

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference and Workshop on Communication, Computing and Virtualization (ICWCCV 2015) – www.ijais.org

13

An Efficient Approach for Parallel and Incremental

Mining of Frequent Pattern in Transactional Database

Pamli Basak
Computer Engineering Department

TCET, Kandivali (E)
Mumbai

Rashmi Thakur
A.P., Computer Engineering Department

TCET, Kandivali (E)
Mumbai

ABSTRACT
In this paper, we provide an overview of parallel incremental

association rule mining, which is one of the imminent ideas in

the new and rapidly emerging research area of data mining. A

useful tool for discovering frequently co-occurrent items is

frequent itemset mining (FIM). Since its commencement, a

number of significant FIM algorithms have been build up to

increase mining performance. But when thedataset size is huge,

both the computational cost and memory use can be toocostly.

In this paper,we put frontward parallelizing the FP-Growth

algorithm.We use MapReduce to execute the parallelization of

FP-Growth algorithm. Henceforth, it splits the mining task into

number of sub-tasks, implements these sub-tasks in parallel on

nodes and then combines the results back for the final

result.Experiments show that the result increases the

computational speed as compared to apriori and fp-growth.

General Terms
Data Mining, Association Rule Mining, Incremental Data

Mining.

Keywords
FIM, AIUA, Parallel FP-growth, Parallelized Incremental

Mining, Mapreduce, Hadoop.

1. INTRODUCTION
A collection of huge and complicated datasets which is difficult

to process by using traditional methods and available

technologies of data mining is refer to as big data. To route big

data using some analytical approach can even barely finish the

work, it takes long time and the result might not be satisfactory.

To solve this problem, data mining is tackle with new

opportunities and challenges.

To find a frequent itemsets in large set of transaction is one of

the most investigated fields of data mining. An Association

rules mining and frequent itemset mining became a widely

researched area, and hence in rapid speed algorithms have been

presented. Association rules are if/then statements that help

uncover relationships between seemingly unrelated data in

a relational database or other information repository. In market

basket analysis, association rules like “the customers who buy

bread are most likely to buy milk” might be generated

according to the processing results.

Association rule mining algorithms, after years of study are

well effective and established in majority of cases. However,

the traditional algorithms are not well work when it comes to

big data. In a real life situation, databases are continuously

updating on daily basis and support value also often changes

with needs of mining. It is obviously inefficient to restart the

whole mining process again whenever new data is inserted into

the original database or resetting the mining parameters. This

issues leads to incremental mining concept. Furthermore,

algorithm parallelization has become predictable to deal with

the difficulties arising from large scale data.

This paper discusses about a parallel FP-growth (PFP-growth)

and parallelized incremental FP-growth (PIFP-Growth) mining

approaches. The algorithm solves the incremental problem

brought by the dynamic support value and database at the same

time, which avoids repeated computation. MapReduce

framework, implemented on Apache Hadoop is applied to

achieve parallel mining.

2. BACKGROUND WORK
An elementary necessity for mining for mining association

rules is mining frequent itemsets. Numerous algorithms exist

for frequent itemset mining. Apriori and FP-Growth are the

traditional method.

2.1 Apriori
Apriori [2] is an algorithm for frequent item set

mining and association rule learning over

transactional databases. It proceeds by recognizing the frequent

individual items in the database and widening them to larger

item sets providing those item sets appear adequately often in

the database. It works with Candidate Generation and Test

Approach. Candidate generation and Candidate counting and

selection are thetwo steps to be perform in each iteration.

The bottleneck of Apriori: candidate generation are: it generates

huge candidate sets; 104 frequent 1-itemset will generate 107

candidate 2-itemsets and to discover a frequent pattern of size

100. It also does not support incremental mining.

2.2 Fp-Growth
To overcome the problem of candidate generation FP-growth

[3] is given. FP-growth is a program to find frequent item sets

with the FP-growth algorithm, which corresponds to the

transaction database as a prefix tree which is enhanced with

links that organize the nodes into lists referring to the same

item. The search iscarried out by prognostic the prefix tree,

working recursively on the result, and trimming the original

tree. The implementation also supports sifting for closed and

maximal item sets with conditional item set repositories,

although the approach used in the program differs in as far as it

used top-down prefix trees rather than FP-trees. FP-growth

condense a large database into a compact, Frequent-Pattern tree

(FP-tree) structure with highly reduced, but complete for

frequent pattern mining and avoid costly database scans. It

develops an efficient, FP-tree-based frequent pattern mining

method with a divide-and-conquer methodology which

decomposes mining tasks into smaller ones and avoids

candidate generation.

The disadvantage of this algorithm consists in the TID_set

being too long, taking considerable memory space as well as

computation time for intersecting the long sets. Incremental

data mining is not hold by this algorithm.

http://searchsqlserver.techtarget.com/definition/relational-database
http://en.wikipedia.org/w/index.php?title=Frequent_item_set_mining&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Frequent_item_set_mining&action=edit&redlink=1
http://en.wikipedia.org/wiki/Association_rule_learning
http://en.wikipedia.org/wiki/Databases

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference and Workshop on Communication, Computing and Virtualization (ICWCCV 2015) – www.ijais.org

14

3. PARALLELIZATION IN DATA

MINING
An integrating association rule mining can generate more

competent and correct classifiers than conventional techniques.

The newly introduces MapReduce based association rule

mining for pull out strong rules from large datasets. This

mining is used afterward to build up a new large scale

classifier. MapReduce simulator was developed to evaluate the

scalability of traditional algorithms on MapReduce. The

developed associative rule mining inherits the MapReduce

scalability to huge datasets and to thousands of processing

nodes. For the purpose of data mining to large data, parallel

comprising this algorithm utilizes different approaches in rule

discovery, rule from frequent itemsets, and rule clipping

methods in these research fields. Parallel data mining

algorithms works on distributed environment and it amplify the

effectiveness of algorithm as compare to traditional algorithms.

Zhang et. al.proposed parallel FP-growth algorithm [4] on

distributed machines. PFP panels computation in such a way

that each machine performs an independent group of mining

tasks. Pradeepa et. at. Presented Parallelized Apriori algorithm

[5] to evaluate an precise and efficientclassification technique,

greatly competitive and scalable compared with other

conventional and associative classification methods. Procedures

of FP-tree building and mining are similar to traditional FP-

Growth, which run on a single computer node. This division

eliminates computational reliance between machines, and thus

communication between them.

PFP uses three MapReduce [6] phases to parallelize FP-growth

for any transaction database DB.

 Step1: Shredding: Partitioning DB into successive

small chunks.

 Step2: Parallel Counting: To count the support values

of all items that are present in database using

MapReduce pass.

 Step3: Grouping the items: Group list is the list of

groups, where each group has unique id.

 Step4: Parallel FP-growth: One MapReduce pass is

requiring. Mapper reads the group list and Reducer

builds their own local FP-tree.

Database D

Figure1: Flowchart of Parallel FP-Growth

 Step5: Integration: Integrating the result from step4 to

final result.

3.1 Mapreduce Framework
Hadoop MapReduce [6] is a software framework for easily

writing applications which process vast amounts of data in-

parallel on large clusters of commodity hardware in a

dependable, fault-tolerant way.A MapReduce job usually splits

the input data-set into independent chunks which are processed

by the map tasks in a completely parallel way. The structure

sorts the outputs of the mapper, which are then given as input to

the reducer.Usually both the input and the output of the job are

stored in a file-system. The structure takes care of scheduling

tasks, supervising them and re-executes the failed tasks.The

MapReduce framework consists of a one

master JobTracker and one slave TaskTracker per cluster-node.

The master is accountable for scheduling the jobs' component

tasks on the slaves, observing them and re-executing the failed

tasks. The slaves perform the tasks as instructed by the

master.The programmer writes two functions a map function

and areduce function each of which defines a mapping from

oneset of key-value pairs to another.

4. INCREMENTAL DATA MINING
In real world, databases are updating endlessly where exactly

predictable algorithms like Apriori, FP-growth perform

ineffectually. If we could use the preceding analysis to

incrementally mine the frequent itemset from the updated

database, the mining process would become more proficient

and cost of mining process would be decrease. The process of

updating database continuously is Incremental Data Mining.

Figure 2: Overview of Incremental Data Mining

Incremental mining reduces cost of mining process by reusing

the earlier mined results. Two main factors to monitor

performance of incremental mining algorithms are proper

memory utilization and speed of overall mining process.

Incremental data mining makes the mining process more

efficient in terms of time and space requirement and cost of

mining process would be lessen.

Cheung et al. adopted the idea of Apriori algorithm and

presented in FUP algorithm [7] to update association rules with

incremental transactions, which is reusing frequent itemsets of

an incremental db. But it still needs to scan the original DB

multiple times and the original DB is always very large.To

improve the efficiency of FUP algorithm, T.Garib et. Al.

presented FIM algorithm[8], which require only one scan for

the original DB and reduce the generation of candidates.

To get better efficiency of IUA, Chen et. Al. proposed a more

improved algorithm AIUA [9]. He presented new function,

which joins the corresponding frequent item sets and evades the

iteration to generate many useless candidates.FIM_AIUA [10]

algorithm proposed by Yuchen et. Al., which expands FIM and

Original

Database D
Incremental

Database d

Pattern

generated from

original

database

Incremental

Mining

Final

Updated

Pattern

Splits the database D into small chunks

Sent each chunks to Mapper and Reducer for parallel

computing, sort the frequent list and items in

descending order.

Mapper reads the group list and Reducer builds their

own local FP-tree (recursive)

Combine the local frequent itemsets mined, stored in

heap memory in descending order according to support

number

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference and Workshop on Communication, Computing and Virtualization (ICWCCV 2015) – www.ijais.org

15

AIUA algorithm to update association rules with incremental

transactions and with least support changes simultaneously.

Incremental Updating Algorithm also faces the problem of

several scan of original DB and it also requires numerous

iterations to generate many futile candidates. Thus it is time-

consuming and incompetent. FIM_AIUA algorithm also perk

up the effectiveness and accurate the mistake of My_IUA

algorithm.

In realistic application, user always adjusts the minimum

support when new transactions are inserted into database.

FIM_AIUA is suitable for updating association rules with

incremental transactions and minimum threshold value changes

concurrently.

5. PARALLEL INCREMENTAL FP-

GROWTH
Parallel Incremental data mining combines the features of both

parallelism and incremental mining to improves the efficiency.

After long study, association rule mining algorithms are well

recognized and effectual in wide-ranging cases. However, when

it comes to large data, allied algorithms are not mature and need

advance research. In actual situation, database is updated

periodically and threshold value often changes with needs of

mining. It is clearly incompetent that the whole mining process

has to be revived from the beginning every time new data is

addedinto database or mining parameter is reset. Furthermore,

to deal with the issues resulted from large-scale data, algorithm

parallelization has become certain. Wei et. Al. proposed

parallelized incremental FP-Growth mining strategy [11]

successfully solves the incremental issue brought by the

dynamic threshold value and database at the same time, which

shuns repeated computation. This parallel mining strategy

based on MapReduce framework is implemented on Apache

Hadoop [12].

On the basis of the structure of PIFP-Growth algorithm [11]

and MapReduce model, four MapReduce phases are used in the

whole process.

 Stage 1: InputSplit, a technique defined by Google,

divide the database into small parts; these parts are

sent to Mapper and Reducer to finish the parallel

counting of support number; the counting outcomes

are integrated into a frequent list and items are sorted

in descending order; all the items on the frequent list

are divided into groups.

 Stage 2: It takes one Map Reduce pass to obtain the

local frequent item sets. Mapper reads the group list

and allocate the related transactions to different

computer node according to the group nodes; then

each Reducer constructs their own local FP-tree;

during the recursive progress, the frequent item sets

are pull out.

 Stage 3: The integration stage is to combine the local

frequent item sets mined.

 Stage 4: During this stage, d is added into database

and the support value is reset as s′. If there exist new

items on the frequent list equal or greater than s′,

these items have to be clustered as well.

 Stage 5: In this stage, new added datasets d is taken

into consideration. The datasets go through a Map

Reduce pass like stage 1.

 Stage 6: According to the new frequent list, database

D and d are likely to be rescanned. Mapper allocates

transactions related to new frequent items to

corresponding cluster; each Reducer updates their

own local FP-tree; new frequent items are mined in

updated FP-trees.

 Stage 7: The last step is to amalgamate all the

frequent item sets from stage 6 as the final result.

6. EXPERIMENTAL RESULTS
In this segment, PFP-Growth and two main association rule

mining algorithm, including Apriori, FP-Growth, were

compared and examined through experiments.

All the experiments were performed on 3.10GHz Intel i5

processor with 4GB RAM. The program is written in JAVA

and executed on Hadoop.

Table 1 shows 3 datasets used in test for association rule

mining.

Table 1. Datasets for Experiment

Dataset Size(MB) Transaction Items Database

T10I4D

100K

3.93 100,000 870 8000

Retail 4.07 105,068 964 9200

Kosarak 30.50 990,002 41,270 90000

The new minimum support degrees are showed below x-axis.

Figure 4. Experiment of T10I4D100K, Figure 3.Experiment of

Retail and Figure 4. Experiment of kosarak give the total

running time of Apriori, FP-Growth and PFP-Growth.

From the results we can say that PFP-Growth cost the smallest

amount of time, comparing with other two algorithms. When

data size is small, divergence is not obvious.

On the other hand, as the amount of data boost, PFP-Growth

shows great advantage in total running time over other two

algorithms, particularly when threshold value is low.

Splits the database D into small chunks

Sent each chunks to Mapper and Reducer for parallel

computing, sort the frequent list and items in

descending order.

Mapper reads the group list and Reducer builds their

own local FP-tree (recursive)

Combine the local frequent itemsets mined, stored in

heap memory in descending order according to support

number

Incremental db d is inserted with new threshold value.

Similarly d is divided into small parts and same

procedure is repeated.

D and d are likely to be rescanned and each Reducer

updates their own local FP-tree.

Integrate all the frequent itemsets from previous step

as final result.

Figure3: Flowchart of Parallel Incremental FP-Growth

Database D

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference and Workshop on Communication, Computing and Virtualization (ICWCCV 2015) – www.ijais.org

16

Figure4: Experiment of T10I4D100K

Figure5: Experiment of Retail

Figure6: Experiment of Kosarak

7. CONCLUSION
Apriori and FP-growth; traditional algorithms and data mining

methods have faced limitations when dealing with large sized

data. For occasion, Apriori algorithm needs to scan the data

from external storage frequently so as to get the frequent

itemsets, which takesheavy I/O load with decreased

performance. InFP-growth algorithm, TID_set being too long,

taking considerable memory space as well as computation time

for intersecting the long sets.This paper discusses Parallel FP-

Growth mining tactic and Parallelized incremental FP-growth

mining tactic, which are parallelized under the MapReduce

framework.

Experimental results of Parallel FP-growthspecify that this

algorithm is effective in reducing time byeliminating duplicated

work and spurious items. Also, it minimize the response time to

a query for the set of frequent.

8. ACKNOWLEDGEMENT
I would like to express profound gratitude toDr. R. R.

Sedamkar for his invaluable support,cooperation, constant

encouragement, supervision and useful suggestions throughout

the work. His moral support continuous guidance enables me to

complete my work successfully.

9. REFERENCES
[1] Jaiwei Han and Micheline Kamber, Data Mining,

Concepts and Techniques: An imprint of Elsevier, Second

Edition, 2006.

[2] R.Agrawal and R.Srikant, "Fast algorithms for mining

association rules," in Int.Conf.VLDB, pages 487-499,

September 1994.

[3] Jaiwei Han, Jian Pei and Yiwen Yin- “Mining Frequent

Patterns without Candidate Generation,” in Int.Conf.ACM-

SIGMOID. pages 1-12, June 2000.

[4] H. Li, Y. Wang, D. Zhang, M. Zhang and E. Chang, PFP:

Parallel FP-Growth for Query Recommendation,

Proceedings of the 2008 ACM Conference on

Recommender Systems, 2008, pages 107-114.

[5] A. Pradeepa, and A. S. Thanamani, PARALLELIZED

COMPRISING FOR APRIORI ALGORITHM USING

MAPREDUCE FRAMEWORK, International Journal of

Advanced Research in Computer and Communication

Engineering, vol. 2(11), 2013, pp. 4365-4368.

[6] J. Dean and S. Ghemawat, -MapReduce: simplified data

processing on large clusters, Communications of the ACM,

vol. 51, Jan. 2008, pp. 107–113.

[7] D.W.Cheung, J.Han, V.T.Ng, and C.Y.Wong, "Maintence

of discovered association rules in large databases:an

incremental updating technique. " in Int.Conf.on Data

Engineering, pages 106-114, February 1996.

[8] T.F.Garib, M.Taha, and H.Nassar, “An efficient technique

for incremental updating of association rules.”

International Journal of hybrid Intelligent Systems, pages

45-53, May 2008.

[9] An Hongmei, Chen Ping- “Study of Incremental Updating

Algorithm for Association Rules”- Atlantis Press, Paris,

France,2012.

[10] Li Sun, Yuchen Cai, Jiyun Li, Juntao Lv- “An Efficient

Algorithm for updating Association Rules with

Incremental Transactions and Minimum support Changes

Simultaneously”- IEEE Third Global Congress on

Intelligent Systems, 2012.

[11] X. Wei, Y. Ma, F. Zhang, M. Liu, W. Shen, Incremental

FP-Growth Mining Strategy for Dynamic Threshold value

and Database Based on Mapreduce, Proceedings of the

2014 IEEE 18th International Conference on Computer

Supported Cooperative Work in Design, May 2014, pages

271-276.

[12] S. Kurazumi, T. Tsumura, S. Saito, and H. Matsuo,

Dynamic processing slots scheduling for I/O intensive jobs

of Hadoop MapReduce, Proceedings of the 2012 3rd

International Conference on Networking and Computing,

2012, pp. 288-292.

0

5

10

15

20

25

30

35

40

45

0 0.2 0.3 0.5 0.6 0.8 1

Apriori

FPGro
wth
PFP

Minimum Support (%)

T
o
t
a
l

T
i
m
e

0

10

20

30

40

0 0.2 0.3 0.5 0.6 0.8 1

Apriori

FPGrow
th

Minimum Support (%)

T
o
t
a
l

T
i
m

0

20

40

60

80

100

120

140

160

0 0.2 0.3 0.5 0.6 0.8 1

Apri
ori

FPG
rowt
h

Minimum Support (%)

T
o
t
a
l

T
i
m
e

