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ABSTRACT 

Merge Sort is a comparison based sorting algorithm with O(n 

log n) computational complexity. It is not adaptive to 

existence of ordering among the elements. Thus, has the same 

computational complexity in any case. In this paper, we 

propose Adaptive Merge Sort algorithm which is adaptive to 

existence of ordering among the elements in the list. Adaptive 

Merge sort has the complexity of O(n) for best case instead of 

O(n log n).Thus improvement requires additional space of 

O(n).The improvement in the performance is justified with an 

experimental analysis of the algorithm.  

General Terms 

Algorithm Optimization. 
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1. INTRODUCTION 
 Merge Sort is a comparison based algorithm invented by John 

von Neumann in 1945 [1]. It uses divide and conquer strategy 

to sort the list of elements. The algorithmic efficiency of 

merge sort is O(n log n). Merge sort has two approaches for 

implementation 1) Top-Down and 2) Bottom-Up. In top- 

down approach the list is divided into sub-lists until sub-list 

has only one element in it and then performs the merging 

process. Whereas in bottom-up approach each element of list 

is considered as sub-list and directly merging process starts 

with n sub-lists of size 1 [1], [2].  

Although the merge sort computational complexity has lower 

order of growth than many sorting algorithms such as 

insertion, bubble etc, yet it is not suitable for list of smaller 

size. As the operation of dividing a list and then merging the 

list by placing it in temporary space and then putting back to 

its original location takes time [3]. To reduce the time the 

merging procedure can be improved using techniques 

described in [4]. However merge sort performs well for larger 

data set because it has lower order of growth and it can also 

use other sorting algorithm in conjunction to perform faster. 

 In this paper we focus on Bottom-Up approach of merge sort 

which is iterative and starts the merge procedure by 

considering each element of list as sub-list to be merged and 

propose Adaptive  Merge Sort which is adaptive to existence 

of order (required or reverse) among the list of elements. The 

number of merging steps is reduced by locating sub-lists 

which are already sorted instead of starting with sub-list of 

size 1. Adaptive merge sort required additional storage space 

of O(n) for making Adaptive merge sort adaptive.  

Further the paper is organized as follows: Section 2 de- 

scribes the working of Merge Sort, Section 3 gives the design 

and implementation of Adaptive Merge Sort, Section 4 gives 

comparative analysis of Merge Sort and Adaptive Merge Sort, 

Section 5 gives the experimental analysis of Merge Sort and 

Adaptive Sort and the paper concludes in section 6.   

2. MERGE SORT 
Merge sort uses divide and conquer strategy to sort the list of 

elements. It starts merging process by taking each element of 

list as sub-list to be merged. The figure 1 shows the working 

of merge sort.  

 

Fig. 1. Working of Merge Sort 

2.1 Design Idea 
1) Start with sub-list of size 1 (list with 1 element is 

considered sorted). 

 2) Keep on merging sub-lists to produce new sub-lists until 
there is only 1 list containing all the elements remaining. 

2.2 Implementation in C 
BottomUpSort( int n , int A[] , int B[]) 

{  

   int w, i ; 

   for (w=1;w<n; width=2∗w)  

   { 

     for ( i =0;i<n; i=i+2∗w) 

     {  

      merging (A, i ,min( i+w,n) ,min( i+2∗w,n) ,B);                  

.    } 

     CopyArray(A,B,n ); 

  }  

} 

merging (int A[], int iLeft, int iRight, int iEnd, int B[])  

{ 

   int i0=iLeft ; int i1=iRight ; int j ; 

    for ( j=iLeft ; j<iEnd ; j ++)  
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    { 

       if (i0<iRight&&(i1>=iEnd ||A[ i0]<=A[ i1 ]))  

       {  

            B[ j ] = A[ i0 ];  

            i0 = i0 + 1; 

       }  

       else 

       { 

           B[ j ] = A[ i1 ]; 

           i1 = i1 + 1; 

       } 

    }  

  } 
Listing. 1. Merge Sort [5]. 

3. ADAPTIVE MERGE SORT 
Adaptive Merge Sort performs the merging of sorted sub-list 

merge sort does. However, the size of initial sub-list depends 

upon the existence of ordering among the list of elements 

rather than having sub-list of size 1. For example consider list 

in the figure 2. 

 

Fig. 2. List of Elements 

 It contains 2 sorted sub-lists.  

• sub-list 1 with elements 8,7,6,5.  
• sub-list 2 with elements 1,2,3,4.  

 

Fig. 3. Sub-list of sorted Elements 

The sub-list 1 is sorted but in reverse order. Thus, the sub-list 

1 is reversed as shown in the figure 4. 

 

Fig. 4. Sub-list of sorted elements in required order 

Once the sub-lists are found merging process starts. Adaptive 

merge sort starts merging the sub-lists. Adaptive merge sort 

will require only one merging step as there are only 2 sub-

lists. The result of merging is shown in figure 5 

 

Fig. 5. Merging of sub-lists in figure 4. 

3.1 Design Idea 

1) Start by finding the sub-lists which are already sorted in 
required or reverse order  

2) If there is any sub-list with elements in reverse order, then 

reverse the sub-list by exchanging 1st element with last, 2nd 

element with 2nd last and so on.  

3) Keep on merging sub-lists to produce new sub-lists until 

there is only 1 sub-list remaining. 

3.2 Implementation in C 
void AdaptiveMerge ( int a [] , int b[] , int alength ) 

 {  

    int i =0, j =0,temp , lb = −1, ub = −1;  

    int lb1 = −1,ub1 = −1,track = 0,p = 0;  

    int as [ alength ] , prev track , ,k = 0;  

    for ( j =0;j<alength −1;j ++)  

    {  

        if (a[ j]>a[ j +1])  

        {  

           if (lb1>−1)  

           {  

               b[ track ++] = lb1 ; 

               b[ track ++] = ub1;  

               lb1 = ub1 = −1;  

               continue ; 

           }  

           else if ( lb == −1)             

               lb = ub = j ;            

           ub++;  

        }  

        else  

        {  

           if (lb>−1)  

           {  

               b[ track ++] = lb ;  

               b[ track ++] = ub;  

               while (lb<ub)  

               {  

                   temp = a[ lb ];  

                   a[ lb ] = a[ub ];  

                   a[ub] = temp ;  

                   lb++;  

                   ub−−;  

               }  

               lb = ub = −1;  

               continue ;  

            }  

            else if ( lb1 == −1)               

               lb1 = ub1 = j ; 

            ub1++;  

         } 

    }  

    if(lb>−1)  

    {  

        b[ track ++] = lb ;  

        b[ track ++] = ub;  

        while (lb<ub)  

        {  

           temp = a[ lb ];  

           a[ lb ] = a[ub ];  

           a[ub] = temp ;  

           lb++; ub−−;  

        }  

     }  

 if (lb1>−1)  

 {  

     b[ track ++] = lb1 ;  

     b[ track ++] = ub1;  

  }  
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  if (b[ track −1]<(alength −1))  

  {  

      b[ track ++] = alength −1;  

      b[ track ++] = alength −1;  

   }  

   prev track = track ;  

   track = 0;  

   while ( prev track >2)  

   {  

       int zl = b[k ]; 

       int zu = b[k+1];  

       int xl = b[k+2];  

       int xu = b[k+3];  

       if ( zl>−1 && xl>−1)  

       { 

           for ( i=zl , j=xl ; i<=zu && j<=xu ;) 

          { 

              if (a[ i]>a[ j ])  

              {  

                  as [p++] = a[ j ];  

                  j ++;  

              } 

             else  

             {  

                 as [p++] = a[ i ]; 

                 i ++;  

             }  

          }  

          while (i<=zu)  

          {  

               as [p++] = a[ i ]; 

               i ++;  

           }  

           while (j<=xu)  

           {  

                as [p++] = a[ j ]; 

                 j ++; 

            } 

            b[ track ++] = zl ;  

            b[ track ++] = xu;  

            k = k+4; 

        }  

        if (k+4>prev track )  

        {  

              if ((k+4−prev track)%4>0)  

              { 

                    b[ track ++] = b[ prev track −2];  

                    b[ track ++] = b[ prev track −1];  

              }  

             k = 0;  

             prev track = track ;  

             track = 0; 

             int y = 0;  

            while (y<p)  

            {  

                 a[y] = as [y ];  

                 y++; 

             }  

            p = 0;  

       } 

   } 

} 
Listing. 2. Merge Sort 

4. ANALYSIS 

4.1 Merge Sort 
It works as follows:  

suppose a list is of size 2n.  

1) Starts with sub-list of size 1, sub-lists of size 1 are sorted.  

2) Merge sub-lists of size1, results in sorted sub-lists of size 2. 

 3) Merge sub-lists of size2, results in sorted sub-list of size 4. 

 4)…...  

 5) The process of merging goes on until 2k<n. where k is the 
kth merging step.  

Each merging process requires a linear time of O(n) to merge 

n elements and 2k merging i.e.(log n) trips takes place. Thus, 

the Time Complexity of merge sort is O(n log n) [1], [2], [6]. 

Thus, it is clear that merge sort is not adaptive to existence of 

partial or total ordering in required or reverse order among the 

list to be sorted. 

4.2 Adaptive Merge sort 
Adaptive merge sort instead of starting with sub-list of size 1, 

finds a sub-list which are already in sorted in required or 

reverse order. The size of sub-lists found initially would be 

minimum 2 and maximum n (n is the number of elements). 

However, if the sub-list contains elements in reverse order, 

then it reverses the list before starting a merge operation. The 

reversal of list requires (n/2) exchange operations. 

4.2.1 Best Case 
If list is already in sorted order or in reverse order then the 

Adaptive merge sort will have only one list and will not 

require any merge operation. However, finding that the list is 

already sorted will require O(n) comparison operation and 

(n/2) exchange operation if the list is sorted in reverse order. 

This makes the Adaptive Merge sort adaptive even when the 

list sorted in reverse order. 

Thus the Time complexity for best case is calculated as 

follows:  

T(n) = (n-1)+(n/2)  

T(n) = (2n-2+n)/2  

T(n) = O(n). 

However to Adaptive merge sort uses additional space of O(n) 
in comparison of merge sort 

4.2.2 Worst Case  
Adaptive merge sort will find sub-list which is already sorted 

in required or reverse order. However, in worst case there are 

no partial or total ordering elements. Thus, the sub-list found 

initially would be of size 2. Once the sub-lists are found the 
merging process starts.  

• merging sub-lists of size 2 results in sorted sub-list of size 4.  

• merging sub-lists of size 4 results in sorted sub-list of size 8.  

• ...  

• The process of merging goes on until 2k < n. where k is the 

kth merging step.  

Since the merging steps in worst case of Adaptive merge sort 

is same as merge sort. Thus, the Time Complexity for worst 

case of Adaptive merge sort is same as merge sort:  

T(n) = O(n log n). 
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4.3 Comparison of Merge and Adaptive 

Merge Sort 
 

Table 1. Complexity Of Merge Sort 

 
Required 

order 

Random 

order 

Reverse 

order 

No. of 

Merging steps 
log n log n  log n 

Space 

Complexity 
n N n 

Time 

Complexity 
n log n n  log n n log n 

 

Table 2. Complexity Of Adaptive Merge Sort 

 
Required 

order 

Random 

order 

Reverse 

order 

No. of 

Merging steps 
1  log n 1 

Space 

Complexity 
2n 2n 2n 

Time 

Complexity 
n  n  log n n  

 

5. EXPERIMENTAL ANALYSIS 
The efficiency, performance and correctness of Adaptive 

Merge Sort is checked and compared with Merge Sort. The 

result of comparison is shown below. 

 

Fig. 6. Elements in Reverse Order 

 

Fig. 7. Elements in Random Order 

 

Fig. 8. Elements in Required Order 

6. CONCLUSION 
Thus Adaptive Merge Sort algorithm is adaptive to existence 

of order and has computational complexity of O(n) when the 

list is sorted in required or reverse order i.e.(best case) and 

O(n log n) in other cases. 

Also, it can be concluded from experimental analysis that 

Adaptive merge sort out performs better than merge sort 

whenever the list is nearly sorted. However, the worst case 

complexity still O(n log n) same as merge sort. The Adaptive 

merge sort provides better performance at the cost additional 

storage of O(n). Thus, the space requirement for Adaptive 

merge sort is 2n whereas merge sort requires n.  
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