

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
International Conference & workshop on Advanced Computing 2014 (ICWAC 2014) – www.ijais.org

21

Adaptive Merge Sort

Nenwani Kamlesh

Ramrao Adik Institute of
Technology

Nerul, Navi-Mumbai.

Vanita Mane

Ramrao Adik Institute of
Technology

Nerul, Navi-Mumbai.

Smita Bharne

Ramrao Adik Institute of
Technology

Nerul, Navi-Mumbai.

ABSTRACT

Merge Sort is a comparison based sorting algorithm with O(n

log n) computational complexity. It is not adaptive to

existence of ordering among the elements. Thus, has the same

computational complexity in any case. In this paper, we

propose Adaptive Merge Sort algorithm which is adaptive to

existence of ordering among the elements in the list. Adaptive

Merge sort has the complexity of O(n) for best case instead of

O(n log n).Thus improvement requires additional space of

O(n).The improvement in the performance is justified with an

experimental analysis of the algorithm.

General Terms

Algorithm Optimization.

Keywords

Sorting, Merge Sort, Adaptive.

1. INTRODUCTION
 Merge Sort is a comparison based algorithm invented by John

von Neumann in 1945 [1]. It uses divide and conquer strategy

to sort the list of elements. The algorithmic efficiency of

merge sort is O(n log n). Merge sort has two approaches for

implementation 1) Top-Down and 2) Bottom-Up. In top-

down approach the list is divided into sub-lists until sub-list

has only one element in it and then performs the merging

process. Whereas in bottom-up approach each element of list

is considered as sub-list and directly merging process starts

with n sub-lists of size 1 [1], [2].

Although the merge sort computational complexity has lower

order of growth than many sorting algorithms such as

insertion, bubble etc, yet it is not suitable for list of smaller

size. As the operation of dividing a list and then merging the

list by placing it in temporary space and then putting back to

its original location takes time [3]. To reduce the time the

merging procedure can be improved using techniques

described in [4]. However merge sort performs well for larger

data set because it has lower order of growth and it can also

use other sorting algorithm in conjunction to perform faster.

 In this paper we focus on Bottom-Up approach of merge sort

which is iterative and starts the merge procedure by

considering each element of list as sub-list to be merged and

propose Adaptive Merge Sort which is adaptive to existence

of order (required or reverse) among the list of elements. The

number of merging steps is reduced by locating sub-lists

which are already sorted instead of starting with sub-list of

size 1. Adaptive merge sort required additional storage space

of O(n) for making Adaptive merge sort adaptive.

Further the paper is organized as follows: Section 2 de-

scribes the working of Merge Sort, Section 3 gives the design

and implementation of Adaptive Merge Sort, Section 4 gives

comparative analysis of Merge Sort and Adaptive Merge Sort,

Section 5 gives the experimental analysis of Merge Sort and

Adaptive Sort and the paper concludes in section 6.

2. MERGE SORT
Merge sort uses divide and conquer strategy to sort the list of

elements. It starts merging process by taking each element of

list as sub-list to be merged. The figure 1 shows the working

of merge sort.

Fig. 1. Working of Merge Sort

2.1 Design Idea
1) Start with sub-list of size 1 (list with 1 element is

considered sorted).

 2) Keep on merging sub-lists to produce new sub-lists until
there is only 1 list containing all the elements remaining.

2.2 Implementation in C
BottomUpSort(int n , int A[] , int B[])

{

 int w, i ;

 for (w=1;w<n; width=2∗w)

 {

 for (i =0;i<n; i=i+2∗w)

 {

 merging (A, i ,min(i+w,n) ,min(i+2∗w,n) ,B);

. }

 CopyArray(A,B,n);

 }

}

merging (int A[], int iLeft, int iRight, int iEnd, int B[])

{

 int i0=iLeft ; int i1=iRight ; int j ;

 for (j=iLeft ; j<iEnd ; j ++)

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
International Conference & workshop on Advanced Computing 2014 (ICWAC 2014) – www.ijais.org

22

 {

 if (i0<iRight&&(i1>=iEnd ||A[i0]<=A[i1]))

 {

 B[j] = A[i0];

 i0 = i0 + 1;

 }

 else

 {

 B[j] = A[i1];

 i1 = i1 + 1;

 }

 }

 }
Listing. 1. Merge Sort [5].

3. ADAPTIVE MERGE SORT
Adaptive Merge Sort performs the merging of sorted sub-list

merge sort does. However, the size of initial sub-list depends

upon the existence of ordering among the list of elements

rather than having sub-list of size 1. For example consider list

in the figure 2.

Fig. 2. List of Elements

 It contains 2 sorted sub-lists.

• sub-list 1 with elements 8,7,6,5.
• sub-list 2 with elements 1,2,3,4.

Fig. 3. Sub-list of sorted Elements

The sub-list 1 is sorted but in reverse order. Thus, the sub-list

1 is reversed as shown in the figure 4.

Fig. 4. Sub-list of sorted elements in required order

Once the sub-lists are found merging process starts. Adaptive

merge sort starts merging the sub-lists. Adaptive merge sort

will require only one merging step as there are only 2 sub-

lists. The result of merging is shown in figure 5

Fig. 5. Merging of sub-lists in figure 4.

3.1 Design Idea

1) Start by finding the sub-lists which are already sorted in
required or reverse order

2) If there is any sub-list with elements in reverse order, then

reverse the sub-list by exchanging 1st element with last, 2nd

element with 2nd last and so on.

3) Keep on merging sub-lists to produce new sub-lists until

there is only 1 sub-list remaining.

3.2 Implementation in C
void AdaptiveMerge (int a [] , int b[] , int alength)

 {

 int i =0, j =0,temp , lb = −1, ub = −1;

 int lb1 = −1,ub1 = −1,track = 0,p = 0;

 int as [alength] , prev track , ,k = 0;

 for (j =0;j<alength −1;j ++)

 {

 if (a[j]>a[j +1])

 {

 if (lb1>−1)

 {

 b[track ++] = lb1 ;

 b[track ++] = ub1;

 lb1 = ub1 = −1;

 continue ;

 }

 else if (lb == −1)

 lb = ub = j ;

 ub++;

 }

 else

 {

 if (lb>−1)

 {

 b[track ++] = lb ;

 b[track ++] = ub;

 while (lb<ub)

 {

 temp = a[lb];

 a[lb] = a[ub];

 a[ub] = temp ;

 lb++;

 ub−−;

 }

 lb = ub = −1;

 continue ;

 }

 else if (lb1 == −1)

 lb1 = ub1 = j ;

 ub1++;

 }

 }

 if(lb>−1)

 {

 b[track ++] = lb ;

 b[track ++] = ub;

 while (lb<ub)

 {

 temp = a[lb];

 a[lb] = a[ub];

 a[ub] = temp ;

 lb++; ub−−;

 }

 }

 if (lb1>−1)

 {

 b[track ++] = lb1 ;

 b[track ++] = ub1;

 }

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
International Conference & workshop on Advanced Computing 2014 (ICWAC 2014) – www.ijais.org

23

 if (b[track −1]<(alength −1))

 {

 b[track ++] = alength −1;

 b[track ++] = alength −1;

 }

 prev track = track ;

 track = 0;

 while (prev track >2)

 {

 int zl = b[k];

 int zu = b[k+1];

 int xl = b[k+2];

 int xu = b[k+3];

 if (zl>−1 && xl>−1)

 {

 for (i=zl , j=xl ; i<=zu && j<=xu ;)

 {

 if (a[i]>a[j])

 {

 as [p++] = a[j];

 j ++;

 }

 else

 {

 as [p++] = a[i];

 i ++;

 }

 }

 while (i<=zu)

 {

 as [p++] = a[i];

 i ++;

 }

 while (j<=xu)

 {

 as [p++] = a[j];

 j ++;

 }

 b[track ++] = zl ;

 b[track ++] = xu;

 k = k+4;

 }

 if (k+4>prev track)

 {

 if ((k+4−prev track)%4>0)

 {

 b[track ++] = b[prev track −2];

 b[track ++] = b[prev track −1];

 }

 k = 0;

 prev track = track ;

 track = 0;

 int y = 0;

 while (y<p)

 {

 a[y] = as [y];

 y++;

 }

 p = 0;

 }

 }

}
Listing. 2. Merge Sort

4. ANALYSIS

4.1 Merge Sort
It works as follows:

suppose a list is of size 2n.

1) Starts with sub-list of size 1, sub-lists of size 1 are sorted.

2) Merge sub-lists of size1, results in sorted sub-lists of size 2.

 3) Merge sub-lists of size2, results in sorted sub-list of size 4.

 4)…...

 5) The process of merging goes on until 2k<n. where k is the
kth merging step.

Each merging process requires a linear time of O(n) to merge

n elements and 2k merging i.e.(log n) trips takes place. Thus,

the Time Complexity of merge sort is O(n log n) [1], [2], [6].

Thus, it is clear that merge sort is not adaptive to existence of

partial or total ordering in required or reverse order among the

list to be sorted.

4.2 Adaptive Merge sort
Adaptive merge sort instead of starting with sub-list of size 1,

finds a sub-list which are already in sorted in required or

reverse order. The size of sub-lists found initially would be

minimum 2 and maximum n (n is the number of elements).

However, if the sub-list contains elements in reverse order,

then it reverses the list before starting a merge operation. The

reversal of list requires (n/2) exchange operations.

4.2.1 Best Case
If list is already in sorted order or in reverse order then the

Adaptive merge sort will have only one list and will not

require any merge operation. However, finding that the list is

already sorted will require O(n) comparison operation and

(n/2) exchange operation if the list is sorted in reverse order.

This makes the Adaptive Merge sort adaptive even when the

list sorted in reverse order.

Thus the Time complexity for best case is calculated as

follows:

T(n) = (n-1)+(n/2)

T(n) = (2n-2+n)/2

T(n) = O(n).

However to Adaptive merge sort uses additional space of O(n)
in comparison of merge sort

4.2.2 Worst Case
Adaptive merge sort will find sub-list which is already sorted

in required or reverse order. However, in worst case there are

no partial or total ordering elements. Thus, the sub-list found

initially would be of size 2. Once the sub-lists are found the
merging process starts.

• merging sub-lists of size 2 results in sorted sub-list of size 4.

• merging sub-lists of size 4 results in sorted sub-list of size 8.

• ...

• The process of merging goes on until 2k < n. where k is the

kth merging step.

Since the merging steps in worst case of Adaptive merge sort

is same as merge sort. Thus, the Time Complexity for worst

case of Adaptive merge sort is same as merge sort:

T(n) = O(n log n).

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868
Foundation of Computer Science FCS, New York, USA
International Conference & workshop on Advanced Computing 2014 (ICWAC 2014) – www.ijais.org

24

4.3 Comparison of Merge and Adaptive

Merge Sort

Table 1. Complexity Of Merge Sort

Required

order

Random

order

Reverse

order

No. of

Merging steps
log n log n log n

Space

Complexity
n N n

Time

Complexity
n log n n log n n log n

Table 2. Complexity Of Adaptive Merge Sort

Required

order

Random

order

Reverse

order

No. of

Merging steps
1 log n 1

Space

Complexity
2n 2n 2n

Time

Complexity
n n log n n

5. EXPERIMENTAL ANALYSIS
The efficiency, performance and correctness of Adaptive

Merge Sort is checked and compared with Merge Sort. The

result of comparison is shown below.

Fig. 6. Elements in Reverse Order

Fig. 7. Elements in Random Order

Fig. 8. Elements in Required Order

6. CONCLUSION
Thus Adaptive Merge Sort algorithm is adaptive to existence

of order and has computational complexity of O(n) when the

list is sorted in required or reverse order i.e.(best case) and

O(n log n) in other cases.

Also, it can be concluded from experimental analysis that

Adaptive merge sort out performs better than merge sort

whenever the list is nearly sorted. However, the worst case

complexity still O(n log n) same as merge sort. The Adaptive

merge sort provides better performance at the cost additional

storage of O(n). Thus, the space requirement for Adaptive

merge sort is 2n whereas merge sort requires n.

7. REFERENCES
[1] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H.

Cormen, Introduction to algorithms. The MIT press,

2001.

[2] A. Tenenbaum, Data Structures Using C. Pearson

Education, 1990. [Online]. Available:

http://books.google.co.in/books?id=X0Cd1Pr2W0gC.

[3] D. E. Knuth, “The art of computer programming, vol. 3:

Sorting and searching,” 1973.”

[4] Estivill-Castro, Vladmir, and Derick Wood. "A survey of

adaptive sorting algorithms." ACM Computing Surveys

(CSUR) 24.4 (1992): 441-476.

[5] Lipschutz, Data Structures With C. McGraw-Hill Ed-

ucation (India) Pvt Limited, 2011. [Online]. Available:

http://books.google.co.in/books?id=YJQIOLgFnnYC.

[6] Symvonis, Antonios. "Optimal stable merging." The

Computer Journal 38.8 (1995): 681-690.

[7] Brown, Mark R., and Robert E. Tarjan. "A fast merging

algorithm." Journal of the ACM (JACM) 26.2 (1979):

211-226.

http://books.google.co.in/books?id=X0Cd1Pr2W0gC
http://books.google.co.in/books?id=YJQIOLgFnnYC

