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ABSTRACT 
In this paper, we provide an overview of parallel incremental 

association rule mining, which is one of the imminent ideas in 

the new and rapidly emerging research area of data mining. A 

useful tool for discovering frequently co-occurrent items is 

frequent itemset mining (FIM). Since its commencement, a 

number of significant FIM algorithms have been build up to 

increase mining performance. But when thedataset size is huge, 

both the computational cost and memory use can be toocostly. 

In this paper,we put frontward parallelizing the FP-Growth 

algorithm.We use MapReduce to execute the parallelization of 

FP-Growth algorithm. Henceforth, it splits the mining task into 

number of sub-tasks, implements these sub-tasks in parallel on 

nodes and then combines the results back for the final 

result.Experiments show that the result increases the 

computational speed as compared to apriori and fp-growth. 

General Terms 
Data Mining, Association Rule Mining, Incremental Data 

Mining. 

Keywords 
FIM, AIUA, Parallel FP-growth, Parallelized Incremental 

Mining, Mapreduce, Hadoop. 

1. INTRODUCTION 
A collection of huge and complicated datasets which is difficult 

to process by using traditional methods and available 

technologies of data mining is refer to as big data. To route big 

data using some analytical approach can even barely finish the 

work, it takes long time and the result might not be satisfactory. 

To solve this problem, data mining is tackle with new 

opportunities and challenges. 

To find a frequent itemsets in large set of transaction is one of 

the most investigated fields of data mining. An Association 

rules mining and frequent itemset mining became a widely 

researched area, and hence in rapid speed algorithms have been 

presented. Association rules are if/then statements that help 

uncover relationships between seemingly unrelated data in 

a relational database or other information repository. In market 

basket analysis, association rules like “the customers who buy 

bread are most likely to buy milk” might be generated 

according to the processing results. 

Association rule mining algorithms, after years of study are 

well effective and established in majority of cases. However, 

the traditional algorithms are not well work when it comes to 

big data. In a real life situation, databases are continuously 

updating on daily basis and support value also often changes 

with needs of mining. It is obviously inefficient to restart the 

whole mining process again whenever new data is inserted into 

the original database or resetting the mining parameters. This 

issues leads to incremental mining concept. Furthermore, 

algorithm parallelization has become predictable to deal with 

the difficulties arising from large scale data. 

This paper discusses about a parallel FP-growth (PFP-growth) 

and parallelized incremental FP-growth (PIFP-Growth) mining 

approaches. The algorithm solves the incremental problem 

brought by the dynamic support value and database at the same 

time, which avoids repeated computation. MapReduce 

framework, implemented on Apache Hadoop is applied to 

achieve parallel mining. 

2. BACKGROUND WORK 
An elementary necessity for mining for mining association 

rules is mining frequent itemsets. Numerous algorithms exist 

for frequent itemset mining. Apriori and FP-Growth are the 

traditional method. 

2.1 Apriori 
Apriori [2] is an algorithm for frequent item set 

mining and association rule learning over 

transactional databases. It proceeds by recognizing the frequent 

individual items in the database and widening them to larger 

item sets providing those item sets appear adequately often in 

the database. It works with Candidate Generation and Test 

Approach. Candidate generation and Candidate counting and 

selection are thetwo steps to be perform in each iteration. 

The bottleneck of Apriori: candidate generation are: it generates 

huge candidate sets; 104 frequent 1-itemset will generate 107 

candidate 2-itemsets and to discover a frequent pattern of size 

100. It also does not support incremental mining. 

2.2 Fp-Growth 
To overcome the problem of candidate generation FP-growth 

[3] is given.  FP-growth is a program to find frequent item sets 

with the FP-growth algorithm, which corresponds to the 

transaction database as a prefix tree which is enhanced with 

links that organize the nodes into lists referring to the same 

item. The search iscarried out by prognostic the prefix tree, 

working recursively on the result, and trimming the original 

tree. The implementation also supports sifting for closed and 

maximal item sets with conditional item set repositories, 

although the approach used in the program differs in as far as it 

used top-down prefix trees rather than FP-trees. FP-growth 

condense a large database into a compact, Frequent-Pattern tree 

(FP-tree) structure with highly reduced, but complete for 

frequent pattern mining and avoid costly database scans. It 

develops an efficient, FP-tree-based frequent pattern mining 

method with a divide-and-conquer methodology which 

decomposes mining tasks into smaller ones and avoids 

candidate generation.  

The disadvantage of this algorithm consists in the TID_set 

being too long, taking considerable memory space as well as 

computation time for intersecting the long sets. Incremental 

data mining is not hold by this algorithm. 

http://searchsqlserver.techtarget.com/definition/relational-database
http://en.wikipedia.org/w/index.php?title=Frequent_item_set_mining&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Frequent_item_set_mining&action=edit&redlink=1
http://en.wikipedia.org/wiki/Association_rule_learning
http://en.wikipedia.org/wiki/Databases
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3. PARALLELIZATION IN DATA 

MINING 
An integrating association rule mining can generate more 

competent and correct classifiers than conventional techniques. 

The newly introduces MapReduce based association rule 

mining for pull out strong rules from large datasets. This 

mining is used afterward to build up a new large scale 

classifier. MapReduce simulator was developed to evaluate the 

scalability of traditional algorithms on MapReduce. The 

developed associative rule mining inherits the MapReduce 

scalability to huge datasets and to thousands of processing 

nodes. For the purpose of data mining to large data, parallel 

comprising this algorithm utilizes different approaches in rule 

discovery, rule from frequent itemsets, and rule clipping 

methods in these research fields. Parallel data mining 

algorithms works on distributed environment and it amplify the 

effectiveness of algorithm as compare to traditional algorithms. 

Zhang et. al.proposed parallel FP-growth algorithm [4] on 

distributed machines. PFP panels computation in such a way 

that each machine performs an independent group of mining 

tasks. Pradeepa et. at. Presented Parallelized Apriori algorithm 

[5] to evaluate an precise and efficientclassification technique, 

greatly competitive and scalable compared with other 

conventional and associative classification methods. Procedures 

of FP-tree building and mining are similar to traditional FP-

Growth, which run on a single computer node. This division 

eliminates computational reliance between machines, and thus 

communication between them. 

PFP uses three MapReduce [6] phases to parallelize FP-growth 

for any transaction database DB. 

 Step1: Shredding: Partitioning DB into successive 

small chunks. 

 Step2: Parallel Counting: To count the support values 

of all items that are present in database using 

MapReduce pass. 

 Step3: Grouping the items: Group list is the list of 

groups, where each group has unique id. 

 Step4: Parallel FP-growth: One MapReduce pass is 

requiring. Mapper reads the group list and Reducer 

builds their own local FP-tree. 

Database D 

 

 

 

 

 

 

 

Figure1: Flowchart of Parallel FP-Growth 

 Step5: Integration: Integrating the result from step4 to 

final result. 

3.1 Mapreduce Framework 
Hadoop MapReduce [6] is a software framework for easily 

writing applications which process vast amounts of data in-

parallel on large clusters of commodity hardware in a 

dependable, fault-tolerant way.A MapReduce job usually splits 

the input data-set into independent chunks which are processed 

by the map tasks in a completely parallel way. The structure 

sorts the outputs of the mapper, which are then given as input to 

the reducer.Usually both the input and the output of the job are 

stored in a file-system. The structure takes care of scheduling 

tasks, supervising them and re-executes the failed tasks.The 

MapReduce framework consists of a one 

master JobTracker and one slave TaskTracker per cluster-node. 

The master is accountable for scheduling the jobs' component 

tasks on the slaves, observing them and re-executing the failed 

tasks. The slaves perform the tasks as instructed by the 

master.The programmer writes two functions a map function 

and areduce function each of which defines a mapping from 

oneset of key-value pairs to another. 

4. INCREMENTAL DATA MINING 
In real world, databases are updating endlessly where exactly 

predictable algorithms like Apriori, FP-growth perform 

ineffectually. If we could use the preceding analysis to 

incrementally mine the frequent itemset from the updated 

database, the mining process would become more proficient 

and cost of mining process would be decrease. The process of 

updating database continuously is Incremental Data Mining. 

 

 

 

 

 

 

 
 

Figure 2: Overview of Incremental Data Mining 

Incremental mining reduces cost of mining process by reusing 

the earlier mined results. Two main factors to monitor 

performance of incremental mining algorithms are proper 

memory utilization and speed of overall mining process. 

Incremental data mining makes the mining process more 

efficient in terms of time and space requirement and cost of 

mining process would be lessen. 

Cheung et al. adopted the idea of Apriori algorithm and 

presented in FUP algorithm [7] to update association rules with 

incremental transactions, which is reusing frequent itemsets of 

an incremental db. But it still needs to scan the original DB 

multiple times and the original DB is always very large.To 

improve the efficiency of FUP algorithm, T.Garib et. Al. 

presented FIM algorithm[8], which require only one scan for 

the original DB and reduce the generation of candidates. 

To get better efficiency of IUA, Chen et. Al. proposed a more 

improved algorithm AIUA [9]. He presented new function, 

which joins the corresponding frequent item sets and evades the 

iteration to generate many useless candidates.FIM_AIUA [10] 

algorithm proposed by Yuchen et. Al., which expands FIM and 
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Splits the database D into small chunks 

Sent each chunks to Mapper and Reducer for parallel 

computing, sort the frequent list and items in 

descending order. 

Mapper reads the group list and Reducer builds their 

own local FP-tree (recursive) 

Combine the local frequent itemsets mined, stored in 

heap memory in descending order according to support 

number 
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AIUA algorithm to update association rules with incremental 

transactions and with least support changes simultaneously. 

Incremental Updating Algorithm also faces the problem of 

several scan of original DB and it also requires numerous 

iterations to generate many futile candidates. Thus it is time-

consuming and incompetent. FIM_AIUA algorithm also perk 

up the effectiveness and accurate the mistake of My_IUA 

algorithm.  

In realistic application, user always adjusts the minimum 

support when new transactions are inserted into database. 

FIM_AIUA is suitable for updating association rules with 

incremental transactions and minimum threshold value changes 

concurrently. 

5. PARALLEL INCREMENTAL FP-

GROWTH 
Parallel Incremental data mining combines the features of both 

parallelism and incremental mining to improves the efficiency. 

After long study, association rule mining algorithms are well 

recognized and effectual in wide-ranging cases. However, when 

it comes to large data, allied algorithms are not mature and need 

advance research. In actual situation, database is updated 

periodically and threshold value often changes with needs of 

mining. It is clearly incompetent that the whole mining process 

has to be revived from the beginning every time new data is 

addedinto database or mining parameter is reset. Furthermore, 

to deal with the issues resulted from large-scale data, algorithm 

parallelization has become certain.  Wei et. Al. proposed 

parallelized incremental FP-Growth mining strategy [11] 

successfully solves the incremental issue brought by the 

dynamic threshold value and database at the same time, which 

shuns repeated computation. This parallel mining strategy 

based on MapReduce framework is implemented on Apache 

Hadoop [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the basis of the structure of PIFP-Growth algorithm [11] 

and MapReduce model, four MapReduce phases are used in the 

whole process. 

 Stage 1: InputSplit, a technique defined by Google, 

divide the database into small parts; these parts are 

sent to Mapper and Reducer to finish the parallel 

counting of support number; the counting outcomes 

are integrated into a frequent list and items are sorted 

in descending order; all the items on the frequent list 

are divided into groups. 

 Stage 2: It takes one Map Reduce pass to obtain the 

local frequent item sets. Mapper reads the group list 

and allocate the related transactions to different 

computer node according to the group nodes; then 

each Reducer constructs their own local FP-tree; 

during the recursive progress, the frequent item sets 

are pull out. 

 Stage 3: The integration stage is to combine the local 

frequent item sets mined. 

 Stage 4: During this stage, d is added into database 

and the support value is reset as s′. If there exist new 

items on the frequent list equal or greater than s′, 

these items have to be clustered as well. 

 Stage 5: In this stage, new added datasets d is taken 

into consideration. The datasets go through a Map 

Reduce pass like stage 1. 

 Stage 6: According to the new frequent list, database 

D and d are likely to be rescanned. Mapper allocates 

transactions related to new frequent items to 

corresponding cluster; each Reducer updates their 

own local FP-tree; new frequent items are mined in 

updated FP-trees. 

 Stage 7: The last step is to amalgamate all the 

frequent item sets from stage 6 as the final result. 

 

6. EXPERIMENTAL RESULTS 
In this segment, PFP-Growth and two main association rule 

mining algorithm, including Apriori, FP-Growth, were 

compared and examined through experiments. 

All the experiments were performed on 3.10GHz Intel i5 

processor with 4GB RAM. The program is written in JAVA 

and executed on Hadoop. 

Table 1 shows 3 datasets used in test for association rule 

mining.  

Table 1. Datasets for Experiment 

Dataset Size(MB) Transaction Items Database 

T10I4D

100K 

3.93 100,000 870 8000 

Retail 4.07 105,068 964 9200 

Kosarak 30.50 990,002 41,270 90000 

 

The new minimum support degrees are showed below x-axis. 

Figure 4. Experiment of T10I4D100K, Figure 3.Experiment of 

Retail and Figure 4. Experiment of kosarak give the total 

running time of Apriori, FP-Growth and PFP-Growth. 

From the results we can say that PFP-Growth cost the smallest 

amount of time, comparing with other two algorithms. When 

data size is small, divergence is not obvious. 

On the other hand, as the amount of data boost, PFP-Growth 

shows great advantage in total running time over other two 

algorithms, particularly when threshold value is low. 

Splits the database D into small chunks 

Sent each chunks to Mapper and Reducer for parallel 

computing, sort the frequent list and items in 

descending order. 

Mapper reads the group list and Reducer builds their 

own local FP-tree (recursive) 

Combine the local frequent itemsets mined, stored in 

heap memory in descending order according to support 

number 

Incremental db d is inserted with new threshold value. 

Similarly d is divided into small parts and same 

procedure is repeated. 

D and d are likely to be rescanned and each Reducer 

updates their own local FP-tree. 

Integrate all the frequent itemsets from previous step 

as final result. 

Figure3: Flowchart of Parallel Incremental FP-Growth 

Database D 
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Figure4: Experiment of T10I4D100K 

 

Figure5: Experiment of Retail 

 

Figure6: Experiment of Kosarak 

7. CONCLUSION 
Apriori and FP-growth; traditional algorithms and data mining 

methods have faced limitations when dealing with large sized 

data. For occasion, Apriori algorithm needs to scan the data 

from external storage frequently so as to get the frequent 

itemsets, which takesheavy I/O load with decreased 

performance. InFP-growth algorithm, TID_set being too long, 

taking considerable memory space as well as computation time 

for intersecting the long sets.This paper discusses Parallel FP-

Growth mining tactic and Parallelized incremental FP-growth 

mining tactic, which are parallelized under the MapReduce 

framework.  

Experimental results of Parallel FP-growthspecify that this 

algorithm is effective in reducing time byeliminating duplicated 

work and spurious items. Also, it minimize the response time to 

a query for the set of frequent. 
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