

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference and Workshop on Communication, Computing and Virtualization (ICWCCV 2015) – www.ijais.org

7

An Improved Hybrid Approach of Mining Graphs

using Dual Active Feature Sample Selection and LTS

(Learn-To-Search)

Maya Aikara

Department of Computer

Engg,

TCET,

R.R. Sedamkar

Department of Computer

Engg,

TCET,

Sheetal Rathi

Department of Computer

Engg,

TCET,

ABSTRACT
In software engineering, discriminative sub graphs are used

to identify the bug signatures (context of bug). Most of

discriminative sub graph mining algorithms estimate the

discriminative sub graphs from a positive and negative

labelled graph dataset. The labelling is done manually,

which is time as well as cost consuming. A hybrid

discriminative sub graph mining algorithm using dual

active feature sample selection and LTS, which reduces the

manual labelling by 60%. But, this hybrid approach does

query graph computation without considering the features

of the labelled input graph dataset. Even the precision limit

is set to 4, which may not be optimal for all type of input

dataset. This paper presents an improved hybrid approach,

which does a query graph computation considering all

graphs in the input dataset. An additional tool is used for

input pre-processing method. The average precision limit is

determined so as to achieve maximum recall for any type

of input dataset. The experiments and results shows that

the improved hybrid approach can achieve an average

recall of 66.67% when the precision limit is set to 3,

whereas the earlier hybrid approach attained an average

recall of 33.33% when precision limit was set to 4.

Keywords
Graph Mining, Discriminative sub graph mining, Bug

Signatures

1. INTRODUCTION
The software engineering (SE) data are generally

represented as graphs for better understanding of its

attributes and relationships [1]. These graph data are

usually static or dynamic call graphs, or program

dependence graph. Mining of the SE graph data is done for

debugging or bug detection [2]. Certain bugs cannot be

identified when scanned individually, but can be identified

when executed one after the other. The context of such bug

is called bug signatures [3]. There are various frequent sub

graph mining algorithm [4,5] which can be used to find

bug signatures. The buggy location in the program flows

may not be always frequent and so frequent sub graph

mining may not be efficient. An alternative option is the

discriminative sub graph mining algorithms, which

identifies the discriminative sub graphs using a set of

positive and negative labelled graphs. This discriminative

sub graph represents the bug signatures in the program

flow graphs.

There are various discriminative sub graph mining

algorithms which can be used for identifying bug signature

from program flow graphs. The subdueCL[6] is a graph-

based concept learning method which guarantees a

discriminative sub graph pattern for each positive graph,

but lags efficiency since sub graph frequency is estimated

using sub graph isomorphism. The Leap [7] discriminative

sub graph mining algorithm correlates structural similarity

and significance similarity, but for optimality guarantee,

the leap length of 3/4 should be set to 0. It is not efficient

for tough dataset. The CORK algorithm [8] reduces the

problem of redundancy and significance; still it is

inefficient as discriminative sub graph with different

discriminative power may have same number of

correspondences. The GraphSig [9]tackles the problem of

huge search space and produces higher accuracy than

LEAP, but identified discriminative sub graph may not be

optimal because there might be structural loss of

information while sliding the window. In COM [10]

heuristic pattern exploration order and co-occurrences can

improve runtime efficiency of mining discriminative

patterns. It uses frequency as a measure to estimate the

discriminative score, which is not always optimal. The

GAIA [11] employs sub graph encoding approach to

support an arbitrary sub graph pattern exploration order,

but posses the risk of missing optimal solution due to the

fitness score and random pattern exploration.

The LTS (Learn-to-Search)[12] integrates greedy approach

or a branch and bound approach, to resolve the problem of

huge search space and reach optimization. The input to

LTS is set of positive and negative labelled graph dataset.

The method first follows a greedy approach (fast probe) to

find the near-optimal solution. Using this near-optimal

solution a prediction tree and score record is built to

estimate the upper bound of patterns. Finally the LTS

algorithm is used to compare the upper bound and find the

most discriminative sub graph for very positive graph in

the input dataset. The LTS methodology has an improved

runtime compared to Leap, GAIA. Moreover, it has a risk-

free approach of missing the optimal solution as it employs

a multi-lineage pattern exploration.

Most of the discriminative sub graph mining algorithm has

the input as a labelled set of positive and negative graph

dataset. The labelling of the graph is generally done

manually, which is time and cost consuming approach. The

dual active feature sample selection [13] is a discriminative

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference and Workshop on Communication, Computing and Virtualization (ICWCCV 2015) – www.ijais.org

8

sub graph mining algorithm used for classification. It

reduces the manual labelling of the graph input dataset by

employing active learning along with feature selection. The

simultaneous approach of active learning and feature

selection helps to identify the query graph for the set of

unlabelled input graph dataset. The query graph is used for

classification. The query graph poses a set of

discriminative sub graphs. The dual active feature sample

selection use a single-lineage pattern exploration, has a risk

of missing the optimal solution.

The hybrid approach of dual active feature sample

selection and LTS[14] is preferred as it reduces manual

labelling without the risk of missing the optimal solution.

The LTS has an improved runtime compared to state-of-art

discriminative sub graph mining algorithms. The hybrid

approach uses the discrimination score estimation of dual

active feature sample selection. Then, it replaces the

recursive feature selection algorithm, gSpan [15] with the

LTS algorithm. Finally a query graph is selected from the

set of unlabelled graph dataset. The query graph posses a

set of discriminative sub graphs, which are used to identify

bug signatures. The hybrid approach reduces manual

labelling by 60%. The precision and recall is improved by

33.33%. The hybrid approach has following drawbacks.

Firstly, the precision is measured in the scale of 4, which

means only precision limit is set to 4. This limitation has a

scope of improvement as the precision limit may vary

based on the structure of input graphs. Secondly, the query

graph is selected only from the set of unlabelled graph. The

features of labelled graph are ignored. Thirdly, tool was not

used for conversion of execution graph of inputs to

adjacency matrix. In this paper, an improved hybrid

approach is introduced to avoid these limitations.

The remaining part of paper is organized as follows.

Section II gives the introduction to Dual active feature

sample selection and LTS method. Section III describes the

hybrid approach of dual active feature sample selection and

LTS in detail. Section IV elaborates the modification done

on the hybrid approach to achieve improved results.

Section V describes the experiment conducted and the

results obtained. Section VI, defines the future scope.

Section VII concludes the paper.

2. RELATED THEORY

2.1 Dual active feature sample selection

Most of conventional approaches to find discriminative sub

graph features mine under supervised setting. They assume

that labelled graphs are available in the real world domain.

This is not always true. The labelling of graph data is time

consuming and an expensive task. To reduce the manual

labelling, active query learning is employed, which selects

a query graph for labelling. In graph database, both active

learning and feature selection technique are correlated.

Therefore, active learning problem and feature selection

problem in graph data can be considered simultaneously as

shown in Figure 1. The combined approach is called dual

active feature and sample selection[13].

Fig 1: Dual Active Feature & Sample Selection

The combined approach minimizes the manual labelling by

selecting a query graph for label. This query graph is

representative as well as informative. The query graph is

considered as the discriminative sub graph while mining.

The feature mining is done with gSpan algorithm [15]. The

gSpan algorithm uses single lineage pattern exploration,

which poses the risk of losing the optimal solution. The

branch and bound algorithm is used to prune the search

space. The dual active feature and sample selection reduces

the manual labelling drastically, thus leading to better

graph classification. It also provides the optimal feature set

and query graph which is useful for discriminative sub

graph mining. As it uses single lineage exploration, it

might lose the optimal feature once pruned.

2.2 LTS(Learn-to-Search):Discriminative

sub graph mining algorithm
The discriminative sub graph characterizes complex

graphs, construct graph classifiers or create graph indices.

The discriminative score cannot be measured using sub

graph frequency as the discriminative sub graph are neither

monotonic nor anti-monotonic. Thus, the branch-and-

bound algorithms are not very efficient for mining

discriminative sub graphs. The LTS[12] uses the search

history for better computation of upper bounds of

discriminative score. For discriminative sub graph mining,

the search space is very large. To optimize the search

problem there are two ways (i) greedy approach (only the

sub graph with higher score are considered and others

pruned. It is faster approach) (ii) branch-and-bound

approach (uses the upper bound for pruning the search

space). The LTS combines the two approaches. It first uses

a greedy method(fast probe algorithm[12]) to find the near-

optimal solution and builds up the search history(prediction

tree and table). Later it estimates the upper bound using the

search history generated by fast probe and finds the

discriminative sub graphs. It takes a labelled set of positive

and negative graph set as input and the optimal

discriminative pattern for each graph in positive set. LTS

employs multi-lineage pattern exploration which provides

lesser risk of missing the optimal solution. As LTS uses

fast probe (aggressive pruning over multi-lineage pattern

exploration), it runtime is improved or similar to the state-

of-art discriminative sub graph algorithms. It has the

drawback that all the input graph dataset needs to be

manual labelled before computation of discriminative sub

graph.

Query & Labelling

Labelled

Graph

Unlabelled

Graph

Active Query

Selection

Optimal Sub graph

Selection

Dual Active Feature and

Sample Selection

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference and Workshop on Communication, Computing and Virtualization (ICWCCV 2015) – www.ijais.org

9

3. A HYBRID APPROACH OF DUAL

ACTIVE FEATURE SAMPLE

SELECTION AND LTS
The hybrid approach [14] is combining the existing

methods of dual active feature sample selection and

LTS(Learn to Search). The dual active feature sample

selection has a good discriminative score calculation and

simultaneous computation of labelled and unlabelled

features, but the feature selection is done with gSpan

algorithm which employs single lineage pattern

exploration. The pruning on single lineage pattern

exploration posses the risk of missing optimal patterns. The

LTS is a risk free approach of missing the optimal patterns

due to multi-lineage pattern exploration, but the

discriminative score estimation is based on frequency of

pattern in dataset. Thus, the hybrid approach combines the

advantages of the two methods and overcomes their

drawbacks as shown below.

Dual Active Feature and Sample

Selection

LTS(Learn to Search):

Discriminative subgraph mining

algorithm

Advantages:-

 Reduces the labelling cost of the

graph data and selects query

graph for labelling

 Estimates the usefulness of

query graph and set of subgraph

features simultaneously

 Accurate compared to alternate

approaches

 Better runtime efficiency as

reduction in manual labelling

work of graph data

Advantages:-

 Uses multi lineage pattern

exploration with aggressive

pruning to achieve faster and

better optimal solution.

 Integrates greedy approach(for

local optima) and branch-n-bound

approach(prune search space)

 LTS efficient runtime compared

to Leap, GAIA

 LTS is same or more accurate

compared to state-art-algorithms.

Disadvantages:-

 Risk of missing the optimal

solution because pruning is

carried on single-lineage

subgraph pattern exploration

Disadvantages:-

 Labelled input of graph data set to

find discriminative subgraph,

which is mostly done manually.

 Discriminative score is frequency-

based computation.

Hybrid Approach

Advantages:-

 Reduces the labelling cost of the graph data and
selects query graph for labelling

 Provides a risk-free optimal solution

 Estimates the usefulness of query graph and set of
subgraph features simultaneously

 Integrates greedy approach(for local optima) and

branch-n-bound approach(prune search space)

 Better runtime efficiency as manual labelling is

reduced & aggressive pruning.

Disadvantages:-
 The query graph is estimated only from the sub graph

features of unlabelled graph datatset

 The optimal precision limit varies with the structure
of the input graph datatset

 The conversion of execution graph of input to the

corresponding adjacency matrix is done manually.

Fig 2: Derivation of hybrid approach

4. IMPROVED HYBRID APPROACH
The Hybrid approach of dual active feature sample

selection and LTS to identify bug signatures from the

program flow graphs has a scope of improvement in the

following areas:-

4.1 Input pre-

processing

Fig 3: Input pre-processing

To identify bug signatures from the program source code,

the input to the proposed approach needs to be pre-

processed as shown in the Figure 3. The input to our

methodology is a set of labelled and unlabelled graph of

execution traces of a source program. The flow from

source program and test cases to the set of input graph is

explained as follows. The source program is written and

complied. The control flow graph(CFG) of the program

source code is generated. The nodes represent a single

statement and edges represent the control flow between

these nodes. The control flow graphs are generated with

the help of tool called control flow graph tool(eclipse

plugin)[16]. Then, one test case is applied to get the

execution traces. This execution trace is then used to

identify the part of control flow graph(CFG) of program

which was executed. For the statements which were not

executed, the control flow edge and nodes are removed

from the source code CFG. The code coverage during

execution is identified with Code Cover tool(eclipse pug

in)[17].The adjacency matrix of the modified CFG is

obtained and this matrix is added to the set of input graphs.

The hybrid approach algorithm requires adjacency matrix

representation of the input for further processing. Similar,

method is used to acquire input graph for the remaining

test cases of the program source code.

The adjacency matrix in the hybrid approach is obtained

manually. A tool named SocNetV (open source tool)[18] is

a social networking analysis tool. It can import a GraphViz

.dot file or an .xml file and convert into the corresponding

adjacency matrix. The improved hybrid approach has its

input pre-processed along with the SocNetV tool, in

addition to the existing tools. The addition of this tool

helps in faster pre-processing of the input.

4.2 Estimation of query graph.
The query graph posses the set of discriminative sub

graphs, which are the bug signatures in the program flow

graphs. The query graph therefore needs to be informative

as well as representative in the cluster of graphs. The

formula for query graph estimation in the hybrid approach

is as follows:

Tigi iDaGss MghG),(max*

 ….1

where),(Mgh i is the discrimination score function

ig is the each graph in the each feature list iT

aD is the total number of unlabelled graph in

the dataset

Source

code

Test cases

CFG of

source
code

Run the
test case

Identify

executed
part in CFG

Remove

unidentified

edges

Add to the

set of input

graph

Represent

adjacency

matrix

For

each

test

case

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference and Workshop on Communication, Computing and Virtualization (ICWCCV 2015) – www.ijais.org

10

For each unlabelled graph, a set of k discriminative sub

graphs(g) having the higher scores are identified. Their

scores are stored in T. The query graph is that unlabelled

graph, which is having maximum score of sum of the

scores of their discriminative sub graphs.

In the hybrid approach, the query graph is selected only

from the set of unlabelled graphs. The features of labelled

graph are ignored. This leads to a risk of missing the

optimal features which might be a bug signature.

Therefore, the improved hybrid approach changes the

query graph formula to:

Tigi
MighDGssG),(max*

 ….2

The aD in the query graph formula is replaced with D

where D represent all graph in the datatset(labelled and

unlabelled)

4.3 Precision limit computation
In the hybrid approach, the precision limit was set to 4 and

precision was measured in the scale of 4. The average

recall achieved is 33.33%. When the precision limit is

increased(precision value is high), the recall lowers. This

happens because as more number of sub graphs are

identified, the optimal features are averaged with non-

optimal features. When the precision limit is very lowered(

precision value is very low), the optimal feature may be

missed and the recall gets lowered. Therefore, the optimal

precision value needs to be estimated. The precision limit

is generally based on the structure of the optimal precision

limit is different for similar structured input graph dataset,

differently structured input graph dataset or both. In the

improved hybrid approach, the optimal precision is

estimated for each type of input graph dataset and an

average is computed. This computed average precision

limit will be useful to find nearest optimal features for any

type of input graph dataset.

5. EXPERIMENTS AND RESULTS
The experimentation is carried out in Java on 1.7 Ghz i5

core processor, 3.86 memory with Windows 7 64bit

operating system. Eclipse Kepler environment is used for

experimentation. The inputs are three programs in java

 Program 1: a program to find whether the

number is prime or not

 Program 2: given a number to display the month

of a year

 Program 3: to carry out insertion sort

The Program 1 is a simple java program with no methods.

It has a simple logic to find whether the number is prime or

not. The Program 2 is a java program having switch case to

identify the month of the year. The Program 3 does

insertion sorting for given array of elements. This program

has methods to carry out sorting. The bugs are manually

inserted in the program such that the logic of the program

changes and output might be errorneous for certain inputs.

This means that the program will be executed , but the

expected output may not be obtained. For each program a

set of 10 test cases are selected. The test cases are choosen

based the similarity in the structure of the execution

graphs. The Program 2 test cases are choosen such that the

execution graph of each case are different in structure. The

test cases for Program 3 gives the similar execution graphs

for correct and faulty outputs. Whereas the test cases for

Program 1 provides both similar and dissimilar execution

graphs .

Before applying the hybrid approach, the input needs to be

pre-processed. In the improved hybrid approach, one more

tool is added called SocNetV(social networking analysis

tool)[18]. It is an open source tool generally used to

anaylise the networks. It also posses a property of

importing a GraphViz .dot file or .xml file and exporting it

to the corresponding adjacency matrix representation. A

snapshot of this tool is shown in the Figure 4.

Fig 4: Snapshot of the adjacency matrix for the control

flow graph of Program 1 using SocNetV tool

The performance metrics used to measure and analysis

results are precision and recall. The runtime of the

improved hybrid approach is almost same as the original

hybrid approach since, the percentage of manual labelling

the input is not changed. Only 40 % of the input graph

dataset is labelled in the improved hybrid approach. The

change in the query graph formula does not much tamper

the execution runtime of the hybrid approach. Hence, only

precision and recall are performance metrics considered for

comparision.

The precision is estimated as the number of discriminative

sub graph possessed by the query graph[14] and recall is

the computed as the percentage of difference between the

positive ratio and negative ratio[14]. The precision and

recall are compared program-wise for easy and better

understanding of the behaviour in terms of the structure of

the input graph dataset. The precision and recall results for

the program 1(prime numbers) is as shown in Table 1 and

Figure 5.

Table 1. Results of precision and recall for program 1

Sr.No. Precision

Query

graph no. Recall

1 1 8 50

2 2 8 50

3 3 8 50

4 4 8 37.5

5 5 8 20

6 6 8 16.66667

7 7 8 14.28571

8 8 8 12.5

9 9 8 11.11111

10 10 8 10

11 11 8 9.090909

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference and Workshop on Communication, Computing and Virtualization (ICWCCV 2015) – www.ijais.org

11

Fig 5: Analysis for program 1

In the program 1, it is visible that the query graph is not

changed for any the precision. It can also be seen that the

recall is highest for the first three precision value. The

optimal precision value should be considered as 3, since it

as maximum number of discriminative sub graphs(3)

when compared with the precision value 1. More the

optimal discriminative sub graphs identified, the better is

the bug signature estimation. The maximum recall obtained

is 50% with the maximum precision limit as 3.

Table 2. Precision and Recall results for Program 2

Sr.No. Precision

Query

graph no. Recall

1 1 4 50

2 2 4 16.66667

3 3 4 -16.6667

4 4 4 0

5 5 4 10

6 6 7 16.66667

7 7 7 14.28571

8 8 7 11.11111

9 9 7 11.11111

10 10 7 10

11 11 7 9.090909

12 12 7 8.333333

13 13 7 7.692308

14 14 7 7.142857

15 15 7 6.666667

Fig 6: Analysis for program 2

In the program 2, the query changes for some of the

precision values, but the discriminative sub graphs

obtained is almost similar. This happens because each of

the input graph in the dataset is differently structured. The

optimal precision for such program is 1 as the recall is

highest for it. The recall obtained is only 50 % as there are

two positively labelled graph and two negatively labelled

graph in the dataset and every graph has a different

structure in the input dataset.

Table 3. Precision and Recall results for Program 3

Sr.No. Precision

Query

graph no. Recall

1 1 7 100

2 2 7 100

3 3 7 100

4 4 7 100

5 5 7 100

6 6 7 66.66667

7 7 7 57.14286

8 8 7 37.5

9 9 7 33.33333

10 10 7 30

11 11 7 27.27273

12 12 7 25

Fig 7: Analysis for program 3

In the program 3, the query graph remains the same

throughout. As the precision is changing, recall also

fluctuates. The optimal precision is to be considered as 5,

since it is lowest precision with high recall value. The

lower is the precision, more is the discriminative sub

graphs identified and more is the bug signatures found. The

recall value is 100% because all the input graphs in the

dataset are similarly structured.

Table 4. The overall Precision and Recall results for

three programs

 precision Max recall %

Program 1 3 50

Program 2 1 50

Program 3 5 100

Fig 8: Analysis for precision

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference and Workshop on Communication, Computing and Virtualization (ICWCCV 2015) – www.ijais.org

12

Fig 9: Analysis for recall

The overall results and analysis of recall and precision is

shown above. The average precision is 3 and average recall

is 66.67% irrespective of the structure of the input

program. This precision limit gives the nearest optimal

solution to identify the bug signatures. This result

overpowers the average recall of earlier hybrid

approach[14] which attained an average recall of 33.33%

for a precision limit of 4.

6. CONCLUSION AND FUTURE

SCOPE
This paper presents an improved hybrid approach of

mining graphs using the two concepts, they are dual active

feature sample selection and LTS(Learn-to-Search). The

existing hybrid approach had reduced 60% of manual

labelling and removed the risk of missing the optimal

solution, but had some drawbacks. In the input pre-

processing of the hybrid approach, the conversion from

execution graphs to the adjacency matrix representation

was done manually. The query graph was estimated only

on the basis of unlabelled input graphs, labelled graphs

were ignored. The precision limit considered was not the

optimal one.

To overcome these drawbacks, the improved hybrid

approach is designed which added a tool SocNetV for the

conversion of execution graphs to the adjacency matrix.

The query graph formula is modified so as to consider

labelled graphs along with unlabelled graphs. The varied

precision limits were compared to identify the average

optimal precision 3 for any kind of input graph dataset.

This precision limit helps to reach the maximum recall of

66.67%. The improved hybrid approach can help the

programmer for easy and better identification of

discriminative sub graphs, which in return will help in

identifying the buggy locations in the program source code.

As the average precision limit helps to find the nearest-

optimal solution of discriminative sub graph with

maximum recall and minimum runtime, still there is a

scope to reach the best optimal solution. The precision

limit can be automated depending upon the structure of the

input graph dataset.

7. REFERENCES
[1] Wang, Haixun. Managing and mining graph data.

Edited by Charu C. Aggarwal. Vol. 40. New York:

Springer, 2010.

[2] Xie, Tao, Suresh Thummalapenta, David Lo, and

Chao Liu. "Data mining for software

engineering." Computer 42, no. 8 (2009): 55-62.

[3] Cheng, Hong, David Lo, Yang Zhou, Xiaoyin Wang,

and Xifeng Yan. "Identifying bug signatures using

discriminative graph mining." In Proceedings of the

eighteenth international symposium on Software

testing and analysis, pp. 141-152. ACM, 2009.

[4] Jiang, Chuntao, Frans Coenen, and Michele Zito. "A

survey of frequent subgraph mining algorithms." The

Knowledge Engineering Review 28, no. 01 (2013): 75-

105.

[5] Eichinger, Frank, Klemens Böhm, and Matthias

Huber. "Mining edge-weighted call graphs to localise

software bugs." In Machine Learning and Knowledge

Discovery in Databases, pp. 333-348. Springer Berlin

Heidelberg, 2008.

[6] Gonzalez, Jesus A., Lawrence B. Holder, and Diane J.

Cook. "Graph-based relational concept learning."

(2002).

[7] Yan, Xifeng, Hong Cheng, Jiawei Han, and Philip S.

Yu. "Mining significant graph patterns by leap

search." In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data,

pp.433-444.ACM,2008.

[8] Thoma, Marisa, Hong Cheng, Arthur Gretton, Jiawei

Han, Hans-Peter Kriegel, Alexander J. Smola, Le

Song, S. Yu Philip, Xifeng Yan, and Karsten M.

Borgwardt. "Near-optimal Supervised Feature

Selection among Frequent Subgraphs." In SDM, pp.

1076-1087. 2009.

[9] Ranu, Sayan, and Ambuj K. Singh. "Graphsig: A

scalable approach to mining significant subgraphs in

large graph databases." In Data Engineering,

2009.ICDE'09 IEEE 25th International Conference

on,pp.844-855.IEEE,2009.

[10] Jin, Ning, Calvin Young, and Wei Wang. "Graph

classification based on pattern co-occurrence."

In Proceedings of the 18th ACM conference on

Information and knowledge management, pp. 573-

582. ACM, 2009.

[11] Jin, Ning, Calvin Young, and Wei Wang. "GAIA:

graph classification using evolutionary computation."

In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data, pp.

879-890. ACM, 2010.

[12] Jin, Ning, and Wei Wang. "LTS: Discriminative

subgraph mining by learning from search history."

In Data Engineering (ICDE), 2011 IEEE 27th

International Conference on, pp. 207-218. IEEE,

2011.

[13] Kong, Xiangnan, Wei Fan, and Philip S. Yu. "Dual

active feature and sample selection for graph

classification." In Proceedings of the 17th ACM

SIGKDD international conference on Knowledge

discovery and data mining, pp. 654-662. ACM, 2011.

[14] Aikara, Maya, R. R. Sedamkar, and Sheetal Rathi. "A

Novel Approach using Dual Active Feature Sample

Selection and LTS (Learn to Search)."International

Journal of Computer Applications 101, no. 13 (2014):

31-36.

[15] Yan, Xifeng, and Jiawei Han. "gSpan: Graph-based

substructure pattern mining." In Data Mining, 2002.

ICDM 2003. Proceedings. 2002 IEEE International

Conference on, pp. 721-724. IEEE, 2002.

[16] http://eclipsefcg.sourceforge.net/ Tutorial for CFG

generator, Eclipse plugin

[17] http://codecover.org/documentation/references/eclMa

nual.html Tutorial for Code Cover tool, Eclipse plugin

[18] http://socnetv.sourceforge.net/docs/manual.html

Tutorial for SocNetV (Social Network Visualizer)

tool.

