

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference on Communication Computing & Virtualization 2016

19

String Searching Algorithm: A Predictive Approach

DipendraGurung
Department of Computer
Science and Engineering
Sikkim Manipal Institute of

Technology,
 Sikkim, India

Udit Kr Chakraborty
Department of Computer
Science and Engineering
Sikkim ManipalInstitute of

Technology,
 Sikkim, India

Pratikshya Sharma
Department of Computer
Science and Engineering
Sikkim Manipal Institute of

Technology,
 Sikkim, India

ABSTRACT

In today’s time computer systems produce large volumes of

data. In order to extract valuable information from this data

various new techniques are being developed and used. This

has led to the increase in the importance of text processing

and consequently string searching.In this paper a new string

searching algorithm is presented that uses intelligent

predictions based on text features to search for a string in a

text. The proposed algorithm has been developed after

analyzing the existing algorithms such as KMP, Boyer-Moore

and Horspool. One unique feature of this algorithm is that

unlike the existing algorithms, it does not require pre-

processing the pattern to be searched. As a result it does not

incur the overhead required in pre-processing the pattern. The

algorithm searches through a given text to find the first

occurrence of a pattern. It does not involve complex

computations and uses simple rules during a match or

mismatch of a pattern character. Based on the variety of

applications coming up in areas of data and information

mining, sentiment analysis, DNA pattern matching etc, this

simple, elegant and intelligent algorithm will find its

application.

General Terms

String searching

Keywords

String search, Predictive search

1. INTRODUCTION
The term text processing in computing refers to the discipline

of automating the creation or manipulation of textual data.

The processing may include use of computer algorithms to

restructure or reformat the text, extract information and store

the data as files on a computer [1]. Text processing carries a

lot of importance as a lot of digital information basically come

down to a collection of text: configuration files, log files, etc.

Moreover the internet provides information largely in the

form of text.

One of the basic steps in text processing is word searching or

word matching. A word search algorithm works by finding the

first or all the occurrences of a word in a textual data. The

word to be searched is generally called a pattern. Words alone

provide valuable information for further processing and hence

word search is an important component of text

processingtasks like text editing, data retrieval and data

manipulation [6]. Over the years word search has found

immense application in text editors, web search and searching

for patterns in biological databases. In the recent times

sentiment analysis, online advertisements are some areas in

which word search finds its use.

A word search algorithm takes a text T of length n and a

pattern P of length m as the input. The text is then scanned

using a window that has length equal to the size of the pattern.

The leftmost ends of the pattern and window are aligned. The

brute force method works by comparing each character of the

pattern with that of the text and in case of a mismatch the

pattern is shifted by one position to the right. Other existing

algorithms generally work in two phases:- the pre-processing

phase and the matching phase. The pre-processing phase is

used to determine the number of positions by which the

pattern needs to be shifted in case of a mismatch in the

matching phase. The main goal of string matching algorithms

is to increase efficiency by reducing the number of

comparisons and increase the length of shifts in case of a

mismatch. The issue of efficiency of string search algorithms

has probably never been considered so seriously until the

virtual text explosion caused by the internet and the task of

mining valuable information from it. As a variety of tasks are

presenting themselves different techniques, each efficient in

its own specific area are being utilized.

The rest of the paper is organized as follows. Section 2

discusses about some previously existing algorithms. Section

3 presents the proposed algorithm. Section 4 presents an

example for pattern searching using the proposed algorithm.

Section 5 presents the experimental results of the proposed

algorithm. Section 6 presents an analysis of the proposed

algorithm and finally the paper is concluded in Section 7.

2. SURVEY OF EXISTING

ALGORITHMS

2.1 Boyer Moore Algorithm
The Boyer Moore algorithm is one of the most extensively

used pattern matching algorithms. All the algorithms prior to

it attempted to find a pattern in a string by examining the

leftmost character. Boyer and Moore believed that more

information could be gained by beginning the comparison

from the end of the pattern instead of the beginning [8].

Thisinformation often allows the pattern to proceed in large

jumps through the text being searched [2]. The algorithm uses

the bad character heuristic and the good suffix heuristic to

determine the pattern shift in case of mismatch of a pattern

character.

During the matching phase if there is a mismatch between the

text character T[i] and the pattern character P[j] and if T[i]

does not occur anywhere else in the pattern, then the pattern

can be shifted completely by m positions towards the right. If

T[i] is present in the pattern then the pattern is shifted until an

occurrence of T[i] in the pattern gets aligned with T[i] of the

text. This is the bad character heuristic.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference on Communication Computing & Virtualization 2016

20

The second type of shift is guided by a successful match of

the last k>0 characters of the pattern, P[j...m] and

corresponding characters, T[i...(i+k)] of the text. P[j…m] is

referred to as the suffix of size k of the pattern and is denoted

as suff(k). If there is no occurrence of suff(k) in the pattern

then it is shifted by its entire length. However if there exists a

prefix (beginning part of the pattern) of size l<k that match

suffix of the same size l then the pattern is shifted by a

distance equal to the distance between the prefix and the

suffix. On the other hand if there is another occurrence of

suff(k) not preceded by the same character that caused the

mismatch then the pattern is shifted by a distance equal to

suff(k) and its rightmost occurrence [9]. This is the good

suffix heuristic. The shift distance is taken to be the maximum

of the distances obtained by the bad character heuristic and

the good suffix heuristic.

The Boyer Moore algorithm is considered to be an efficient

algorithm for pattern searching. It has the property that the

longer the pattern is, the faster it performs. However the

algorithm suffers from the phenomenon that it tends to work

inefficiently on small alphabets like DNA. The skip distance

tends to stop growing with the pattern length because

substrings re-occur frequently [14]. Also, the pre-processing

for the good suffix heuristic is difficult to understand and

implement [10]. Furthermore, it suffers from the need for very

large tables or state machines and thus requires extra space

[14]. It also requires extra time for processing the pattern.

2.2 Horspool Algorithm
The Horspool algorithm also begins the comparison from the

end of the pattern but unlike the Boyer Moore algorithm it

only uses the bad character heuristic. Since the good suffix

heuristic is complicated and difficult to implement, Horspool

suggested that using only the bad character heuristic would

also give performance similar to that of the Boyer-Moore

algorithm. The Boyer Moore algorithm used the bad character

of the text that caused a mismatch to determine the pattern

shift distance. On the contrary Horspool’s bad character

heuristic uses the rightmost character of the current text

window. During the matching phase, if T[i] and P[j] do not

match and T[l] is the rightmost character of the current text

window then the pattern is inspected to find the rightmost

occurrence of T[l] in it. If no occurrence of T[l] exists in P,

the pattern is shifted completely by its length m, otherwise the

pattern is shifted until T[l] gets aligned to its rightmost

occurrence in P.

The Horspool algorithm is a refinement of the Boyer Moore

algorithm. Since it uses only the bad character heuristic, it

requires less space but has a poorer worst case performance

[11]. Like the Boyer Moore algorithm, the Horspool algorithm

gets faster for longer patterns. However for shorter patterns

the naïve algorithm is considered to be better [12].

2.3 Knuth Morris Pratt Algorithm
The Knuth Morris Pratt or the KMP algorithm begins the

comparison from the leftmost character of the pattern. The

following example explains the algorithm.

Table 1. KMP algorithm example [10]

0 1 2 3 4 5 6 7 8

A B C A B C A B D

A B C A B D

 A B C A B D

At the first attempt the characters through position 0-4 or the

prefix ABCAB of the pattern have matched. Comparison C-D

at position 5 yields a mismatch. In order to determine the shift

of the pattern let us define the term border. A border of a

string is a substring that is both proper prefix and proper

suffix of the string. In the above example the border of the

matching prefix ABCAB is AB. The width of the prefix and

its border is 5 and 2 respectively. The shift distance is

determined by the difference between the width of the

matching prefix and its border, which is 3 [10]. The pattern is

shifted by three positions towards the right. This shift aligns

the pattern with its occurrence in the text.

The KMP algorithm makes use of the information gained by

previous character comparisons unlike the naïve algorithm.

Hence it never needs to move backwards in the text, this

makes the algorithm useful for processing large files [13].

However the performance of the KMP algorithm degrades for

longer patterns as the possibility of character mismatch

increases.

The algorithms discussed above and their variants have been

in use in computer systems. However, these algorithms have

their disadvantages either in terms of time and space

requirements or the size of the pattern. As a result the

algorithms fail to achieve the desired performance in certain

applications or situations as mentioned previously. The

proposed algorithm attempts to overcome these disadvantages

and find its application in areas in which the discussed

algorithms fail to perform.

3. THE PROPOSED ALGORITHM
The proposed algorithm finds the first occurrence of a pattern

in a text that consists of words separated by a blank space. It

does not require pre-processing the pattern to be searched and

aims to search for a pattern by using features of the text. It

begins the matching by aligning the leftmost ends of the text

and the pattern. The leftmost characters are compared for a

match. If there is a match the rightmost character of the

pattern is compared with the rightmost character of the current

window. If it matches the order of comparison of the

remaining characters is from right to left. In case of a

mismatch the algorithm uses two rules to make a shift namely

alphabet-blank mismatch and alphabet-alphabet mismatch.

An alphabet-blank mismatch during the comparison of the

leftmost character indicates that the next position might be a

probable beginning of the pattern. As a result the pattern is

shifted by one position towards the right. In case of an

alphabet-alphabet mismatch during the comparison of the

leftmost characters, the pattern is shifted by two positions

towards the right because the character at the next position

might either be a blank or a character that is a part of the

current word to which the pattern is aligned.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference on Communication Computing & Virtualization 2016

21

Fig 1: Schematic diagram for the proposed algorithm

During the comparison of the rightmost character of the

pattern an alphabet-blank mismatch indicates that the pattern

is not present at the current position as clearly the current

word aligned is shorter than the pattern. As a result the pattern

is shifted by (i+(m-1)+1) positions towards the right. Here ‘i’

indicates the starting position of the current text window. The

value of i starts at 0. In case of an alphabet-alphabet

mismatch, the algorithm checks for the character at the next

position. If it is a blank the pattern is shifted by (i+(m-1)+2)

positions towards the right. If it is a character the pattern is

shifted by two positions towards the right.

When a mismatch occurs at any position other than the

leftmost and the rightmost positions, the pattern is completely

shifted by m positions towards the right.

The following specifies the steps of the proposed algorithm. P

is the pattern of length m to be searched in a text T of length

n. The notation T[i] is used to denote the ith character in T.

The value of i begins with 0. The algorithm returns the

position of the first occurrence of P in T, if P is present in T.

Algorithm_preditive_search(T,P)

1: Align T and P

2: Repeat steps 3 to 5 until a match is found or

until the end of T is reached.

3: Compare P[0] and T[i]

4: if mismatch

 a: Alphabet-blank

 Re align P[0] to T[i+1]

 b: Alphabet-alphabet

 Re align P[0] to T[i+2]

5: if match compare P[m] to T[i+m]

 a: if match

 Compare remaining characters from

 right to left

 b: if mismatch

 1: Alphabet-blank

 Re align P[0] to T[i+(m-1)+1]

 2: Alphabet-alphabet

 a: if T[i+(m+1)] is blank

 Re align P[0] to T[i+(m-1)+2]

 b: else

 Re align P[0] to T[i+2]

Figure 1 shows a schematic diagram for the proposed

algorithm. The figure also depicts the steps that the algorithm

takes at each step i.e. compare the characters of the text and

the pattern, predict accordingly the next step to be taken in

case of a mismatch and act as per it.

4. WORKING EXAMPLE
The following example shows the steps during the search of

the pattern JOLLY of length 5 in a text of length 18.

Table 2. Pattern search using the proposed algorithm

J O H N I S J O L L Y

J O L L Y

 J O L L Y

 J O L L Y

 J O L L Y

The leftmost comparison J-J yields a match. Therefore the

rightmost character of the pattern is tried for a match, as this

leads to an alphabet-blank mismatch, the pattern is shifted by

its length. In the next stage the comparison I-J causes a

mismatch. According to the rule the pattern is shifted by two

positions. The next comparison causes an alphabet-blank

mismatch. As a result the pattern is shifted by one position.

The number of comparisons made up to this stage is four. The

next shift of the pattern aligns the character J of the pattern to

J of the current window. As this leads to a match, the

rightmost character of the pattern is inspected. This too leads

to a match. The remaining characters of the pattern also match

with that of the current window. The algorithm then

terminates and returns the index where the occurrence of the

pattern starts in the text. For the above example the index is 8.

Since all the characters of the pattern are compared, the

number of comparisons finally made is nine.

5. EXPERIMENTAL RESULTS
The proposed algorithm was tested on a number of test cases.

The following shows some cases in which the pattern is

located at different positions in the text, for varying lengths of

pattern and for different types of mismatch. The number of

comparisons that the algorithm makes, the number of attempts

made is also shown.

Table 3. Comparisons made when pattern is at the end

C A B C B E C B A E

C B A E

 C B A E

 C B A E

 C B A E

The first comparison C-C leads to a match. As per the order,

the next comparison is C-E. As this leads to an alphabet-

alphabet mismatch and the next character is a blank space, the

pattern is shifted by its length plus one positions i.e. by 4 + 1

= 5, positions towards the right. This depicts the best shift that

the algorithm can make. The next comparison is B-C, this

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference on Communication Computing & Virtualization 2016

22

causes a mismatch. Thus the pattern is shifted by two

positions. As the next comparison leads to an alphabet blank

mismatch, the pattern is shifted by one position. This

alignment causes a match of the pattern. The total number of

comparisons made is eight.

The above example gives an insight into the average case

performance of the algorithm as it considers the general cases

of mismatch that occur during comparison of characters and

the resulting pattern shift that take place.As seen from Table

3, an alphabet-alphabet mismatch is encountered at the

rightmost position of the pattern and the resulting shift of the

pattern made, which is the best possible shift. An alphabet-

alphabet and an alphabet-blank mismatch at the leftmost

positions are also encountered.

Table 4. Comparisons made when pattern is within the

text

A C D E F C F D C A F E D A F

D C A F E

 D C A F E

 D C A F E

 D C A F E

 D C A F E

 D C A F E

The first comparison A-D causes a mismatch. Thus a shift is

made by two positions. The next comparison D-D leads to

amatch, as a result the rightmost character is tried, as this

leads to an alphabet-alphabet mismatch and the character at

the next position is an alphabet, a shift of two positions is

made. The next comparison F-D causes a mismatch and so

does the next comparison C-D. The following comparison

causes an alphabet-blank mismatch and the resulting shift

aligns the pattern with its occurrence in the text. The number

of comparisons made is eleven.

Table 5. Comparisons made when pattern is within the

text and the length is small

P Y T H O N I N E I G H T I E S

I N

 I N

 I N

 I N

 I N

The first comparison P-I causes an alphabet-alphabet

mismatch, so the pattern is shifted by two positions. The next

comparison T-I also causes an alphabet-alphabet mismatch

and thus the shift is made accordingly. Same is the case for

the comparison O-I. The pattern is finally aligned to its

occurrence in the text as a result of the shift caused by the

alphabet-blank mismatch in the second last attempt. The total

number of comparison made is six.

6. ANALYSIS OF THE ALGORITHM
The algorithm finds for a match by making predictions as to

what would occur at the next position in the text. The

predictions are made on the basis of whether the character that

caused a mismatch is a blank or an alphabet. At each

mismatch the algorithm shifts the pattern by one or two

positions depending on whether it is a blank or an alphabet

mismatch. In the best case the algorithm shifts the pattern by

its entire length when the rightmost character of the pattern

coincides with a blank character in the text or the character

present next to the last character of the current window is a

blank. Unlike the traditional pattern matching algorithms, the

proposed algorithm works in just a single phase i.e. the

matching phase and hence does not require additional time for

pre-processing. The following example shows the steps in

finding the pattern using the Boyer-Moore algorithm using the

example considered in Table2.

Table 6. Pattern search using the Boyer Moore algorithm

J O H N I S J O L L Y

J O L L Y

 J O L L Y

 J O L L Y

The Boyer-Moore Algorithm finds a match in the third

attempt as seen in Table6. It pre-processes the pattern JOLLY

to determine the shifts in case of a mismatch. The comparison

starts with the rightmost character of the pattern. As it can be

seen from the figure, this leads to a mismatch and since the

pattern does not contain a blank space it is completely shifted.

The next comparison O-Y also causes a mismatch but there is

an occurrence of O in the pattern, hence the pattern is shifted

such that O in the text in aligned with O in the pattern. The

number of comparison made up to this stage if two. The next

comparison Y-Y leads to a match and so do the subsequent

comparisons. The number of comparisons finally made is

seven.

In Section 4, it was seen that for the same test case the number

of comparisons made by the proposed algorithm was nine and

the pattern was found in the fourth attempt. This was achieved

without the pattern being processed before the comparisons

were made.

Furthermore, for the test case shown in Table 5 in Section 5,

the following observations were made when the Boyer Moore

algorithm was used.

Table 7. Pattern search using the Boyer Moore algorithm

P Y T H O N I N E I G H T I E S

I N

 I N

 I N

 I N

 I N

The first comparison Y-N causes a mismatch and as Y does

not occur anywhere else in the pattern, thepattern is shifted by

its length. The next comparison H-N also causes a mismatch

and since H is not present anywhere else in the pattern, it is

shifted by its length. The number of comparisons made up to

this stage is two. The next comparison N-N leads to a match,

hence the comparison O-I is made. This leads to a mismatch

and so the pattern is shifted by its length. The number of

comparison made up to this stage is four. The comparison I-N

causes a mismatch but I is present in the pattern. As a result

the pattern is shifted such that I in the text that caused the

mismatch is aligned with the I in the pattern. The number of

comparisons made till now is five. The next two comparisons

N-N and I-I finds the occurrence of the pattern in the text. The

total number of comparisons thus made is seven.

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference on Communication Computing & Virtualization 2016

23

It was seen in Section 5 that for the same test case, the number

of comparisons made by the proposed algorithm was six.

Thus, from the above two observations we can say that for

shorter patterns, the number of comparisons that the proposed

algorithm makes to find a match is comparable to that of the

Boyer-Moore Algorithm and in some cases its performance is

even better.

On analysing the performance of the KMP algorithm for the

example considered in Table 2, the following observations

were made.

Table 8. Pattern search using the KMP algorithm

J O H N I S J O L L Y

J O L L Y

 J O L L Y

 J O L L Y

 J O L L Y

 J O L L Y

 J O L L Y

 J O L L Y

 J O L L Y

The first comparison J-J leads to a match and so does the

second comparison O-O. The comparison H-L causes a

mismatch. The pattern is shifted by two as the length of the

matching prefix is two and the border length is zero. The next

comparison H-J causes a mismatch. As a result the pattern is

shifted by one position. The next comparison N-O also causes

a mismatch. Hence the pattern is shifted by one position. The

following comparisons also cause a mismatch of the first

character of the pattern and the pattern is shifted by one

position in each of these cases until the pattern gets aligned

with its occurrence in the text. The total number of

comparisons made is fourteen.

As already observed the number of comparisons made by the

proposed algorithm were nine as compared to fourteen made

by the KMP algorithm.

The following table shows a comparison of the proposed

algorithm with the Boyer Moore and the KMP algorithm. The

comparisons are made on the basis of the number of

comparisons each algorithm makes for searching each word of

the text A TEST OF THE PROPOSED ALGORITHM.

Table 9. Comparison of the proposed algorithm with KMP

and Boyer Moore algorithm

Pattern

Number of comparisons

Boyer

Moore

KMP Proposed

A 1 1 1

TEST 5 6 5

OF 6 9 6

THE 7 15 10

PROPOSED 11 22 16

ALGORITHM 12 33 18

It is evident from Table 9 that the proposed algorithm

performs better than the KMP algorithm in all the cases and

also shows performance comparable to that of the Boyer

Moore algorithm. It is noteworthy that the proposed algorithm

achieves this performance without pre-processing the pattern

to be searched unlike the other two algorithms.

7. CONCLUSION
The proposed algorithm finds the first occurrence of a pattern

in a text. One area in which it scores over other existing

algorithms is that it does not require pre-processing but rather

uses intelligent predictions to find a match. The algorithm has

been tested and it is noteworthy that for shorter patterns the

performance achieved is comparable to that of the Boyer

Moore algorithm which is considered to be a benchmark

algorithm for pattern matching. This performance is achieved

just by examining the features of the text and making

predictions unlike the Boyer Moore algorithm that involves

use of previously computed values to make a pattern shift.

The proposed algorithm has also been seen to achieve better

performance than the KMP algorithm. The algorithm proposes

the concept of predictive decision making in finding a pattern

which is relatively new to string search. The only limitation

that the algorithm has at the present stage is that it is not able

to search for the occurrence of a pattern that occurs as a

substring of a word in a text. Further analysis of the algorithm

to determine its complexity and the elaboration of the concept

of prediction to enable the search of substrings is the next step

to be pursued.

8. REFERENCES
[1] Joseph B. Sidowski, On-line computer text processing: A

tutorial in: Behavior Research

Methods&Instrumentation, vol. 6, no.2, pp. 159-166,

1974.

[2] Boyer, R. S.; Moore, J. S. A fast string searching

algorithm. Commun. ACM 20, pp. 762-772, 1977.

[3] Donald E. Knuth, James H. Morris, Vaughan R. Pratt,

Fast Pattern Matching In Strings in: Siam, Vol. 6, No. 2,

pp. 323-350, June 1977.

[4] R. Nigel horspool, Practical fast searching in strings in:

Software-Practice and Experience, vol. 10, pp. 501-506,

1980.

[5] Timo Raita, Tuning The Boyer-Moore-Horspool String

Searching Algorithm in: Software-Practice And

Experience, Vol. 22(10), pp. 879-884, October 1992.

[6] NimishaSingla, Deepak Garg, String Matching

Algorithms and their Applicability in various

Applications in: International Journal of Soft Computing

and Engineering (IJSCE) ISSN: 2231-2307, Volume-I,

Issue-6, pp.156-161, January 2012.

[7] Emma Haddi, Xiaohui Liu, Yong Shi, The Role of Text

Pre-processing in Sentiment Analysis: International

Conference on Information Technology and Quantitative

Management, pp. 234-231, 2013.

[8] SurangaHettiariachchi, Wesley Kerr: Boyer-Moore

String Matching algorithm, Technical paper downloaded

from

http://cs.eou.edu/CSMM/surangah/research/boyer/boy.pd

f

http://cs.eou.edu/CSMM/surangah/research/boyer

International Journal of Applied Information Systems (IJAIS) – ISSN : 2249-0868

Foundation of Computer Science FCS, New York, USA

International Conference on Communication Computing & Virtualization 2016

24

[9] Anany Levitin: Introduction to The Design and Analysis

of Algorithms, 2nd edition, ISBN: 9780321358288,

published by Pearson Education, Inc., 2007.

[10] http://www.inf.fhflensburg.de/lang/algorithmen/pattern/i

ndexen.htm

[11] http://www.boost.org/doc/libs/1_54_0/libs/algorithm/doc

/html/the_boost_algorithm_library/Searching/BoyerMoor

eHorspool.html

[12] http://www.personal.kent.edu/~rmuhamma/Algorithms/

MyAlgorithms/StringMatch/boyerMoore.htm

[13] http://cs.indstate.edu/~kmandumula/presentation.pdf

[14] http://www.cs.utexas.edu/~moore/best-ideas/string-

searching/index.html

