by Diaz et al.
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1. INTRODUCTION

The hypergeometric function plays an important role in
mathematical analysis and its applications. This function
allows us to solve many interesting problems.Driver and S. J.
Johnston [1] introduced an integral representation of some
hypergeometric functions. Diaz and Pariguan [2] have
deduced an integral representation of k -gamma function, k-
beta function. Diaz et al. [3, 4] have introduced k-gamma and
k-beta functions and proved a number of their properties.
They have also studied k-hypergeometric functions based on
Pochhammer k-symbols for factorial functions. These studies
were extended by Mansour [5], Kokologiannaki [6], Krasniqi
[7, 8] and Merovci [9] elaborating and strengthening the scope
of k-gamma and k-beta functions. Mubeen and Habibullah
[10] introduced an integral representation of some generalized
k-hypergeometric functions. S. Mubeen [11, 12] also
introduced k-Analogue of Kummer's first formula and
solution of some integral equations involving confluent k-
hypergeometric functions. There have been some important
generalizations of these functions that have been thoroughly
investigated.

2. DEFINITIONS
2.1 k-Gamma Function

The integral representation of k-gamma function[14] is
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2.2 k-Beta Function
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The integral representation of k-beta function[14] is
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2.3 k-Hypergeometric Function
The k-Hypergeometric function defined by Mubeen and
Habibullah [10] is
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2.4 Generalized k-Hypergeometric Function
The integral representation of generalized k-hypergeometric
function is given as
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3. MAIN RESULTS

In this section we found the new results.

Theorem 3.1
If Re(y — B) >0, k > 0 thenthefollowingresult holds true.
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Proof: Putting m = 2 in equation (2.4),
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Putting x = 1 in Eq. (3.1),
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Theorem 3.2
If Re(y — ) >0, k > 0 thenthefollowingresult holds true.
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Proof: Consider
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Theorem 3.3 (k-Beta Transform)
Ifk>0anda, g € £ then thefollowing result holdstrue.
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Proof: Using equations (2.2) and (2.3),
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4. CONCLUSION

In this paper some useful results and relations are derived
using integral representation of generalized k-hypergeometric
function. An attempt is made to derive k-Beta transform of k-
hypergeometric function. Furthermore if we set k=1 then
theorem 3.1, 3.2, 3.3 yield the integral transform and
fractional integral formulas for the Gauss hypergeometric
function. These results can be further be extended by taking
suitable parameters. The results derived in this section are
general in nature and will find some applications in the theory
of special functions.
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